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10-4 Torque 
If an object is at rest, how can we get it to rotate? If an object is already rotating, how can 

we change its rotational motion? We answered equivalent questions about straight-line motion by 
saying “Apply a net force!” Let’s now consider the rotational equivalent of force. 

 
EXPLORATION 10.4 – Turning a revolving door 

From an overhead view, a revolving door looks like a + sign mounted on a vertical axle. 
The door can spin freely, clockwise or counterclockwise, about its center. 

 
Step 1 – Consider the three cases illustrated in Figure 10.9, in which a force (the red arrow) is 
applied to a revolving door. In each case, determine the direction the door will start to rotate, 
assuming it starts from rest. 

 
Figure 10.9: Three cases of forces (shown in red) applied to a revolving door, shown from an 
overhead perspective. 

 
Although the direction of 

the force in case B is opposite to 
that in cases A and C, in each case 
the door will rotate 
counterclockwise. If you are ever 
confused about the direction an 
object will tend to rotate, place your 
pen or pencil on the diagram and hold it at the axis of the object, in this case at the center. Then 
push on the object in the direction, and at the location, of the applied force and see which way the 
object spins. Knowing the direction of a force applied to an object is not enough to determine the 
direction of rotation; we also need to know where the force is applied in relation to the axis of 
rotation. 

 
Step 2 – Rank the three cases based on how quickly the revolving door spins, from largest to 
smallest, assuming the door is initially at rest. In case C the door will rotate more quickly than in 
case A, because the applied force in C is twice as large as that in A while everything else (the 
point at which the force is applied, and the direction of the force) is equal. The door in case B also 
rotates faster than that in A because, even though the force has the same magnitude, in case B the 
force is applied further from the axis of rotation. Applying a force farther from the axis of rotation 
generally has a larger effect on the rotation of an object, which you have probably experienced. If 
you have ever come to a door where it was not obvious which side was connected to the hinges, 
and given the door a push on the edge where the hinges were, you most likely came close to 
running straight into the door as it opened very slowly in response to your push. Applying the 
same force at the edge of the door furthest from the hinges, however, is far more effective at 
opening the door. 
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The comparison that is hardest to rank is that between B and C. In case C the applied 
force is twice as large as that in B, but the force in B is applied twice as far from the axis of 
rotation as that in C. Which effect is more important? It turns out that these effects are equally 
important, so cases B and C are equivalent. The overall ranking is B=C>A. 

 
The point of this discussion is that the angular acceleration of the door is proportional to 

both the applied force and the distance of the applied force from the axis of rotation. Let’s now 
consider whether the direction at which the force is applied makes any difference. 

 
Step 3 – Consider the three cases shown in Figure 10.10. Rank these three cases based on the 
revolving door’s angular 
acceleration, from largest to 
smallest. 

 
Figure 10.10: Three cases 
involving the same magnitude 
force applied at the same point 
on a revolving door, but applied 
in different directions. 

 
Let’s split the forces in cases D and E into components, as shown in Figure 10.11. How 

do the components of the force influence the door in each case? If you’ve ever tried to open a 
door by exerting a force parallel to the door itself, you’ll know that this is completely ineffective. 
Similarly, the parallel components in cases D and E do absolutely nothing to affect the door’s 
rotation. Only the perpendicular components, which have a magnitude of sinF θ , affect the 
rotation. Because these components are smaller than F, the magnitude of the perpendicular force 
in case A, ranking the three 
cases gives A>D=E. 

 
Figure 10.11: Splitting the 
force in case D, and case E, into 
components parallel to the door 
and perpendicular to the door. 

Key ideas: The angular acceleration of a door depends on three factors: the magnitude of the 
applied force; the distance from the axis of rotation to where the force is applied; and the 
direction of the applied force.   Related End-of-Chapter Exercises: 48, 49. 

 
In Exploration 10.4, we learned about the rotational equivalent of force, which is torque.  
 
The name for the rotational equivalent of force is torque, which we symbolize with the 

Greek letter tau (τ ). Whereas a force is a push or a pull, a torque is a twist. A torque can result 
from applying a force. The torque resulting from applying a force F at a distance r from an axis of 
rotation is: 

sinr Fτ θ= .   (Equation 10.9: Magnitude of the torque) 
The angle θ represents the angle between the line of the force and the line the distance r is 

measured along. 
 
Essential Question 10.4: Make a list of common household items or tools that exploit principles 
of torque. 
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Answer to Essential Question 10.4: Quite a number of tools and gadgets exploit torque, in the 
sense that they enable you to apply a small force at a relatively large distance from an axis, and 
the tool converts that into a large force acting at a relatively small distance from an axis. 
Examples include scissors, bottle openers, can openers, nutcrackers, screwdrivers, crowbars, 
wrenches, wheelbarrows, and bicycles. 

 

10-5 Three Equivalent Methods of Finding Torque 
 

EXPLORATION 10.5 – Three ways to find torque 
A rod of length L is attached to a wall by a hinge. The rod 

is held in a horizontal position by a string that is tied to the wall 
and attached to the end of the rod, as shown in Figure 10.12. 

 
Figure 10.12: A rod attached to a wall at one end by a hinge, and 
held horizontal by a string. 
 
Step 1 – In what direction is the torque applied by the string to the rod, about an axis that 
passes through the hinge and is perpendicular to the page? As we did in previous chapters, it’s 
a good idea to draw a free-body diagram of the rod (or at least part of a free-body diagram, as in 
Figure 10.13) to help visualize what is happening. For now the only force we’ll include on the 
free-body diagram is the force of tension applied by the string (we’ll go on to look at all the 
forces applied to the rod in Exploration 10.8). Try placing your pen over the picture of the rod. 
Hold the pen where the hinge is and push on the pen, at the point where the string is tied to the 
rod, in the direction of the force of tension. You should see the pen 
rotate counterclockwise. Thus, we can say that the torque applied by 
the string, about the axis through the hinge, is in a counterclockwise 
direction. 

 
Figure 10.13: A partial free-body diagram for the rod, showing the 
force of tension applied to the rod by the string. 

 
Note that we are dealing with direction for torque much as we did for angular velocity. 

The true direction of the torque can be found by curling your fingers on your right hand 
counterclockwise and placing your hand, little finger down, on the page. When you stick out your 
thumb it points up, out of the page. This is the true direction of the torque, but for simplicity we 
can state directions as either clockwise or, as in this case, counterclockwise. 

 
Now we know the direction of the torque, relative to an axis through the hinge, applied 

by the string, let’s focus on determining its magnitude. 
 

Step 2 – Measuring the distance r in Equation 10.9 along the bar, apply Equation 10.9 to find 
the magnitude of the torque applied by the string on the rod, with respect to the axis passing 
through the hinge perpendicular to the page. Finding the magnitude of the torque means 
identifying the three variables, r, F, and θ, in Equation 10.9. In this case we can see from Figure 
10.13 that the distance r is the length of the rod, L; the force F

v
 is the force of tension, TF

v
; and 

the angle θ is the angle between the line of the force (i.e., the string) and the line the distance r is 
measured along (the rod), so θ is the angle φ  in Figure 10.13. In this case, then, applying 
Equation 10.9 tells us that the magnitude of the torque is sinTL Fτ φ= . 
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Step 3 – Now, determine the torque, about the axis through the hinge that is perpendicular to 
the page, by first splitting the force of tension into components, and then applying Equation 
10.9. Which set of axes should we use when splitting the force into components? The most 
sensible coordinate system is one aligned parallel to the rod and perpendicular to the rod, giving 
the two components shown in Figure 10.14. Because the force component that is parallel to the 
rod is directed at the hinge, where the axis goes through, that component gives a torque of zero 
(it’s like trying to open a door by pushing on the door with a force directed at the line passing 
through the hinges). Another way to prove that the force is zero is 
to apply Equation 10.9 with an angle of 180˚, which means 
multiplying by a factor of sin(180˚), which is zero. 

 
Figure 10.14: Splitting the force of tension into a component 
parallel to the rod, and a component perpendicular to the rod. 

 
The torque from the force of tension is associated entirely with the perpendicular 

component of the force of tension. Now, identifying the three pieces of Equation 10.9 gives a 
force magnitude of sinTF F φ= ; a distance measured along the rod of r L= , and an angle of 

90θ = o  between the line of the perpendicular force component and the line we measured r along. 
Because sin(90 ) 1=o , applying Equation 10.9 tells us that the magnitude of the torque from the 
tension, with respect to our axis through the hinge, is ( sin )sin(90 ) sinT TL F L Fτ φ φ= =o . This 
agrees with our calculation in Step 2. 

 
Step 4 – Instead of measuring r along the rod, draw a line from the hinge that meets the string 
(the line of the force of tension) at a 90˚ angle. Apply Equation 10.9 to find the magnitude of 
the torque applied by the string on the rod, with respect to the axis 
passing through the hinge, by measuring r along this line. 

 
Figure 10.15: A diagram showing the lever arm, in which the distance 
used to find torque is measured from the axis along a line 
perpendicular to the line of the force. 
  

As we can see from Figure 10.15, the r in this case is not L, the 
length of the rod, but is instead sinL φ . This result comes from applying the geometry of right-
angled triangles. The magnitude of the force, F , is TF , the magnitude of the full force of tension, 
and the angle between the line we measure r along and the line of the force is 90˚. This is known 
as the lever-arm method of calculating torque, where the lever-arm is the perpendicular distance 
from the axis of rotation to the force. Applying Equation 10.9 gives the magnitude of the torque 
as ( sin ) sin(90 ) sinT TL F L Fτ φ φ= =o , agreeing with the other two methods discussed above. 

 
Key idea for torque: We can find torque in three equivalent ways. It can be found using the 
whole force and the most obvious distance; after splitting the force into components; or by using 
the lever-arm method in which the distance from the axis is measured along the line 
perpendicular to the force. Use whichever method is most convenient in a particular situation.        
Related End-of-Chapter Exercises: 7, 23, 50. 

 
Essential Question 10.5: Torque can be calculated with respect to any axis. In Exploration 10.5, 
what is the torque, due to the force of tension, with respect to an axis passing through the point 
where the string is tied to the wall? In each case, assume the axis is perpendicular to the page. 
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Answer to Essential Question 10.5: The torque, from the tension, is zero with respect to any axis 
that passes through the string, because the line of the force (the string, in this case) passes through 
an axis that lies on the string. It is important to remember that the torque (both its direction and 
magnitude) associated with a force depends on the particular axis of rotation the torque is being 
measured with respect to. 

 

10-6 Rotational Inertia 
In Chapter 3, we found that an object’s acceleration is proportional to the net force acting 

on the object:  

m
F

a ∑=
r

r
.   (Equation 3.1: Connecting acceleration to net force) 

 
A similar relationship connects the angular acceleration of an object to the net torque acting on it: 

I
τ

α = ∑
v

v .  (Eq. 10.10: Connecting angular acceleration to net torque) 

 
Thus, the angular acceleration of an object is proportional to the net torque acting on the 

object. The I in the denominator of Equation 10.10 is known as the rotational inertia, which is the 
rotational equivalent of mass. 

 
We have already looked at how the angular acceleration αv  is the rotational equivalent of 

the acceleration av , and how torque,τv , is the rotational equivalent of force, F
v

. The I in the 
denominator of Equation 10.10 must therefore be the rotational equivalent of the mass, m. I is 
known as the rotational inertia, or the moment of inertia. In the same way that mass is a 
measure of an object’s tendency to maintain its state of straight-line motion, an object’s rotational 
inertia is a measure of the object’s tendency to maintain its rotational motion. Something with a 
large mass is hard to get moving, and it is also hard to stop if it is already moving. Similarly, if an 
object has a large rotational inertia it is difficult to start it rotating, and difficult to stop if it is 
already rotating. 

 
One question to consider is, are rotational inertia and mass the same thing? In other 

words, does an object’s mass, by itself, determine the rotational inertia? Let’s check the units of 
rotational inertia. Re-arranging Equation 10.10, we find that rotational inertia has units of torque 
units (N m) divided by angular acceleration units (rad/s2). Remembering that the newton is 
equivalent to kg m/s2, and that we can treat the radian as being dimensionless, we find that 
rotational inertia has units of kg m2. Rotational inertia depends on more than just mass, it depends 
on both mass and, somehow, length squared. Let’s investigate this further. 

 
EXPLORATION 10.7 – Rotational inertia 

Consider a ball of mass M mounted at the end of a stick that has a negligible mass, and a 
length L (which is large compared to the ball’s radius). The other end of the stick is pinned so the 
stick can rotate freely about the pin. 

 
Step 1 – If the ball and stick are held horizontal and then released from rest, what is the ball’s 
initial acceleration? The ball’s initial acceleration is gv , the acceleration due to gravity. The 
force of the stick acting on the ball only becomes non-zero after the ball starts moving. We should 
also draw a diagram to help analyze the situation. The diagram is shown in Figure 10.16. 
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Figure 10.16: The initial position of the ball and stick. The 
system can rotate about an axis passing through the left end of the stick. 
 
Step 2 – What is the ball’s initial angular acceleration? 

The angular acceleration can be found from the equation a rα= . Here r = L, the length 
of the stick, so we have /g Lα =v , directed clockwise. 

 
Step 3 – What is the torque acting on the ball at the instant it is released? 

Here we can draw a free-body diagram of the ball, shown in Figure 10.17. Initially the 
only force acting on the ball is the force of gravity, Mg directed down. Considering an axis 
perpendicular to the page and passing through the pin, the torque is 

L Mgτ =v , directed clockwise. 
 

Figure 10.17: The free-body diagram of the ball immediately after the 
system is released from rest. 

 
Step 4 – Using Equation 10.10, and the results from steps 2 and 3, 
determine the rotational inertia of the ball relative to the axis passing 
through the pin.  

Re-arranging Equation 10.10 to solve for the rotational inertia gives: 

I τ
α
∑

=
v

v . 

 
The torque and the angular acceleration are both clockwise, allowing us to divide the 

magnitude of the torque by the magnitude of the angular acceleration to determine the ball’s 
rotational inertia about an axis through the pin. 

2

/
L MgI M L
g L

= = . 

 
Thus the rotational inertia of an object of mass M in which all the mass is at a particular 

distance L from the axis of rotation is 2I M L= . 
 

Key ideas for rotational inertia: An object’s rotational inertia is determined by three factors: the 
object’s mass; how the object’s mass is distributed; and the axis the object is rotating around. 
Related End-of-Chapter Exercises: 10, 27. 
 
Essential Question 10.6: Consider the three cases shown in Figure 10.18. In each case, a ball of a 
particular mass is placed on a light rod of a particular length. Each rod can rotate without friction 
about an axis through the left end. Rank the cases based on their rotational inertias, from largest 
to smallest. 
 
 
 
 
 

 
Figure 10.18: Three cases, each involving a ball on the end of a rod that can rotate about its left 
end. 
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Answer to Essential Question 10.6: The correct ranking is 3>1>2. In the rotational inertia 
equation, the distance from the axis to the ball (the length of the rod) is squared, while the mass is 
not. Thus, changing the length by a factor of 2 changes the rotational inertia by a factor of 4, 
whereas changing the mass by a factor of 2 changes the rotational inertia by only a factor of 2.  

 

10-7 An Example Problem Involving Rotational Inertia 
 
Our measure of inertia for rotational motion is somewhat more complicated than inertia 

for straight-line motion, which is just mass. Consider the following example. 
 

EXAMPLE 10.7 – Spinning the system. 
Three balls are connected by light rods. The mass and location of each ball are:  
Ball 1 has a mass M and is located at x = 0, y = 0. 
Ball 2 has a mass of 2M and is located at x = +3.0 m, y = +3.0 m. 
Ball 3 has a mass of 3M and is located at x = +2.0 m, y = –2.0 m. 
Assume the radius of each ball is much smaller than 1 meter. 
 
(a) Find the location of the system’s center-of-mass. 
(b) Find the system’s rotational inertia about an axis perpendicular to the 

page that passes through the system’s center-of-mass. 
(c) Find the system’s rotational inertia about an axis parallel to, and 2.0 m 

from, the axis through the center-of-mass. 
 

SOLUTION 
Let’s begin, as usual, by drawing a diagram of the situation. The diagram is 

shown in Figure 10.19. 
 

Figure 10.19: A diagram showing the location of the balls in the system described 
in Example 10.7. 
 

(a) To find the location of the system’s center-of-mass, let’s apply 
Equation 6.3. To find the x-coordinate of the system’s center-of-mass: 

 
1 1 2 2 3 3

1 2 3

(0) ( 3.0m)(2 ) ( 2.0m)(3 ) ( 12.0m) 2.0m
2 3 6CM

x m x m x m M M M MX
m m m M M M M
+ + + + + + +

= = = = +
+ + + +

 

 
The y-coordinate of the system’s center-of-mass is given by: 
1 1 2 2 3 3

1 2 3

(0) ( 3.0m)(2 ) ( 2.0m)(3 ) (0) 0
2 3 6CM

y m y m y m M M M MY
m m m M M M M
+ + + + + −

= = = =
+ + + +

. 

 
(b) To find the system’s rotational inertia about an axis through the 

center-of-mass we can find the rotational inertia for each ball separately, using 
2I M L= , and then simply add them to find the total rotational inertia. Figure 

10.20 is helpful for seeing where the different L values come from. 
 

Figure 10.20: The center-of-mass of the system is marked at (+2 m, 0). The axis 
of rotation passes through that point. The red lines show how far each ball is 
from the axis of rotation. 
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For ball 1, 2 2 2(2.0m) 4.0mL = =  so ( )2 2
1 4.0mI M L M= = . 

For ball 2, 2 210mL =  so ( )2 2
2 2 20mI M L M= = . 

For ball 3, 2 24.0mL =  so ( )2 2
3 3 12mI M L M= = . 

The total rotational inertia is the sum of these three values, 2(36m )M . 
 
(c) To find the rotational inertia through an axis parallel to the first axis and 2.0 m away 

from it, let’s choose a point for this second axis to pass through. A convenient 
point is the origin, x = 0, y = 0. Figure 10.21 shows where the L values come from 
in this case.  

 
Figure 10.21: The axis of rotation now passes through the ball of mass M at the 
origin. The red lines show how far the other two balls are from the axis of rotation. 

 
Repeating the process we followed in part (c) gives: 
For ball 1, 2 0L =  so 1 0I ′ = . 

For ball 2, 2 218mL =  so ( )2 2
2 2 36mI M L M′ = = . 

For ball 3, 2 28.0mL =  so ( )2 2
3 3 24mI M L M′ = = . 

The total rotational inertia is the sum of these three values, 2(60m )M . 
 

Related End-of-Chapter Exercises: 29, 31. 
 
Does it matter which point the second axis passes through? What if we had used a 

different point, such as x = +2.0 m, y  = -2.0 m, or any other point 2.0 m from the center-of-mass? 
Amazingly, it turns out that it doesn’t matter. Any axis parallel to the axis through the center-of-
mass and 2.0 m from it gives a rotational inertia of 2(60m )M . It turns out that the rotational 
inertia of a system is minimized when the axis goes through the center-of-mass, and the rotational 
inertia of the system about any parallel axis a distance h from the axis through the center-of-mass 
can be found from 

 
2

CMI I mh= + ,   (Equation 10.11: The parallel-axis theorem) 
where m is the total mass of the system. 
 
Let’s check the parallel-axis theorem using our results from (b) and (c). In part (b) we 

found that the rotational inertia about the axis through the center-of-mass is 2(36m )CMI M= . The 
mass of the system is 6m M=  and the second axis is h = 2.0 m from the axis through the center-
of-mass. This gives 2 2 2(36m ) 6 (2.0m) (60m )I M M M= + = , as we found above. 

 
Essential Question 10.7: To find the total mass of a system of objects, we simply add up the 
masses of the individual objects. To find the total rotational inertia of a system of objects, can we 
follow a similar process, adding up the rotational inertias of the individual objects. 
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Answer to Essential Question 10.7: Yes, the rotational inertia of a system of objects can be 
found be adding up the rotational inertias of the various objects making up the system. This is 
precisely the process we followed in Example 10.7. 

 

10-8 A Table of Rotational Inertias 
Consider now what happens if we take an object that has its mass distributed over a 

length, area, or volume, rather then being concentrated in one place. Generally, the rotational 
inertia in such a case is calculated by breaking up an object into tiny pieces, finding the rotational 
inertia of each piece, and adding up the individual rotational inertias to determine the total 
rotational inertia.  
 
Figure 10.22: A uniform rod of length L and mass M, 
divided into 10 equal pieces. The axis of rotation 
passes through the left end of the rod and is perpendicular to the page. 
 

We can get a feel for the process by considering how we would find the rotational inertia 
of a uniform rod of length L and mass M, rotating about an axis through the end of the rod that is 
perpendicular to the rod itself. If all the mass were concentrated at the far end of the rod, a 
distance L from the axis, then the rotational 
inertia would be ML2. Because most of the 
mass is closer than L to the axis of rotation, 
the rod’s rotational inertia turns out to be 
less than ML2. If we broke up the rod into 
ten equal pieces, with centers at 5%, 15%, 
25%, 35%,…,95% of the length of the rod 
(see Figure 10.22), we would calculate a 
rotational inertia of 0.3325 ML2. This is very 
close to the value we would get by doing the 
integration, 2

, / 3rod endI ML= . The rotational 
inertia’s of various shapes, and for various 
axes of rotation, are shown in Figure 10.23. 

 
Figure 10.23: Expressions for the rotational 
inertia of various objects about a particular 
axis. In each case, the object has a mass M. 

 
 

Essential Question 10.8: In Figure 10.23, all 
the values for rotational inertia are of the 
form 2 2, or I cMR I cML= = , where c is 
generally less than 1. The exception is the 
rotational inertia of a ring rotating about an 
axis through the center of the ring and 
perpendicular to the plane of the ring, where 
c = 1. Why do we expect to get 2I MR=  for 
the ring rotating about that central axis? 

 



Chapter 10 – Rotation I  Page 10 

Answer to Essential Question 10.8: The expression for the rotational inertia of the ring has no 
factor less than 1 in front of the 2MR  because every bit of mass in the ring is a distance R from 
the center of the ring. In all the other cases shown in Figure 10.23, most of the mass of the given 
object is at a distance less than R (or less than L) from the axis in question. 

 

10-9 Newton’s Laws for Rotation 
In Chapter 3 we considered Newton’s three laws of motion. The first two of these laws 

have analogous statements for rotational motion. 
 
Newton’s First Law for Rotation: an object at rest tends to remain at rest, and an object 

that is spinning tends to spin with a constant angular velocity, unless it is acted on by a nonzero net 
torque or there is a change in the way the object's mass is distributed. 

 
Recall that the net torque is the sum of all the forces acting on an object. Always 

remember to add torques as vectors. The net torque can be symbolized by τ∑ v . 

 
The first part of the statement of Newton’s first law for rotation parallel’s Newton’s first 

law for straight-line motion, but the phrase about how spinning motion can be affected by a 
change in mass distribution is something that only applies to rotation.  

 
Newton’s second law for rotation, on the other hand, is completely analogous to 

Newton’s second law for straight-line motion, F m a∑ =
v v . Replacing force by torque, mass by 

rotational inertia, and acceleration by angular acceleration, we get: 
 
 

Iτ α∑ = vv .  (Equation 10.12: Newton’s Second Law for Rotation) 
 

 
We’ll spend the rest of this chapter, and a good part of the next chapter, looking at how to 

apply Newton’s second law in various situations. In Chapter 11, we will deal with rotational 
dynamics, involving motion and acceleration. For the remainder of this chapter, however, we will 
focus on situations involving static equilibrium. 

 
Conditions for static equilibrium 

 An object is in static equilibrium when it remains at rest. Two conditions apply to objects 
in static equilibrium. These are: 

  0F∑ =
v

 and 0τ∑ =v . 
 

Expressed in words, an object in static equilibrium experiences no net force and no net 
torque. Using these conditions, we will be able to analyze a variety of situations. Many excellent 
examples of static equilibrium involve the human body, such as when you hold your arm out; 
when you bend over; and when you stand on your toes. In each case, forces associated with 
muscles, bones, and tendons maintain the equilibrium situation. 
 
Essential Question 10.9: Newton’s first law for rotation includes a phrase that says spinning 
motion can be affected by a change in the way an object’s mass is distributed. Can you think of a 
real-life example of this? 
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