
Kepler’s Third Law
Consider an object (mass m) in a circular orbit (radius r) 
around a much larger object (mass M).

We can also use                   to get:
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Rotational motion
How do we describe the motion of rotating objects, or objects 
that travel along circular paths? 

Let’s first look at the parallels between straight-line motion 
and rotational motion.

Compare the motion of:
• a ball, thrown straight up into the air
• a disk, that has a counter-clockwise angular acceleration, 
and a clockwise initial angular velocity.

Which motion do the graphs in the simulation correspond to?



A spinning wheel
Choose a point (but not the center) on a wheel that is 
spinning. At a particular instant in time, are there any 
other points on the wheel that have the same speed as 
that of the first point? At that same instant, are there any 
other points on the wheel that have the same velocity as 
that of the first point?

1. There are plenty of other points with the same speed 
and plenty of points with the same velocity.
2. There are plenty of other points with the same speed, 
but no other points with the same velocity.
3. There are no other points with the same speed, but 
plenty of points with the same velocity.
4. There are no other points with the same speed, and 
no other points with the same velocity. 



A spinning wheel
Choose a point (but not the center) on a wheel that is 
spinning.

Is there any other point on the wheel that has the same 
speed as the speed of the first point?

Is there any other point on the wheel that has the same 
velocity as the velocity of the first point?



A spinning wheel
Choose a point (but not the center) on a wheel that is 
spinning.

Is there any other point on the wheel that has the same 
speed as the speed of the first point?
Yes – all points at the same distance r from the center.

Is there any other point on the wheel that has the same 
velocity as the velocity of the first point?



A spinning wheel
Is there any other point on the wheel that has the same 
velocity as the velocity of the first point?
No! Each point has a unique velocity.



A spinning wheel
However, every point on the wheel has the same angular 
velocity (the rate at which a point sweeps out an angle).



Rotational variables
For rotational motion, we define a new set of variables that 
naturally fit the motion. 

Angular position:        , in units of radians. (π rad = 180°)

Angular displacement:

Angular velocity:                , in units of rad/s.

For a direction, we often use clockwise or counterclockwise, 
but the direction is actually given by the right-hand rule.

Angular acceleration:                 , in units of rad/s2.
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Speeding up vs. slowing down

In (a), the disk is speeding up. 
A point on the disk has both a 
centripetal acceleration and a 
tangential acceleration.

In (b), the disk is slowing 
down. Both the angular 
acceleration and the 
tangential acceleration are in 
the opposite direction to what 
they are in (a).



Analogies, part 1
We’ll look at several analogies between straight-line motion 
variables and rotational motion variables.

Variable Straight-
line motion

Rotational 
motion

Connection

Position x

Velocity v

Acceleration a

x
r

θ =θ

tv
r

ω =ω

ta
r

α =α

The t subscript stands for tangential.



Worksheet, part 1
A large block is tied to a string wrapped around the outside of 
a large pulley that has a radius of 2.0 m. When the system is 
released from rest, the block falls with a constant acceleration
of 0.5 m/s2, directed down.

What is the speed of the block after 4.0 s?

How far does the block travel in 4.0 s?



Worksheet, part 1
Plot a graph of the speed of the block as a function of time, 
up until 4.0 s.

On the same set of axes, plot the speed of a point on the 
pulley that is on the outer edge of the pulley, 2.0 m from the 
center, and the speed of a point 1.0 m from the center.



Worksheet
If the speed of the block follows graph 2…
Which graph represents the speed of a point on the outer 
edge of the pulley?
Which graph represents the speed of a point 1.0 m from the 
center of the pulley?



Worksheet
If the speed of the block follows graph 2…
Which graph represents the speed of a point on the outer 
edge of the pulley? Graph 2
Which graph represents the speed of a point 1.0 m from the 
center of the pulley? 



Worksheet
If the speed of the block follows graph 2…
Which graph represents the speed of a point on the outer 
edge of the pulley? Graph 2
Which graph represents the speed of a point 1.0 m from the 
center of the pulley? Graph 3



Angular vs. linear variables
Consider the simulation of two objects on a turntable that 
rotates at a constant angular velocity. The red object is 
farther from the center than the blue one.

Simulation



Angular vs. linear variables
The red object is farther from the center. Choose the 
best statement from the list below, about the two 
objects.

1. They have the same speed, but different velocities. 
2. They have the same speed and the same velocity. 
3. The have the same angular speed, but different      
angular velocities. 
4. They have the same angular speed and the same 
angular velocity. 
5. Both 1 and 3 
6. Both 1 and 4 
7. Both 2 and 3 
8. Both 2 and 4 
9. None of the above. 



Angular vs. linear variables
The red object is farther from the center. Choose the 
best statement from the list below, about the two 
objects.

1. Their accelerations have the same magnitude, but the 
red one has a larger angular acceleration. 
2. Their accelerations have the same magnitude, but the 
blue one has a larger angular acceleration. 
3. They have the same angular accelerations, but the 
red one has a larger magnitude acceleration. 
4. They have the same angular accelerations, but the 
blue one has a larger magnitude acceleration. 
5. Both the acceleration and the angular acceleration 
equal zero for both objects. 
6. None of the above.



Rotational kinematics problems
When the angular acceleration is constant we can use the 
basic method we used for one-dimensional motion situations 
with constant acceleration. 

1. Draw a diagram. 

2. Choose an origin. 

3. Choose a positive direction (generally clockwise or 
counter-clockwise). 

4. Make a table summarizing everything you know. 

5. Only then, assuming the angular acceleration is constant, 
should you turn to the equations. 



Constant acceleration equations

Straight-line 
motion equation

Rotational motion 
equation

= +iv v at ω ω α= +i t

= + + 21
2i ix x v t at θ θ ω α= + + 21

2i i t t
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Don’t forget to use the appropriate + and - signs!



Example problem
You are on a ferris wheel that is rotating at the rate of 1 
revolution every 8 seconds. The operator of the ferris wheel 
decides to bring it to a stop, and puts on the brake. The 
brake produces a constant acceleration of -0.11 radians/s2. 
(a) If your seat on the ferris wheel is 4.2 m from the center of 
the wheel, what is your speed when the wheel is turning at a 
constant rate, before the brake is applied? 
(b) How long does it take before the ferris wheel comes to a 
stop? 
(c) How many revolutions does the wheel make while it is 
slowing down? 
(d) How far do you travel while the wheel is slowing down? 
Simulation



Get organized
Origin: your initial position.
Positive direction: counterclockwise (the direction of motion).

Use a consistent set of units. 
1 revolution every 8 s is 0.125 rev/s.
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Part (a)
If your seat on the ferris wheel is 4.2 m from the center of the 
wheel, what is your speed when the wheel is turning at a 
constant rate, before the brake is applied? 

ω= = × =4.2 m 0.785 rad/s 3.3 m/si iv r

0

0

θi

0.785 rad/s+ωi

ω
20.11 rad/s−α

Note that the radian unit can be added or removed 
whenever we find it convenient to do so.



Part (b)
How long does it take before the ferris wheel comes to a 
stop? 

0

0

θi

0.785 rad/s+ωi

ω
20.11 rad/s−α

ω ω α= +i t

ω ω
α
− −

= = =
− 2

0 0.785 rad/s 7.1 s
0.11 rad/s

it



Part (c)
How many revolutions does the wheel make while it is 
slowing down?
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Part (d)
How far do you travel while the wheel is slowing down?

We’re looking for the distance you travel along the circular 
arc. The arc length is usually given the symbol s.

2.80 radθ∆ =

( ) 4.2 m 2.80 rad 11.8 ms r θ= ∆ = × =



Worksheet, part 2
While fixing the chain on your bike, you have the bike upside 
down. Your friend comes along and gives the front wheel, 
which has a radius of 30 cm, a spin. You observe that the 
wheel has an initial angular velocity of 2.0 rad/s, and that the 
wheel comes to rest after 50 s.

Assume that the wheel has a constant angular acceleration. 

Determine how many revolutions the wheel makes.



Worksheet, part 2
One method is to use the average angular velocity of 
1.0 rad/s.

With a time of 50 s, the wheel has an angular 
displacement of 1.0 rad/s multiplied by 50 s, or 50 rad.

This is very close to 8 revolutions, just slightly less. 

1 rev 2550 rad  rev
2  radπ π

× =



Torque

Torque is the rotational equivalent of force.

A torque is a twist applied to an object.

A net torque acting on an object at rest will cause it to rotate.

If you have ever opened a door, you have a working 
knowledge of torque.



A revolving door
A force is applied to a revolving door that rotates about its center: 

Rank these situations based on the magnitude of the torque 
experienced by the door, from largest to smallest. 

4.   B>C>A
5.   B>A>C
6. B>A=C
7. None of the above

1. C>A>B 
2. C>B>A
3. C>A=B 



Simulation

Revolving door simulation



A revolving door
A force is applied to a revolving door that rotates about its center: 

Rank these situations based on the magnitude of the torque 
experienced by the door, from largest to smallest. 

4.   A>E>D
5.   A>D>E
6. A>D=E
7. None of the above

1. E>A>D 
2. E>D>A
3. E>A=D 



Use components

The force components directed toward, or away from, the 
axis of rotation do nothing, as far as getting the door to rotate.



Torque
Forces can produce torques. The magnitude of a torque 
depends on the force, the direction of the 
force, and where the force is applied.

The magnitude of the torque is                    . 
is measured from the axis of rotation to the line of the force, 

and    is the angle between    and    .

To find the direction of a torque from a force, pin the object at 
the axis of rotation and push on it with the force. We can say 
that the torque from that force is whichever direction the 
object spins (counterclockwise, in the picture above).

Torque is zero when and  are along the same line.
Torque is maximum when and  are perpendicular. 
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Three ways to find torque
Find the torque applied by the string on the rod .

1. Just apply the equation τ θ= sinr F

τ φ= × × sinTL F



Three ways to find torque
Find the torque applied by the string on the rod .

2. Break the force into components first, then use              .

The force component along the
rod gives no torque. 

τ θ= sinr F

( )τ φ= × × °sin sin90TL F



Three ways to find torque
Find the torque applied by the string on the rod .

3. Use the lever-arm method: measure r along the line that 
meets the line of the force at a 90° angle. 

τ θ= sinr F ( )τ φ= × × °sin sin90TL F



Worksheet, part 2
Try drawing a free-body diagram for a horizontal rod that is 
hinged at one end. The rod is held horizontal by an upward 
force applied by a spring scale at the far end of the rod.

How does the weight of the rod compare to the reading on 
the spring scale? 

An equilibrium example
This is a model of our lower arm,
with the elbow being the hinge.



Summing the torques
To solve for the unknown force, we can’t use forces, because 
we get one equation with two unknowns (the force of gravity 
and the hinge force).

Use torques instead. We can take torques about any axis we 
want, but if we take torques about an axis through the hinge, 
we eliminate the unknown hinge force.

Define clockwise as positive, and say the rod has a length L. 
τ =∑
v 0

+ × − × = ⇒ =0 2
2 S S
L mg L F mg F



Equilibrium
For an object to remain in equilibrium, two conditions must be 
met.

The object must have no net force:

and no net torque:

=∑
v

0F

τ =∑
v 0



Moving the spring scale

What, if anything, happens when the spring scale is 
moved a little closer to the hinge? To maintain 
equilibrium:

1. The magnitude of the spring-scale force increases.
2. The magnitude of the spring-scale force decreases.
3. The magnitude of the upward hinge force increases.
4. The magnitude of the upward hinge force decreases.
5. Both 1 and 3
6. Both 1 and 4
7. Both 2 and 3
8. Both 2 and 4
9. None of the above. 



Worksheet, part 2
Try drawing a free-body diagram for a horizontal rod that is 
hinged at one end. The rod is held horizontal by an upward 
force applied by a spring scale ¼ of the way along the rod.

How does the weight of the rod compare to the reading on 
the spring scale? 

An equilibrium example
This is a model of our lower arm,
with the elbow being the hinge.



Summing the torques
To solve for the unknown force, we can’t use forces, because 
we get one equation with two unknowns (the force of gravity 
and the hinge force).

Use torques instead. We can take torques about any axis we 
want, but if we take torques about an axis through the hinge 
we eliminate the unknown hinge force.

Define clockwise as positive, and say the rod has a length L. 
τ =∑
v 0

+ × − × = ⇒ =0
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Red and blue rods
Two rods of the same shape are held at their centers and rotated back and 
forth. The red one is much easier to rotate than the blue one. What is the best 
possible explanation for this?

1. The red one has more mass.
2. The blue one has more mass.
3. The red one has its mass concentrated more toward the center; the blue 
one has its mass concentrated more toward the ends. 
4. The blue one has its mass concentrated more toward the center; the red 
one has its mass concentrated more toward the ends. 
5. Either 1 or 3 6. Either 1 or 4 
7. Either 2 or 3 8. Either 2 or 4 
9. Due to the nature of light, red objects are just inherently easier to spin than 
blue objects are.



Newton’s First Law for Rotation
An object at rest tends to remain at rest, and an object that is
spinning tends to spin with a constant angular velocity, unless 
it is acted on by a nonzero net torque or there is a change in 
the way the object's mass is distributed. 

The net torque is the vector sum of all the torques acting on 
an object. 

The tendency of an object to maintain its state of motion is 
known as inertia. For straight-line motion mass is the 
measure of inertia, but mass by itself is not enough to define 
rotational inertia.



Rotational Inertia
How hard it is to get something to spin, or to change an 
object's rate of spin, depends on the mass, and on how the 
mass is distributed relative to the axis of rotation. Rotational
inertia, or moment of inertia, accounts for all these factors. 

The moment of inertia, I, is the rotational equivalent of mass. 

For an object like a ball on a string, where all the mass is the
same distance away from the axis of rotation: 

If the mass is distributed at different distances from the 
rotation axis, the moment of inertia can be hard to calculate. 
It's much easier to look up expressions for I from the table on 
page 291 in the book (page 10-15 in Essential Physics). 

= 2I mr



A table of 
rotational
inertias



The parallel axis theorem
If you know the rotational inertia of an object of mass m when 
it rotates about an axis that passes through its center of 
mass, the object’s rotational inertia when it rotates about a 
parallel axis a distance h away is:

= + 2
CMI I mh
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