More Circular Motion
 Let's continue looking at how Newton's Laws can be applied to circular motion.

An object of mass $m=0.50 \mathrm{~kg}$ is tied to a string and whirled in a vertical circle of radius $r=1.0 \mathrm{~m}$ at constant speed v. If we use $g=10 \mathrm{~m} / \mathrm{s}^{2}$, then the weight of the ball is 5.0 N . This is less than the tension required to break the string, which is 13 N , but the string breaks anyway. Why does it break? What is the minimum speed of the ball required to break the string?

Hint: Draw an appropriate free-body diagram and apply Newton's Second Law.

[^0]Hint: Draw an appropriate free-body diagram and apply Newton's Second Law.

You're on a roller coaster traveling very fast at the bottom of the loop-the-loop, and you feel pressed into your seat. Effectively you feel like you have an apparent weight that is larger than usual. Why?

Hint: Draw an appropriate free-body diagram and apply Newton's Second Law.

You're driving on a hilly road. As you drive at relatively high speed v over the top of a hill curved in an arc of radius r, you feel almost weightless and your car comes close to losing contact with the road. Explain why this is.

Hint: Draw an appropriate free-body diagram and apply Newton's Second Law.

[^0]: A water bucket of mass m is being whirled in a vertical circle of radius r at constant speed v. What is the minimum speed required so that the water remains in the bucket without falling out?

