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5-7 Using Whole Vectors 
The standard method of solving a problem involving Newton’s laws is to break the forces 

into components. However, using whole vectors is an alternate approach. Let’s see how whole 
vectors can be applied in a particular situation. 

 
EXAMPLE 5.7 – Using whole vectors  

(a) A box is placed on a frictionless ramp inclined at an angle θ with the horizontal. The 
box is then released from rest. Find an expression for the normal force acting on the box in this 
situation. What is the role of the normal force? What is the acceleration of the box? 

(b) A box truck is traveling in a horizontal circle around a banked curve that is inclined at 
an angle θ with the horizontal. The curve is covered with ice and is effectively frictionless, so the 
truck can make it safely around the curve only if it travels at a particular constant speed (known 
as the design speed of the curve). Find an expression for the normal force acting on the truck in 
this situation. What is the role of the normal force? What is the design speed of the curve? 

(c) Compare and contrast these two situations. 
 

SOLUTION 
(a) As usual, our first step is to draw a diagram, and then a free-body diagram showing 

the forces acting on the box, as in Figure 5.18. The two forces are the downward force of gravity, 
and the normal force applied by the ramp to the box. Because we are using whole vectors, we 
don’t need to worry about splitting vectors into components. It is crucial, however, to think about 
the direction of the acceleration, which in this case is directed down the slope. 

 
Let’s apply Newton’s second law,∑ = amF rr

, adding the forces as vectors. In this case, 
we get the right-angled triangle in Figure 5.18c. Each side of the triangle represents one 
vector in the equation Nmg F ma+ =

r rv . The vector amr
(the net force) is parallel to the 

ramp, while the normal force is perpendicular to the ramp and the force of gravity is 
directed straight down. θ, the angle of the ramp, is the angle at the bottom of the triangle.  

 
Figure 5.18: (a) A diagram, (b) free-body diagram, and (c) a right-angled triangle to 
show how the force of gravity and normal force combine to give the net force on the box. 

 
Because the force of gravity is on the hypotenuse of the triangle, we get: 

cos NF
mg

θ = , so cosNF mg θ= . 

The role of the normal force is simply to prevent the box from falling through the ramp. 
 
We can find the acceleration from the geometry of the right-angled triangle: 

sin ma a
mg g

θ = = . This relationship gives sina g θ=
r  directed down the slope. 

(b) The situation of the box truck traveling around the banked curve resembles the box on 
the incline. A diagram of the situation, showing the back of the truck, is illustrated in Figure 5.19. 
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The same forces, the force of gravity and the normal force, appear on this free-body diagram as in 
the free-body diagram for the box. The difference lies in the direction of the acceleration, which 
for the circular motion situation is directed horizontally to the left, toward the center of the circle. 

 
Again we apply Newton’s second law, ∑ = amF rr

, adding the forces as vectors, where 

the magnitude of the acceleration has the special form 2 /ca v r= . This gives: 
2

N
mvmg F

r
+ =
rv , directed toward the center of the circle. 

 
Again, each force represents one side of a right-angled triangle. Now the normal 

force is on the hypotenuse, and clearly must be larger than it is in part (a). 
 

Figure 5.19: (a) A diagram, (b) free-body diagram, and (c) right-angled triangle to show 
how the force of gravity and normal force combine to give the net force on the truck. 
 

Using what we know about the geometry of right-angled triangles, we get: 

cos
N

mg
F

θ = , so now 
cosN
mgF
θ

= . 

 
If the angle of the ramp is larger than zero, then cosθ is a number less than 1 and 

NF mg> . In part (a) we had NF mg< . The normal force for the box truck is larger because it has 
two roles. Not only does the normal force prevent the truck from falling through the incline, it 
must also provide the force directed toward the center to keep the truck moving around the circle. 

 
To find the design speed of the curve, we can use the other side of the triangle: 

2 2 2cos cossin
N N

ma mv mv v
F rF rmg rg

θ θθ = = = = . 

Re-arranging the preceding equation gives a design speed of sin tan
cos

rgv rgθ θ
θ

= = . 

 
This is an interesting result. First, there is a design speed, a safest speed to negotiate the 

curve. At the design speed, the vehicle needs no assistance from friction to travel around the 
circle. Going significantly faster is dangerous because the vehicle is only prevented from sliding 
toward the outside of the curve by the presence of friction - the faster you go, the larger the force 
of friction required. Second, the design speed does not depend on the vehicle mass, which is 
fortunate for the road designers. The same physics applies to a Mini Cooper as to a large truck.  

 
(c) A key similarity is the free-body diagram: in both cases there is a downward force of 

gravity and a normal force perpendicular to the slope. The key difference is that the accelerations 
are in different directions, requiring a larger normal force in the circular motion situation. 

 
Related End-of-Chapter Exercises: 25 – 27. 
 
Essential Question 5.7: Consider again the situation of the truck on the banked curve. In icy 
conditions, is it safest to drive very slowly around the curve or to drive at the design speed? 
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Answer to Essential Question 5.7: Even in very low-friction conditions, it is safer to travel at the 
design speed than at a slower speed! If you go too slowly around a banked curve, there is a 
tendency for your vehicle to slide down the slope and run off the road on the inside of the curve. 
 

5-8 Vertical Circular Motion 
A common application of circular motion is an object moving in a vertical circle. 

Examples include roller coasters, cars on hilly roads, and a bucket of water on a string. The 
bucket and roller coaster turn completely upside down as they travel, so they differ a little from 
the situation of the car on the road, which (we hope) remains upright. 

 
EXAMPLE 5.8A – Whirling a bucket of water 

A bucket of water is being whirled in a vertical circle of constant radius r at a constant 
speed v. What is the minimum speed required for the water to remain in the bucket at the top of 
the circle? 

 
SOLUTION 

Let’s apply the general method, starting with the diagram in Figure 5.20. We then draw a 
free-body diagram, although we have to decide whether to analyze the bucket or the water. If we 
consider the bucket, two forces act on it, the force of gravity and the tension in the string, both of 
which are directed down when the bucket is at the top of the circle. If we consider the water, there 
is a downward force of gravity, and a downward normal force from the bucket takes the place of 
the tension. The analysis is the same in both cases, so let’s consider the water. 

 
Figure 5.20: A bucket of water whirled in a vertical circle and a free-body diagram 
showing the forces acting on the water at the top of the loop. 
 

Next, we choose an appropriate coordinate system. It is generally best to 
choose the positive direction as the direction of the acceleration, which points 
toward the center of the circle. When the bucket is at the top of the path, the 
acceleration, and the positive direction, points down. We don’t need to split any 
forces into components. Let’s apply Newton’s second law, ∑ = amF rr

. 
 
Have a look at the free-body diagram to evaluate the left-hand side, and 

write the right-hand side in the usual circular-motion form. This gives: 
2

N
mvmg F

r
+ + = + . 

Solving for the normal force gives: 
2

N
mvF mg

r
= − . 

 
As long as the first term on the right exceeds the second term (in other words, as long as 

the normal force is positive), we’re in no danger of having the water fall on us. Objects lose 
contact with one another (the water starts to fall out) when the normal force goes to zero. Setting 
the normal force to zero gives us the minimum safe speed of the bucket at the top of the circle: 

2
min0 mv mg
r

= − ,  which leads to minv gr= . 

 
Related End-of-Chapter Exercises: 12, 61. 
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EXAMPLE 5.8B – Apparent weight on a roller coaster 
You are riding on a roller coaster that is going around a vertical circular loop. What is the 

expression for the normal force on you at the bottom of the circle? 
 

SOLUTION 
Once again, we apply the general method, starting with a diagram and a free-body 

diagram in Figure 5.21. We then draw a free-body diagram, which shows an upward normal force 
and a downward force of gravity. The system can be you or the car – the analysis is the same. 
Here we choose a coordinate system with a positive direction up, in the direction of the 
acceleration (toward the center of the circle). There is no need to split forces into components, so 
we can go straight to step 5 of the general method and apply Newton’s Second Law: 

∑ = amF rr
. 

 
Have a look at the free-body diagram to evaluate the left-hand side, and remember that 

the right-hand side can be written in the usual circular-motion form. This gives: 

+
r

mvmgFN

2

+=− . 

 
Solving for the normal force at the bottom 

of the circle gives: 

 
2

,N bottom
mvF mg

r
= + .  

 
Figure 5.21: A car on a roller-coaster track (left), 
as well as (right) the free-body diagram when the car is at the bottom of the loop. 

 
Let’s compare our expression for the normal force on the car (or you) at the bottom of the 

loop to the expression for the normal force when the car (or you) is at the top. We can use the 
expression that we derived for the bucket at the top, in Example 5.8A, because the free-body 
diagram is the same in the two situations at the top of the loop.  

2

,N top
mvF mg

r
= − .  

 
Note that the normal force at the bottom is larger than it is at the top. This difference is 

enhanced by the fact that the speed of the roller coaster at the bottom of the loop is larger than the 
speed at the top. Does this change in the normal force match the experience of a rider, who feels 
that she is lighter than usual at the top of the loop and heavier than usual at the bottom? Yes, 
because the normal force is the rider’s apparent weight. Roller coasters are generally designed to 
have non-zero but fairly small normal forces at the top, so a rider feels almost weightless. At the 
bottom of the loop, the apparent weight can be considerably larger than mg, so a rider feels much 
heavier than usual. 

 
Related End-of-Chapter Exercises: 20, 63. 
 
Essential Question 5.8: You are on a roller coaster that reaches a top speed of 120 km/h at the 
bottom of a circular loop of radius 30 m. If you have a mass of 50 kg (and therefore a weight of 
490 N), what is your apparent weight at the bottom of the loop? If the roller coaster’s speed at the 
top of the loop has dropped to 80 km/h, what is your apparent weight at the top of the loop?  
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