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2-5 Acceleration 
Let’s turn now to motion that is not at constant velocity. An example is the 

motion of an object you release from rest from some distance above the floor. 
 

EXPLORATION 2.5A – Exploring the motion diagram of a dropped object 
 
Step 1 - Sketch a motion diagram for a ball that you release from rest from some 
distance above the floor, showing its position at regular time intervals as it falls. 
The motion diagram in Figure 2.14 shows images of the ball that are close together 
near the top, where the ball moves more slowly. As the ball speeds up, these 
images get farther apart because the ball covers progressively larger distances in 
the equal time intervals. How do we know how much space to include between 
each image? One thing we can do is to consult experimental evidence, such as 
strobe photos of dropped objects. These photos show that the displacement from 
one time interval to the next increases linearly, as in Figure 2.14. 

 
Step 2 - At each point on the motion diagram, add an arrow representing the 
ball’s velocity at that point. Neglect air resistance. The arrows in Figure 2.14 
represent the velocity of the ball at the various times indicated on the motion 
diagram. Because the displacement increases linearly from one time interval to the 
next, the velocity also increases linearly with time. 
 
Figure 2.14: A motion diagram, and velocity vectors, for a ball released from rest 
at t = 0. The ball’s position and velocity are shown at 0.1-second intervals. 
 
Key idea: For an object dropped from rest, the velocity changes 
 linearly with time.  
Related End-of-Chapter Exercises: 57 - 60 

 
Another way to say that the ball’s velocity increases linearly with time is to 

say that the rate of change of the ball’s velocity, with respect to time, is constant: 

constantv
t

∆
=

∆

v
. 

This quantity, the rate of change of velocity with respect to time, is referred to as the 
acceleration. Acceleration is related to velocity in the same way velocity is related to position.  

 
Average acceleration: a vector representing the average rate of change of velocity with respect to 
time. The SI unit for acceleration is m/s2. 

 
change in velocity

time interval
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v
v .   (Equation 2.7: Average acceleration) 

 
The direction of the average acceleration is the direction of the change in velocity. 
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Instantaneous acceleration: a vector representing the rate of change of velocity with respect to 
time at a particular instant in time. The SI unit for acceleration is m/s2. 

A practical definition of instantaneous acceleration at a particular instant is that it is the 
slope of the velocity-versus-time graph at that instant. Expressing this as an equation:  

va
t

∆
=
∆

v
v ,   (Equation 2.8: Instantaneous acceleration) 

where t∆  is small enough that the acceleration can be considered to be constant over that interval. 

 
Note that, on Earth, objects dropped from rest are observed to have accelerations of 

9.8 m/s2 straight down. This is known as gv , the acceleration due to gravity. 
 

EXPLORATION 2.5B – Graphs in a constant-acceleration situation 
The graph in Figure 2.15 shows the velocity, as a function of 

time, of a bus moving in the positive direction along a straight road.  
 

Figure 2.15: A graph of the velocity of a bus as a function of time. 
 

Step 1 – What is the acceleration of the bus? Sketch a graph of the 
acceleration as a function of time. The graph in Figure 2.15 is a straight 
line with a constant slope. This tells us that the acceleration is constant 
because the acceleration is the slope of the velocity-versus-time graph. 
Using the entire 10-second interval, applying equation 2.8 gives: 

225 m/s ( 5m / s) 20 m/s 2.0 m/s
10 s 10 s
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The acceleration graph in Figure 2.16 is a horizontal line, 
because the acceleration is constant.  Compare Figures 2.15 and 2.16 to 
the graphs for the red car in Figure 2.13. Note the similarity between the 
acceleration and velocity graphs in a constant-acceleration situation and 
the velocity and position graphs in a constant-velocity situation. 

 
Figure 2.16: A graph of the acceleration of the bus as a function of time.  
 
Step 2 - What on the acceleration-versus-time graph is connected to the velocity? The 
connection between velocity and acceleration is similar to that between position and velocity - the 
area under the curve of the acceleration graph is equal to the change in 
velocity, as shown in Figure 2.17. This follows from Equation 2.8, which 
in a constant acceleration situation can be written as v a t∆ = ∆v v . 

 
Figure 2.17: In 10 seconds, the velocity changes by +20 m/s. This is the 
area under the acceleration-versus-time graph over that interval. 

 
 

Key ideas: The acceleration is the slope of the velocity-versus-time graph, while the area under 
the acceleration-versus-time graph for a particular time interval represents the change in velocity 
during that time interval.                         Related End-of-Chapter Exercises: 16 and 32. 
 
Essential Question 2.5: Consider the bus in Exploration 2.5B. Would the graph of the bus’ 
position as a function of time be a straight line? Why or why not? 



Chapter 2 – Motion in One Dimension  Page 2 - 3 

 Answer to Essential Question 2.5: The position-versus-time graph is not a straight line, because 
the slope of such a graph is the velocity. The fact that the bus’ velocity increases linearly with 
time means the slope of the position-versus-time graph also increases linearly with time. This 
actually describes a parabola, which we will investigate further in the next section. 
 
 
2-6 Equations for Motion with Constant Acceleration 

In many situations, we will analyze motion using a model in which we assume the 
acceleration to be constant. Let’s derive some equations that we can apply in such situations. In 
general, at some initial time 0it = , the object has an initial position ixr and an initial velocity of 

ivr , while at some (usually later) time t, the object’s position is xr  and its velocity is vr . 
 
Acceleration is related to velocity the same way velocity is related to position, so we can 

follow a procedure similar to that at the end of Section 2-3 to derive an equation for velocity. 
 
Substitute f iv v−v v  for v∆v in the rearrangement of Equation 2.8, v a t∆ = ∆v v . 

This gives:  ( )f i f iv v a t a t t− = ∆ = −v v v v . 

Generally, we define the initial time it to be zero:  f i fv v a t− =v v v . 
Remove the “f” subscripts to make the equation as general as possible: iv v a t− =v v v . We 

also generally remove the vector symbols, although we must be careful to include signs. 
 

iv v a t= + . (Equation 2.9: Velocity for constant-acceleration motion) 

 
A second equation comes from the definition of average velocity (Equation 2.2): 

Average velocity = i i

i

x x x xxv
t t t t

− −∆
= = =
∆ −

r r r rr
. 

If the acceleration is constant the average velocity is simply the average of the initial and 
final velocities. This gives, after again dropping the vector symbols: 

 

2
i iv v x x

t
+ −

= .        (Equation 2.10: Connecting average velocity and displacement) 

 
Equation 2.10 is sometimes awkward to work with. If we substitute iv at+  in for v  (see 

Equation 2.9) in Equation 2.10, re-arranging produces an equation describing a parabola: 
 

21
2i ix x v t at= + + .      (Equation 2.11: Position for constant-acceleration motion) 

 
 We can derive another useful equation by combining equations 2.9 and 2.10 in a different 

way. Solving equation 2.9 for time, to get iv vt
a
−

= , and substituting the right-hand side of that 

expression in for t in equation 2.10, gives, after some re-arrangement: 
 

2 2 2iv v a x= + ∆ .        (Eq. 2.12: Connecting velocity, acceleration, and displacement) 
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An important note about positive and negative signs. 
When we make use of the equations on the previous page, we must be careful to include 

the appropriate positive or negative signs that are built into each of the variables. The first step is to 
choose a positive direction. If the initial velocity is in that direction, it goes into the equations with 
a positive sign. If the initial velocity is in the opposite direction (the negative direction), it goes into 
the equations with a negative sign. Apply a similar rule for the final velocity, the acceleration, the 
displacement, the initial position, and the final position. For all of those quantities, the sign is 
associated with the direction of the corresponding vector. 

  
 Motion with constant acceleration is an important concept. Let’s summarize a general, 
systematic approach we can apply to situations involving motion with constant acceleration. 
 
A General Method for Solving a One-Dimensional Constant-Acceleration Problem 

1. Picture the scene. Draw a diagram of the situation. Choose an origin to measure 
positions from, and a positive direction, and show these on the diagram. 

2. Organize what you know, and what you’re looking for. Making a table of data 
can be helpful. Record values of the variables used in the equations below. 

3. Solve the problem. Think about which of the constant-acceleration equations to 
apply, and then set up and solve the problem. The three main equations are: 

 
iv v at= + .   (Equation 2.9: Velocity for constant-acceleration motion) 

21
2i ix x v t at= + + .  (Equation 2.11: Position for constant-acceleration motion) 

2 2 2iv v a x= + ∆ .          (Equation 2.12: Connecting velocity, acceleration, and displacement) 
 

4. Think about the answer(s). Check your answers to see if they make sense.  
 
EXAMPLE 2.6 – Working with variables 

In physics, being able to work with variables as well as numbers is an important skill. 
This can also produce insights that working with numbers does not. Let’s say an object is dropped 
from rest from the top of a building of height H, while another object is dropped from rest from 
the top of a building of height 4H. Assuming both objects fall under the influence of gravity alone 
(that is, they have the same acceleration), compare the times it takes them to reach the ground. 

 
SOLUTION 

0iv = , because the objects are dropped from rest. Take the initial position to be the top of the 
building in each case, so 0ix = . This reduces Equation 2.11 to 2 / 2x at= . Because the 
acceleration is the same in each case, the equation tells us the position is proportional to the 
square of the time. To quadruple the final position, as we are doing, we need to increase the time 
by a factor of two. The fall from the building that is four times as high takes twice as long. This is 
illustrated by the motion diagram in Figure 2.18. 

 
Figure 2.18: Falling from rest for double the time quadruples the distance traveled. The height of 
each of the four shaded regions is H, the height of the smaller building in Example 2.6. 

 
Related End-of-Chapter Exercises: 52 and 55 
 
Essential Question 2.6: Return to the situation described in Example 2.6. Compare the velocities 
of the objects just before they hit the ground. 
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Answer to Essential Question 2.6: Using 0iv =  reduces Equation 2.9 to v at= . Doubling the 
time doubles the final velocity, so the object dropped from the building that is four times higher 
has a final velocity twice as large as that of the other object. Equation 2.12 gives the same result. 
  

2-7 Example Problem 
Let’s look at the various representations of motion with constant acceleration, 

considering the example of a ball tossed straight up in the air. 
 

EXPLORATION 2.7 – A ball tossed straight up 
You toss a ball straight up into the air. The ball takes 2.0 s to reach its maximum height, 

and an additional 2.0 s to return to your hand. You catch the ball at the same height from which 
you let it go, and the ball has a constant acceleration because it is acted on only by gravity. 
Consider the motion from the instant just after you release the ball until just before you catch it. 

 
Step 1 – Picture the scene – draw a diagram of the situation. The diagram in Figure 2.19 shows 
the initial conditions, the origin, and the positive direction. We are free to choose either up or 
down as the positive direction, and to choose any reference point as the origin. In this case let’s 
choose the origin to be the point from which the ball was released, and choose up to be positive. 
 
Step 2 – Organize the data. Table 2.2 summarizes what we know, including values for the 
acceleration and the initial position. We need these values for the constant-acceleration equations. 
Because the ball moves under the influence of gravity alone, and we can assume the ball is on the 
Earth, the acceleration is the acceleration due to gravity, 9.8 m/s2 directed down. Because down is 
the negative direction, we include a negative sign: 29.8m / sa = − . 
 

 
 
 
 

 
 
Figure 2.19: A diagram of the initial situation. 
 
 

 
Table 2.2: Summarizing the information that was given about the ball. 
 
Step 3 – Solve the problem. In this case, we want to draw graphs of the acceleration, velocity, 
and position of the ball, all as a function of time. To do this we should first write equations for the 
acceleration, velocity, and position. The acceleration is constant at 29.8m / sa = − . Knowing the 
acceleration allows us to solve for the initial velocity. One way to do this is to re-arrange 
Equation 2.9 to give iv v at= − . Because 0v =  at t = 2.0 s (the ball is at rest for an instant when 

it reaches its maximum height) we get ( )( )20 9.8 m / s 2.0 s 19.6 m / siv v at= − = − − = + .  

Knowing the initial velocity enables us to write equations for the ball’s velocity (using 
Equation 2.9) and position (using Equation 2.11) as a function of time. The equations, and 
corresponding graphs, are part of the multiple representations of the motion shown in Figure 2.20. 
Note that the position versus time graph is parabolic, but the motion is confined to a line. 

Parameter Value 
Origin Launch point 
Positive direction up 
Initial position 0ix =  
Initial velocity _____ m / siv = +
Acceleration 29.8 m / sa = −  
Position at t = 4.0 s 4 s 0t ix x= = =  
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Step 4 - Sketch a motion diagram for the ball. The motion diagram is shown on the right in 
Figure 2.15. Note the symmetry of the up and down motions (this is also apparent from the 
graphs). The motion of the ball on the way down is a mirror image of its motion on the way up. 

 
(a) Description of the motion: A ball you toss straight up into the air reaches its maximum 
height 2.0 s after being released, taking an addition 2.0 s to return to your hand. It experiences a 
constant acceleration from the moment you release it until just before you catch it. 

 
(b) Equations (up is positive): Acceleration-versus-time: 29.8 m / sa = −  

Velocity-versus-time:  219.6 m / s (9.8 m / s )v t= + −  

Position-versus-time:  ( ) ( )2 219.6 m /s 4.9 m / sx t t= + −  

 
Figure 2.20: Multiple representations of a ball thrown straight up, including (a) a description in 
words; (b) equations for the ball’s acceleration, velocity, and position; graphs giving the ball’s 
(c) acceleration, (d) velocity, and (e) position as a function of time; and (f) a motion diagram. 
These different perspectives show how various aspects of the motion evolve with time.  

 
Key ideas: At the Earth’s surface the acceleration due to gravity has a constant value of 

29.8 m / sg =  directed down. We can thus apply constant-acceleration methods to situations 
involving objects dropped or thrown into the air. For an object that is thrown straight up the 
downward part of the trip is a mirror image of the upward part of the trip. 
Related End-of-Chapter Exercises: 33, 61, and 62. 

 
Essential Question 2.7: Consider again the ball in Exploration 2.7. The ball comes to rest for an 
instant at its maximum-height point. What is the ball’s acceleration at that point? 
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Answer to Essential Question 2.7: A common misconception is that the ball’s acceleration is 
zero at the maximum-height point. In fact, the acceleration is gv , 9.8 m/s2 down, during the entire 
trip. This is what is shown on the acceleration graph, for one thing – the graph confirms that 
nothing special happens to the acceleration at t = 2.0 s, even though the ball is momentarily at 
rest. One reason for this is that the ball is under the influence of gravity the entire time. 
 

2-8 Solving Constant-Acceleration Problems 
Consider one more example of applying the general method for solving a constant-

acceleration problem. 
 

EXAMPLE 2.8 – Combining constant-acceleration motion and constant-velocity motion 
A car and a bus are traveling along the same straight road in neighboring lanes. The car 

has a constant velocity of +25.0 m/s, and at t = 0 it is located 21 meters ahead of the bus. At time 
t = 0 , the bus has a velocity of +5.0 m/s and an acceleration of +2.0 m/s2.  

When does the bus pass the car? 
 

SOLUTION 
1. Picture the scene – draw a diagram. The diagram in Figure 2.16 shows the initial 

situation, the positive direction, and the origin. Let’s choose the positive direction to 
be the direction of travel, and the origin to be the initial position of the bus. 

 
2. Organize the data. Data for the car and the bus is organized separately in Table 2.3, 

using subscripts C and B to represent the car and bus, respectively. 
 
 Car Bus 
Initial position 21 miCx = +  0iBx =  
Initial velocity 25 m / siCv = +  5.0 m / siBv = +  
Acceleration 0Ca =  22.0 m / sBa = +
Table 2.3: Summarizing the information that was given 
about the car and the bus. 
 

Figure 2.16: A diagram showing the initial positions of the car and the bus, the position 
of the origin, and the positive direction. 

 
3. Solve the problem. Let’s use Equation 2.8 to write expressions for the position of 

each vehicle as a function of time. Because we summarized all the data in Table 2.3 
we can easily find the values of the variables in the equations. 

 For the car: 21 21 m (25 m / s)
2C iC iC Cx x v t a t t= + + = + + . 

 For the bus: 2 2 21 0 (5.0 m / s) (1.0 m / s )
2B iB iB Bx x v t a t t t= + + = + + . 

The bus passes the car when the vehicles have the same position. At what time does 
C Bx x= ? Set the two equations equal to one another and solve for this time (let’s call it t1). 

 2 2
1 1 121 m (25 m / s) (5.0 m / s) (1.0 m / s )t t t+ + = +  

 
 Bringing everything to the left side gives: 2 2

1 1(1.0 m / s ) (20 m / s) 21 m 0t t− − = . 
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 We can solve this with the quadratic equation, where 21.0 m / sa = , 20 m / sb = − , and 
21 mc = − . 

 
2 2 2 22

1 2 2

(20 m / s) (400 m / s ) (84 m / s )4 (20 m / s) (22 m / s)
2 2.0 m / s 2.0 m / s

b b act
a

+ ± +− ± − + ±
= = = . 

 The equation gives us two solutions for t1: Either 1t = +21 s   or  1t = –1.0 s. Clearly the 
answer we want is +21 s. The other number does have a physical significance, however, so let’s 
try to make some sense of it. The negative answer represents the time at which the car would 
have passed the bus if the motion conditions after t = 0 also applied to the period before t = 0. 
 

4. Think about the answer. A nice way to check the answer is to plug 1t = +21 s into 
the two position-versus-time equations from the previous step. If the time is correct 
the position of the car should equal the position of the bus. Both equations give 
positions of 546 m from the origin, giving us confidence that 1t = +21 s is correct. 

 
Note: This example is continued on the accompanying web site, solving for the time at which the 
car and the bus have the same velocity. 
 
Related End-of-Chapter Exercises: 54 and 56. 
 
 
 
Chapter Summary 

Essential Idea: Describing motion in one dimension. 
The motion of many objects (such as you, cars, and objects that are dropped) can be 

approximated very well using a constant-velocity or a constant-acceleration model.  
  

Parameters used to Describe Motion 
Displacement is a vector representing a change in position. If the initial position is ixr  

and the final position is fxr  we can express the displacement as:  
 

f ix x x∆ = −
r r r  .   (Equation 2.1: Displacement in one dimension) 

 
Average Velocity: a vector representing the average rate of change of position with 

respect to time. The MKS unit for velocity is m/s (meters per second). 
 

net displacement
time interval

xv
t

∆
= =
∆

r
v .   (Equation 2.2: Average velocity) 

 
While velocity is a vector, and thus has a direction, speed is a scalar. 
 

Average Speed = total distance covered
time interval

v =                 (Equation 2.3: Average speed) 
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Instantaneous Velocity: a vector representing the rate of change of position with respect 
to time at a particular instant in time. The MKS unit for velocity is m/s (meters per second). 

xv
t

∆
=
∆

r
v ,   (Equation 2.4: Instantaneous velocity) 

where t∆  is small enough that the velocity can be considered to be constant over that interval. 
 
Instantaneous Speed: the magnitude of the instantaneous velocity. 
 

Average Acceleration: a vector representing the average rate of change of velocity with 
respect to time. The MKS unit for acceleration is m/s2. 

change in velocity
time interval

va
t

∆
= =
∆

v
v .   (Equation 2.7: Average acceleration) 

 
Instantaneous Acceleration: a vector representing the rate of change of velocity with 

respect to time at a particular instant in time. 
va
t

∆
=
∆

v
v ,   (Equation 2.8: Instantaneous acceleration) 

where t∆  is small enough that the acceleration can be considered constant over that interval. 
 
The acceleration due to gravity, gv , is 9.8 m/s2, directed down, at the surface of the Earth. 
 
 A General Method for Solving a 1-Dimensional Constant-Acceleration Problem 

1. Picture the scene. Draw a diagram of the situation. Choose an origin to measure 
positions from, and a positive direction, and show these on the diagram. 

2. Organize what you know, and what you’re looking for. Making a table of data 
can be helpful. Record values of the variables used in the equations below. 

3. Solve the problem. Think about which of the constant-acceleration equations to 
apply, and then set up and solve the problem. The three main equations are: 

 
iv v at= + .   (Equation 2.9: Velocity for constant-acceleration motion) 

21
2i ix x v t at= + + .  (Equation 2.11: Position for constant-acceleration motion) 

2 2 2iv v a x= + ∆ .          (Equation 2.12: Connecting velocity, acceleration, and displacement) 
 

4. Think about the answer(s). Check your answers, and/or see if they make sense.  
 

 Graphs 
The velocity is the slope of the position-versus-time graph; the displacement is the area under 

the velocity-versus-time graph. The acceleration is the slope of the velocity-versus-time graph; 
the change in velocity is the area under the acceleration-versus-time graph. 

 
 Constant Velocity and Constant Acceleration 

The motion of an object at rest is a special case of constant-velocity motion. In constant-
velocity motion the position-versus-time graph is a straight line with a slope equal to the velocity. 

Constant-velocity motion is a special case of constant-acceleration motion. In one dimension, 
if the acceleration is constant and non-zero the position-versus-time graph is quadratic while the 
velocity-versus-time graph is a straight line with a slope equal to the acceleration. 
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