
Answer to Essential Question 21.8: Because the beat frequency is 6 Hz, we know that the two 
frequencies differ by 6 Hz. If one string is 330 Hz, the other string is either 336 Hz (6 Hz higher) 
or 324 Hz (6 Hz lower).

21-9 Standing Waves on Strings
In sections 21-9 and 21-10, we will discuss physics related to musical instruments, 

focusing on stringed instruments in this section and wind instruments in section 21-10. 

Some stringed instruments (such as the harp) have strings of different lengths, while 
others (such as the guitar) use strings of the same length. We can apply the same principles to 
understand either kind of instrument. Consider a single string of a particular length that is fixed at  
both ends. The string is under some tension, so that when you pluck the string it vibrates and you 
hear a nice sound from the string, dominated by one particular frequency. How does that work?

When you pluck the string, you send 
waves of many different frequencies along the 
string, in both directions. Each time a wave 
reaches an end, the wave reflects so that is 
inverted. All of these reflected waves interfere 
with one another. For most waves, after 
multiple reflections the superposition leads to 
destructive interference. For certain special 
frequencies, for which an integral number of 
half-wavelengths fit exactly into the length of 
the string, the reflected waves interfere 
constructively, producing large-amplitude 
oscillations on the string at those frequencies.

These special frequencies produce 
standing waves on the string. Identical waves 
travel left and right on the string, and the 
superposition of such identical waves leads to 
a situation where the positions of zero 
displacement (the nodes) remain fixed, as do 
the positions of maximum displacement (the 
anti-nodes), so the wave appears to stand still. 
Figure 21.21 shows the left and right-moving 
waves on the string, and their superposition, 
which is the actual string profile, for the lowest-
frequency standing wave on the string at 
various times.
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Figure 21.21: The string profile for the lowest-frequency 
standing wave (the fundamental) on the string at t = 0, 
and at regular time intervals after that, showing how the 
identical left and right-moving waves combine to form a 
standing wave. Go clockwise around the diagram to see 
what the string looks like as time goes by.

For a string fixed at both ends: The standing waves have a node (a point of zero 
displacement) at each end of the string.  The various wavelengths that correspond to the special 
standing-wave frequencies are related to L, the length of the string, by:

,  so ,  where n is an integer.

Using Equation 21.1,  , the particular frequencies that tend to be excited on a 
stretched string are: 

, (Eq. 21.13: Standing-wave frequencies for a string fixed at both ends)



The lowest-frequency standing wave 
on the string, corresponding to n = 1, is known 
as the fundamental. The other frequencies, or 
harmonics, are simply integer multiples of the 
fundamental. In general, when you pluck a 
string, the dominant sound is the fundamental, 
but the harmonics make the sound more 
pleasing than what a single-frequency note 
sounds like. Figure 21.22 shows the standing 
wave patterns for the fundamental and the two 
lowest harmonics.

EXAMPLE 21.9 – Waves on a guitar string
A particular guitar string has a length of 72 cm and a mass of 6.0 grams.
(a) What is the wavelength of the fundamental on this string?
(b) If you want to tune that string so its fundamental frequency is 440 Hz (an A note), 

what should the speed of the wave be?
(c) When the string is tuned to 440 Hz, what 

is the string’s tension?
(d) Somehow, you excite only the third 

harmonic, which has a frequency three times that of the 
fundamental. At t = 0, the profile of the string is shown 
in Figure 21.23, with the middle of the string at its 
maximum displacement from equilibrium. What is the 
oscillation period, T?

SOLUTION
(a) For the fundamental, exactly half a wavelength fits in the length of the string. Thus, 

the wavelength is twice the length of the string: ! = 144 cm = 1.44 m.

(b) Knowing the frequency and the wavelength, we can determine the wave speed:
= (440 Hz) (1.44 m) = 634 m/s.

(c) Knowing the speed, we can use Equation 21.5, to find the tension in the string. 

, so .

In this case, we get: .

(d) The fundamental frequency is 440 Hz, so the third harmonic has a frequency of 
1320 Hz, three times that of the fundamental. The period is the inverse of the frequency, so:

 .

Related End-of-Chapter Exercises: 28, 29, 36, 59.

Essential Question 21.9: Return to the situation discussed in Example 21-9. Figure 21.23 shows 
the string profile at t = 0. Show the string profile at times of t = T/4, T/2, 3T/4, and T. 
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Figure 21.22: The 
standing wave patterns 
for the fundamental and 
the second and third 
harmonics, for a string 
fixed at both ends.

Figure 21.23: The string profile at t = 0 
when the third harmonic has been 
excited on the string, with the middle of 
the string at its maximum displacement 
from equilibrium.


