PROBLEM 1 - 10 points

The drawing shows two waves, both traveling to the right at the same speed of $4.0 \mathrm{~m} / \mathrm{s}$ along identical strings.

(a) [2 points] Determine the wavelength of each wave.
(b) [2 points] Determine the amplitude of each wave.
(c) [2 points] Determine the frequency of each wave.
(d) [2 points] How much time passes before the two strings look exactly the same as the picture above?
(e) [2 points] For which wave is the maximum transverse speed of a particle on the string larger?
[] wave A [] wave B [] neither, they're equal

Explain:

PROBLEM 2-10 points

The graphs show the frequency spectra of four different sounds - match the sound to its description.
[2 points] (a) A sound with a beat frequency of 10 Hz .
[] Sound A
[] Sound B
[] Sound C
[] Sound D
[3 points] (b) A pure tone (single frequency).
[] Sound A
[] Sound B
[] Sound C
[] Sound D

State the value of that single frequency:

Amplitude

Amplitude

\qquad
[2 points] (c) The sound from a tube that is open at one end, and closed at the other.
[] Sound A
[] Sound B
[] Sound C
[] Sound D
[3 points] (d) The sound coming from strumming a single string on a guitar.
[] Sound A
[] Sound B
[] Sound C
[] Sound D

State the value of that string's fundamental frequency: \qquad

PROBLEM 3-10 points

The picture shows a particular standing wave on a guitar string at one particular instant in time. At the anti-nodes, the oscillations have an amplitude of 4.0 mm . The wave speed on the string is $360 \mathrm{~m} / \mathrm{s}$, and the string has a length of 90 cm .
[2 points] (a) Determine the

90 cm wavelength of this wave.
[2 points] (b) Calculate the frequency of this standing wave.
[2 points] (c) This standing wave is formed by a superposition of two identical traveling waves, one moving left and one moving right. The amplitude of each of these traveling waves is
[] 1.0 mm
[] 2.0 mm
[] 4.0 mm
[] 8.0 mm
[2 points] (d) Compared to the frequency of the standing wave shown above, the fundamental frequency for this particular string is
[] larger by a factor of 3 [] smaller by a factor of 3
[] equal to the frequency of the wave shown
[2 points] (e) If the tension of the string is increased, this string’s fundamental frequency ...
[] increases [] decreases [] remains the same

