Answers to selected problems from Essential Physics, Chapter 21

1. $\underbrace{\text { (a) } t=4.0 \mathrm{~s}}_{\square}$

$\xrightarrow{\text { (c) } t=6.0 \mathrm{~s}}$
2. $\frac{\text { (a) } t=4.0 \mathrm{~s}}{\square}$

| (c) $t=6.0 \mathrm{~s}$ | |
| :--- | :--- | :--- | :--- | :--- |
| | |

5. (a) The midpoint between the speakers always experiences constructive interference, because the path length difference for that point is zero. The midpoint is the same distance from both speakers, so the waves always interfere constructively.
displacement
6.

9. There are six different beat frequencies, at $3 \mathrm{~Hz}, 4, \mathrm{~Hz}, 5 \mathrm{~Hz}, 7 \mathrm{~Hz}, 8 \mathrm{~Hz}$, and 12 Hz .
11. (a) 3.0 cm

13. (a) 7.0 mm (b) $4 \pi \mathrm{rad} / \mathrm{s}$ (c) 2.0 Hz (d) 2.0 m (e) $4.0 \mathrm{~m} / \mathrm{s}$
15. (a) $104 \mathrm{rad} / \mathrm{s}$ (b) 2.4 mm .
17. (a) 25 Hz
(b) $23 \mathrm{~m} / \mathrm{s}$
(c) 0.92 m
(d) $y=(5.0 \mathrm{~mm}) \cos \left[(50 \pi \mathrm{rad} / \mathrm{s}) t+\left(6.80 \mathrm{~m}^{-1}\right) x\right]$
19. $3.2 \times 10^{-5} \mathrm{~W} / \mathrm{m}^{2}$
21. (a) $96 \mathrm{~dB} \quad$ (b) 84 dB
23. (a) 265 Hz (b) 247 Hz
25. (a) $16.8 \mathrm{~m} / \mathrm{s}$ (b) 301 Hz
27. (a) 71.1 kHz (b) 74.3 kHz
29. (a) $3.8 \mathrm{~cm} \quad$ (b) 1.9 cm
31. 379 Hz
33. 26 ms
37. (a) $C: E: G=6: 5: 4$ (b) The G pipe is 0.43 m long
39. (a) 24 ms (b) 0.24 m
41. (a) positive x-direction (b) $y=-(4.0 \mathrm{~cm}) \sin \left[(100 \pi \mathrm{rad} / \mathrm{s}) t-\left(5 \pi \mathrm{~m}^{-1}\right) x\right]$
(c) Yes, both the negative signs in the equation switch to positive signs.
43. There are four possibilities, all of which require the second train to also be traveling east. If the second train is behind the first train (both moving east), the second train could either be traveling at $0.9 \mathrm{~m} / \mathrm{s}$ or at $9.0 \mathrm{~m} / \mathrm{s}$. If the second train is ahead of the first train (both moving east), the second train could either be traveling at $0.9 \mathrm{~m} / \mathrm{s}$ or $9.2 \mathrm{~m} / \mathrm{s}$.
45. (a) 3.00 MHz
(b) 2.97 MHz
(c) 3.04 MHz .
47. (a) $300 \mathrm{kHz} \quad$ (b) 200 kHz
49. (a) to the left (b) The source speed is twice the wave speed. (c) 160 Hz
51. (a) $200 \mathrm{~Hz}, 400 \mathrm{~Hz}$, and 600 Hz (b) $100 \mathrm{~Hz}, 300 \mathrm{~Hz}$, and 500 Hz
53.

59. 40.9 N
61. (a) $18.3 \mathrm{~m} / \mathrm{s}$
(b) 0.21 m
(c) 62 Hz
55.

57.

