
Answer to Essential Question 19.5: Figure 19.18, with the magnetic field perpendicular to the 
plane of the loop, is a special case, in which both the net force and the net torque are zero. In 
Figure 19.19, the forces acting on the loop would cause the loop to rotate, with the left side of the 
loop coming out of the page and the right side going into the page. In this case there is a net 
torque acting on the loop, which is generally the case. 

19-6 The Magnetic Torque on a Current Loop
In a uniform magnetic field, a wire loop carrying current 

experiences no net force, but there is generally a net torque acting 
that tends to make the loop rotate. As we will see, we can exploit 
the interaction between the loop and the field to make a motor.

Let’s begin by drawing a number of views of a rectangular 
current-carrying loop in a uniform magnetic field. The loop can 
rotate without friction about an axis parallel to its long sides, 
passing through the center of the loop. In the front view, imagine 
viewing the loop as if your eye is at the bottom of the page, looking 
along the page at the loop. The angles specified in Figure 19.20 are 
the angles between the loop’s area vector, which is perpendicular to 
the plane of the loop, and the magnetic field. 

Specifying area as a vector is something new. The 
magnitude of the area vector is the loop’s length multiplied by its 
width. The direction of the area vector is perpendicular to the plane 
of the loop, but there are two directions that are perpendicular to 
this plane. The orientation of the area vector can be found by 
applying a right-hand rule. Curl the fingers on your right hand in 
the direction of the current flow. Your thumb, when you stick it out, 
gives the direction of the area vector. The angles specified in 
Figure 19.20 are the angles between the area vector and the 
magnetic field.

If the loop starts from rest in Figure 19.20(a), it will begin 
to rotate. The angular velocity increases in a clockwise direction, as 
observed from the front view. The clockwise torque continues until 
Figure 19.20(d), at which point there is no torque. In the absence of 
friction, the loop’s angular momentum keeps it moving forward, 
with the counter-clockwise torque in Figures 19.20(e) – (g) slowing 
the loop down and bringing it instantaneously to rest in Figure 
19.20(g). The loop then reverses direction, and goes through the 
pictures in reverse order.
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Figure 19.20: The arrow, labeled A in each front view, 
is the loop’s area vector, which is directed perpendicular 
to the plane of the loop. When the area vector is 
perpendicular to the magnetic field, the loop experiences 
maximum torque. If the loop starts from rest in (a), the 
clockwise torque it experiences in orientations (a) – (d) 
cause the loop to rotate clockwise. After (d), the torque 
reverses direction, bringing the loop instantaneously to 
rest at (g), at which point the motion reverses.



The situation from Figure 
19.20(a) is re-drawn in Figure 19.21, 
showing the height H and width W of 
the loop. Apply equation 10.9, 

, to find the torque 
applied by the field on the loop.

Take torques about the axis through the center of the loop, shown as a dashed red line in 
Figure 19.21 (overhead view). The distance from each force to this axis is W / 2, each force has a 
magnitude of F = IHB (from equation 19.7), and the angle between the line we’re measuring the 
distance along and the line of the force is 90°. A factor of 2 accounts for the two identical torques, 
which are both clockwise. The magnitude of the net torque on the loop in this orientation is:

, where A = HW is the area of the loop.

As the loop rotates, the torque is reduced as the angle between each force and the plane of 
the loop changes from 90°. This angle is equal to the angle between the area vector and field, so 
we can write a general expression for the torque, and generalize to coils with more than one loop.

The magnitude of the torque applied by a uniform magnetic field on a coil of N loops carrying a 
current I, with an angle  between the area vector  and the magnetic field , is:
        .     (Equation 19.8: Torque on a current-carrying coil in a magnetic field)

The DC (Direct Current) Motor – an application of the torque on a current-carrying loop
If the loop starts from rest in the orientation in Figure 19.20(a), then the loop will flop 

back and forth as the torque alternates between clockwise and counterclockwise. Friction will 
eventually bring the loop to rest in the zero-torque orientation of Figure 19.20(d). With one 
change, however, the loop becomes an electric motor – a device for transforming electrical energy 
into mechanical energy. We simply reverse the direction of the current each time the plane of the 
loop is perpendicular to the field (as in Figure 19.20(d)). With this change, the torque on the loop, 
and therefore the rotation of the loop, is always in the same direction. 

An easy way to accomplish the 
current reversal is to use a split-ring 
commutator, as shown in Figure 19.22. The 
split-ring commutator is a cylinder divided 
into two halves that are electrically insulated 
from one another. The cylinder rotates with 
the loop, and its left side rubs against a fixed 
wire connected to the positive terminal of a 
battery while its right side rubs against a 
fixed wire connected to the battery’s 
negative terminal. As shown in Figure 19.22, the 
current reverses direction in the loop every half-
rotation. From our perspective, however, the current  
always goes clockwise around the loop, which is 
why the torque is always in the same direction.

Related End-of-Chapter Exercises: 54, 59.

Essential Question 19.6: In the situation shown in Figure 19.20, we ignored the magnetic forces 
acting on the shorter sides of the loop. Why can we do this?
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Figure 19.21: The 
situation from Figure 
19.20(a), with dimensions 
given for the loop.

Figure 19.22: The split-ring commutator (the split 
cylinder that the dark wires from the battery are 
connect to) reverses the current in the loop every half 
rotation. From our perspective, the current is always 
clockwise, but from the loop’s perspective the current 
has reversed between (a) and 180° later in (b). 


