
Chapter 16 – Electric Charge and Electric Field Gauss’ Law 

16-8 Gauss’ Law 
In Chapter 16, we stated the equation for the electric field from a point charge. However, 

we can actually derive the point charge equation, as well as equations for the electric field in 
other situations, by applying Gauss’ law. 

 
Gauss’ law is often stated in the form of an integral. However, if you actually have to 

integrate when applying Gauss’ law, you’re probably not doing it correctly! What we generally 
do is to apply Gauss’ law in highly symmetric situations. Taking advantage of symmetry allows 
us to use Gauss’ law in a form that does not require an integral. Such use of symmetry is often 
used in physics to transform complicated problems into problems that are easier to solve. 

 
Applying Gauss’ law in highly symmetric situations. In symmetric situations, Gauss’ law can be 
stated as follows: the product of the surface area of an enclosed volume and the electric field at the 
surface of that volume is equal to the charge enclosed by that volume divided by a constant, 0ε , the 
permittivity of free space. 
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Written in this form, the equation applies as long as: 

• the electric field is the same magnitude at all points on the surface, and 
• the electric field is perpendicular to the surface at all locations. 
 
The product of the electric field and the area is called the electric flux – it is a measure of the 

number of electric field lines passing through the area.  
 
If the enclosed charge is positive, the electric field is directed out through the surface. If the 

enclosed charge is negative, the electric field is directed in through the surface. The permittivity of 
free space, 0ε , is related to k, the constant we used in Coulomb’s law, in the following way: 
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EXPLORATION 16.8 – Finding the electric field from a point charge 

The description of Gauss’ law above probably sounds a little complicated, so let’s apply 
it to the situation of the electric field from a point charge. 

 
Step 1 – Figure 16.8A shows a small ball with a charge of +Q 
embedded at the center of  (a) a sphere, and (b) a cube. Do either 
of these situations meet the conditions necessary to apply 
Equation 16.5, to calculate the electric field from a point charge?  
 
Figure 16.8A: Two-dimensional representations of a charged ball, 
which we treat as a point charge, embedded at the center of (a) a 
sphere, and (b) a cube. 

 
The sphere works well – the electric field is perpendicular to the sphere’s surface at all 

points and, because all points on the surface are the same distance from the point charge, the 
electric field at every point on the surface has the same magnitude. 
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On the other hand, the cube fails on both conditions. The electric field is perpendicular to 
the cube’s surface at some points, but not at all points. In addition, different points on the cube’s 
surface are different distances away from the charged ball, so the magnitude of the electric field is 
different at different points. 

 
Step 2 – Figure 16.8B shows a second sphere, in which the charged ball is 
not at the center of the sphere. Does this sphere meet the conditions of Gauss’ 
law?  

 
Figure 16.8B: In this sphere, the charged ball is not at the center of the sphere it 
is enclosed in. 

 
No, the second sphere does not meet the conditions. To take advantage 

of our formulation of Gauss’ law, the situation has to be as symmetric as possible. If the charged 
ball is at the center of the sphere, the situation is highly symmetric. Placing the ball off-center 
ruins the symmetry – the second sphere suffers from the same issues as the cube in Step 1. 

 
Step 3 – Use Gauss’ law to find an expression for the electric field, due to the point charge, at 
the surface of the spherical volume in part (a) of Figure 16.8A. Assume the spherical volume 
has a radius r. The area, A, in Equation 16.5, is the surface area of the enclosing surface. In this 
case, we use the expression for the surface area of a sphere of radius r, 24A rπ= . Thus, Equation 
16.5 becomes: 
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Solving for the electric field, and bringing in Equation 16.6, gives: 
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This is completely consistent with Equation 16.4, the expression for the electric field 

from a point charge. 

 
Essential Question 16.8: In Chapter 16, we learned that the electric field inside a conductor is 
zero when the conductor is at static equilibrium. Figure 16.8C shows a solid metal sphere of 
radius R. The metal sphere has a net charge of +8q on it, and the charge on the sphere is in static 
equilibrium. We also draw a spherical volume, of radius r = R/2, inside the metal sphere. The 
centers of the metal sphere and the spherical volume are the same. Using 
Gauss’ law, determine the charge enclosed by the spherical volume. 
Comment on how your answer changes if the radius of the spherical 
volume increases. (See the Essential Physics web site for the answer.) 
 
Figure 16.8C: A metal sphere with a net charge of +8q, and a spherical 
volume that has half the radius of the metal sphere. 
 

Key ideas about applying Gauss’ law: In highly symmetric situations, we can apply a simplified 
version of Gauss’ law to calculate the electric field. We did that in this Exploration to derive the 
equation we used in Chapter 16 for the electric field from a point charge.               
Related End of Chapter Exercises:  see the Essential Physics web site. 
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