
End-of-Chapter Exercises

Several of these exercises can be answered without a calculator, if you use g = 10 m/s2.

Exercises 1 – 12 are conceptual questions designed to see whether you understand the main 
concepts of the chapter. 

1. Why is it more tiring to walk for an hour up a hill than it is to walk for an hour on level 
ground?

2. (a) Is it possible for the gravitational potential energy of a system to be negative? (b) Is it 
possible for the kinetic energy of a system to be negative? (c) Can the total mechanical 
energy of a system be negative?

3. Given the right (or wrong, depending on your perspective) conditions, a mudslide or 
avalanche can occur, in which a section of earth or snow that has been at rest slides down 
a steep slope, reaching impressive speeds. Where does all the kinetic energy that the mud 
or snow has at the bottom of the slope come from?

4. Three identical blocks (see Figure 7.15) are released simultaneously from rest from the 
same height h above the floor. Block A falls straight down, while blocks B and C slide 
down frictionless ramps. B’s ramp is steeper than C’s. (a) Rank the blocks according to 
their speed, from largest to 
smallest, when they reach the 
floor. (b) Rank the blocks 
according to the time it takes them 
to reach the floor, from greatest to 
least. (c) If the two ramps are not 
frictionless, and the coefficient of 
friction between the block and 
ramp is identical for the ramps, do 
any of your rankings above 
change? If so, how?

5. You are on a diving platform 3.0 m above the surface of a swimming pool. Compare the 
speed you have when you hit the water if you: A, drop almost straight down from rest; B, 
run horizontally at 4.0 m/s off the platform; C, leap almost straight up, with an initial 
speed of 4.0 m/s, from the end of the platform.

6. Consider the following situations. For each, state whether or not you would apply energy 
methods, force/projectile motion methods, or either to solve the exercise. You don’t have 
to solve the exercise, but you can if you wish. (a) Find the maximum height reached by a 
ball fired straight up from level ground with a speed of 8.0 m/s. (b) Find the maximum 
height reached by a ball launched from level ground at a 45˚ angle above the horizontal if 
its launch speed is 8.0 m/s. (c) Find the time taken by the ball in part (b) to reach 
maximum height. (d) Determine which of the balls, the one in (a) or the one in (b), 
returns to ground level with the higher speed. (e) Determine the horizontal distance 
traveled by the ball in (b) before it returns to ground level.

7. You drop a large rock on an empty soda can, crushing the can. (a) Is mechanical energy 
conserved in this process? Explain. (b) Is energy conserved in this process? Explain.

Chapter 7: Conservation of Energy and Conservation of Momentum Page 7 - 18

Figure 7.15: Three identical blocks are simultaneously released 
from rest from the same height above the floor, for Exercise 4.



8. A block of mass m is released from 
rest at a height h above the base of a 
frictionless loop-the-loop track, as 
shown in Figure 7.16. The loop has a 
radius R. In this situation, h = 3R, and, 
defining the block’s gravitational 
potential energy to be zero at point a, 
the block’s gravitational potential 
energy at point b is twice the size of 
the block’s kinetic energy at point b. 
Sketch energy bar graphs showing 
the block’s gravitational potential 
energy, kinetic energy, and total 
mechanical energy at (a) the starting 
point;  (b) point a;  (c) point b.

9. Two boxes, A and B, are released simultaneously from rest from the top of ramps that 
have the same shape. Box A slides without friction down its ramp, while a kinetic friction 
force acts on box B as it slides down its ramp. The two boxes have the same mass. For 
the two boxes, plot the following as a function of time: (a) the kinetic energy; (b) the 
gravitational potential energy, taking the bottom of the ramp to be zero; (c) the total 
mechanical energy. There are no numbers here, so just show the general trend on each 
graph.

10. Repeat Exercise 9, but now plot the graphs as a function of distance traveled along the 
ramp instead of as a function of time.

11. A block is sliding along a frictionless horizontal surface with a speed v when it 
encounters a spring. The spring compresses, bringing the spring momentarily to rest, and 
then the spring returns to its original length, reversing the direction of the block’s motion. 
If the block moves away from the spring at speed v, how can we explain what the spring 
has done in terms of conservation of energy? Note: this is a preview of how we will 
handle energy conservation for springs in Chapter 12. Hint: is there a parallel between 
what the spring does to the block and what the force of gravity does to the block if we 
toss the block straight up in the air?

12. Comment on the applicability of conservation of energy, conservation of mechanical 
energy, and momentum conservation in each of the following situations. (a) A car 
accelerates from rest. (b) In six months, the Earth goes halfway around the Sun. (c) Two 
football players collide and come to rest on the ground. (d) A diver leaps from a cliff and 
plunges toward the ocean below.

Exercises 13 – 16 deal with various aspects of the same situation.

13. A ball with a mass of 200 g is tied to a light string with a length of 2.4 m. The end of the 
string is tied to a hook, and the ball hangs motionless below the hook. Keeping the string 
taut, you move the ball back and up until it is a vertical distance of 1.25 m above its 
equilibrium point. You then release the ball from rest. (a) What is the highest speed the 
ball achieves in its subsequent motion? (b) Where does the ball achieve this maximum 
speed? (c) What is the maximum height reached by the ball in its subsequent motion? (d) 
Of the three numerical values stated in this exercise, which one(s) do you actually require 
to solve the problem?
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Figure 7.16: A block released from rest from a height h above 
the bottom of a loop-the-loop track, for Exercise 8.



14. Take a ball with a mass of 200 g and drop it from rest. (a) When the ball has fallen a 
distance of 1.25 m, how fast is it going? (b) How does this speed compare to the 
maximum speed of the identical ball in Exercise 13? Briefly explain this result. (c) Which 
ball takes longer to drop through a distance of 1.25 m? Justify your answer.

15. Consider the ball in Exercise 13. (a) Is it reasonable to assume that the work done by non-
conservative forces is negligible over the time during which the ball swings down 
through the equilibrium position and up to its maximum height point on the other side? 
Why or why not? (b) If we watch this ball for a long time, it will eventually stop and 
hang motionless below the hook. Explain, in terms of energy conservation, why the ball 
eventually comes to rest. (c) In part (b), how much work is done by resistive forces in 
bringing the ball to rest?

16. Consider the ball in Exercise 13. Assuming that mechanical energy is conserved (that 
friction and air resistance are negligible), graph the ball’s potential energy, kinetic energy, 
and total energy as a function of height above the equilibrium position. Take the zero of 
potential energy to be the equilibrium position.

Exercises 17 – 20 are designed to give you some practice in applying the general method of 
solving a problem involving energy conservation. For each exercise, begin with the following: 
(a) Sketch a diagram of the situation, showing the system in at least two states that you will relate 
by using energy conservation. (b) Write out equation 7.1, and define a zero level for gravitational 
potential energy. It is usually most convenient to define a zero level so that the initial and/or final 
gravitational potential energy terms are zero. (c) Identify which, if any of the terms in the 
equation equal zero, and explain why they are zero.

17. You drop your keys, releasing them from rest from a height of 1.2 m above the floor. The 
goal of this exercise is to use energy conservation to determine the speed of the keys just 
before they reach the floor. Assume g = 9.8 m/s2. Parts (a) – (c) as above. (d) Use the 
remaining terms in the equation to find the speed of the keys before impact.

18. During a tennis match, you mis-hit the ball, making the ball go straight up in the air. The 
ball, which has a mass of 57 g, reaches a maximum height of 7.0 m above the point at 
which you hit it, and the ball’s velocity just before you hit it was 12 m/s directed 
horizontally. The goal of the exercise is to determine how much work your racket did on 
the ball. Parts (a) – (c) as described above. (d) Determine the work the racket did on the 
ball. (e) Would your answer to part (d) change if the initial velocity was not horizontal 
but had the same magnitude?

19. You and your bike have a combined mass of 65 kg. Starting from rest, you pedal to the 
top of a hill, arriving there with a speed of 6.0 m/s. The net work done on you and the 
bike by non-conservative forces during the ride is 1.5 x 104 J. The goal of the exercise is 
to determine the height difference between your starting point and the top of the hill. 
Parts (a) – (c) as described above. (d) Determine the height difference between your start 
and end points.

20. A block slides back and forth, inside a frictionless hemispherical bowl. The block’s speed 
is 20 cm/s when it is halfway (vertically) between the lowest point in the bowl and the 
point where it reaches its maximum height. The goal of the exercise is to determine the 
maximum height of the block, relative to the bottom of the bowl. Parts (a) – (c) as 
described above. (d) Determine the block’s maximum height.
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Exercises 21 – 25 involve energy bar graphs.

21. You throw a ball to your friend, launching it at an angle of 45˚ from the horizontal. 
Neglect air resistance, define the zero of gravitational potential energy to be the height 
from which you release the ball, and assume your friend catches the ball at the same 
height from which you released it. Draw a set of energy bar graphs, showing the ball’s 
gravitational potential energy and the kinetic energy, for each of the following points: (a) 
the launch point;  (b) the point at which the ball is halfway, vertically, between the launch 
point and the maximum height;  (c) the point where it reaches maximum height.

22. You are on your bicycle at the top of an incline that has a constant slope. You release your 
brakes and coast down the incline with constant acceleration, taking a time T to reach the 
bottom. Neglecting all resistive forces, and taking the zero of gravitational potential 
energy to be at the bottom of the incline, sketch a set of energy bar graphs, showing your 
gravitational potential energy and kinetic energy for the following points: (a) your 
starting point  (b) at a time of T/2 after you start to coast  (c) halfway down the incline  
(d) at the bottom of the incline.

23. Repeat Exercise 22, but this time make it more realistic by accounting for a resistive 
force. The bar graphs should show your gravitational potential energy, kinetic energy, and 
total mechanical energy, with a separate bar graph for the work done by the resistive 
force. Assume the resistive force is constant, and that it causes your kinetic energy at the 
bottom of the incline to be half of what it would be if the resistive force were not present. 
If the total time it takes you to come down the incline is now , in part (b) the energy 
bar graphs should represent the energies at a time of after you start to coast.

24. You show three of your friends a set of energy bar graphs. The bar graphs represent the 
energy, at the release point, of a ball hanging down from a string that you have pulled up 
and back and released from rest, so it swings with a pendulum motion. These bar graphs 
are the “Initial” set in Figure 7.17. You ask your three friends to draw the bar graphs 
representing the ball’s energy as it passes through the lowest point in its swing. Margot 
draws the set of bar graphs shown at the upper right, Jean the set on the lower left, and 
Wei the set on the lower right. (a) Are the sets 
of bar graphs, drawn by your friends, consistent 
with the idea of energy conservation? Justify 
your answer. (b) Which (if any) of your friends 
has the right answer? (b) If Jean has the right 
answer, from what height above the lowest 
point was the ball released? Assume each of the 
small rectangles making up the bar graphs 
represents 1 J, that g = 10 m/s2, and that the 
ball’s mass is 1.0 kg.
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Figure 7.17: Energy bar graphs, 
for Exercise 24.



Exercises 25 – 29 are designed to give you some practice in applying the general method for 
solving a problem that involves a collision. For each exercise, start with the following parts: (a) 
Draw a diagram showing the objects immediately before and immediately after the collision. (b) 
Apply equation 7.2, the momentum-conservation equation. Choose a positive direction, and 
account for the fact that momentum is a vector with appropriate + and – signs.

25. A car with a mass of 2000 kg is traveling at a speed of 50 km/h on an icy road when it 
collides with a stationary truck. The two vehicles stick together after the collision, and 
their speed after the collision is 10 km/h. The goal of this exercise is to find the mass of 
the truck. Parts (a) – (b) as described above. (c) Solve for the mass of the truck.

26. Repeat Exercise 25, except that, in this case, the truck is moving at 20 km/h in the 
opposite direction of the car before the collision, and, after the collision, the two vehicles 
move together at 10 km/h in the same direction the truck was traveling initially.

27. Two identical air-hockey pucks experience a one-dimensional elastic collision on a 
frictionless air-hockey table. Before the collision, puck A is moving at a velocity of v to 
the right, while puck B has a velocity of 2v to the left. The goal of the exercise is to 
determine the velocity of each puck after the collision. Parts (a) – (b) as described above. 
(c) Use the elasticity relationship to get a second connection between the two final 
velocities. (d) Find the two final velocities.

28. Repeat Exercise 27, except that in this case puck B has a mass twice as large as the mass 
of puck A.

29. While shooting pool, you propel the cue ball at a speed of 1.0 m/s. It collides with the 8-
ball (initially stationary), propelling the 8-ball into a corner pocket. The cue ball is 
deflected by 42˚ from its original path by the collision, and it moves away from the 
collision with a speed of 0.70 m/s. The goal of this exercise is to determine the magnitude 
and direction of the 8-ball’s velocity after the collision. The cue ball has a little more 
mass than the 8-ball, but assume for this exercise that the masses are equal. Parts (a) – (b) 
as described above. For part (b), set up a table to keep track of the x and y components of 
the momenta of the two balls before and after the collision. (c) Use the information in the 
table to determine the velocity of the 8-ball after the collision.

Exercises 30 – 32 involve combining energy conservation and momentum conservation.

30. As shown in Figure 7.18, a wooden ball with a mass of 250 g swings back and forth on a 
string, pendulum style, reaching a maximum speed of 
4.00 m/s when it passes through its equilibrium 
position. Use g = 10.0 m/s2. (a) What is the maximum 
height above the equilibrium position reached by the 
ball in its motion? (b) At one instant, when the ball is at  
its equilibrium position and moving left at 4.00 m/s, it 
is struck by a bullet with a mass of 10.0 g. Before the 
collision, the bullet has a velocity of 300 m/s to the 
right. The bullet passes through the ball and emerges 
with a velocity of 100 m/s to the right. What is the 
magnitude and direction of the ball’s velocity 
immediately after the collision? Neglect any change 
in mass for the ball.
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Figure 7.18: A bullet colliding with 
a ball on a string, for Exercise 30.



31. A pendulum, consisting of a ball of mass m on a light string of length 1.0 m, is swung 
back to a 45˚ angle and released from rest. The ball swings down and, at its lowest point, 
collides with a block of mass 2m that is on a frictionless horizontal surface. After the 
collision, the block slides 1.0 m across the frictionless surface and an additional 0.50 m 
across a horizontal surface where the coefficient of friction between the block and the 
surface is 0.10. (a) What is the block’s speed after the collision?  (b) What is the velocity 
of the ball after the collision? (c) Is the ball-block collision elastic, inelastic, or 
completely inelastic? Justify your answer. Use g = 10 m/s2 to simplify the calculations.

32. Two balls hang from strings of the same length. Ball A, with a mass m, is swung back to a 
height h above its equilibrium position. Ball A is released from rest and swings down and 
hits ball B, which has a mass of 3m. Assuming that all collisions between the balls are 
elastic, describe the subsequent motion of the two balls.

General Problems and Conceptual Questions

33. A Boeing 747 has a mass of about 3 x 105 kg, a cruising speed of 965 km/h, and cruises at  
an altitude of about 10 km. (a) Assuming the plane starts from rest at an airport at sea 
level, how much energy is required to reach its cruising height and altitude? Neglect air 
resistance in this calculation. (b) Comment on the validity of neglecting air resistance.

34. One way to estimate your power is to time yourself as you run up a flight of stairs. (a) In 
terms of simplifying the analysis, should you start from rest at the bottom of the stairs or 
should you give yourself a running start and try to keep your speed as constant as 
possible? (b) Which of the following distance(s) is/are most important for the power 
calculation, the magnitude of the straight-line displacement along the staircase or the 
vertical or horizontal components of this displacement? (c) Find a staircase and a 
stopwatch and estimate your average power.

35. A toy car rolls along a track. Starting from rest, the car drops gradually to a level 2.0 m 
below its starting point and then gradually rises to a level 1.0 m below its starting point, 
where it is traveling at a speed vf. The goal of the exercise is to find vf. Assume that 
mechanical energy is conserved, and use g = 9.8 m/s2. (a) Should you first use energy 
conservation to relate the initial point to the lowest point, and then apply energy 
conservation to relate the lowest point to the final point, or can you relate the initial point 
directly to the final point using energy conservation? Justify your answer. (b) Find vf.

36. Ball A is released from rest at a height h above the floor and has a speed v when it reaches 
the floor. (a) If ball B, which has half the mass of ball A, is released from rest at a height 
of 4h above the floor, what is its speed when it reaches the floor? Neglect air resistance. 
(b) What if ball B had double the mass of A instead?

37. A box with a mass of 2.0 kg slides at a constant speed of 
3.0 m/s down a ramp. The ramp is in the shape of a 3-4-5 
triangle, as shown in Figure 7.19. (a) Does friction act on 
the box? Briefly justify your answer. (b) If you decide that 
friction does act on the box, calculate the coefficient of 
kinetic friction between the box and the ramp. (c) The mass 
and speed of the box are given, but could you solve this 
exercise without them? Briefly explain.
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Figure 7.19: A box sliding on an 
incline, for Exercise 37.



38. A ball is launched with an initial velocity of 28.3 m/s, at a 45˚ angle, from the top of a 
cliff that is 10.0 m above the water below. Use g = 10.0 m/s2 to simplify the calculations. 
(a) What is the ball’s speed when it hits the water? (b) What is the ball’s speed when it 
reaches its maximum height? (c) What is the maximum height (measured from the water) 
reached by the ball in its flight?  Note: you could answer these questions using projectile 
motion methods, but try using an energy conservation approach instead.

39. You drop a 50-gram Styrofoam ball from rest. After falling 80 cm, the ball hits the 
ground with a speed of 3.0 m/s. Use g = 10 m/s2. (a) With what speed would the ball have 
hit the ground if there had been no air resistance? (b) How much work did air resistance 
do on the ball during its fall? (c) Is your answer to (b) positive, negative, or zero? 
Explain.

40. As shown in Figure 7.20, two frictionless ramps are joined by a rough horizontal section 
that is 4.0 m long. A block is placed at a height of 124 cm up the ramp on the left and 
released from rest, reaching a maximum height of 108 cm on the ramp on the right before 
sliding back down again. (a) How far up the ramp on the left does the block get in its 
subsequent motion? (b) What is the coefficient of kinetic friction between the block and 
the rough surface? (c) At what location does the block eventually come to a permanent 
stop?

41. Consider again the situation described in Exercise 40. If you took this apparatus to the 
Moon, where the acceleration due to gravity is one-sixth of what it is on Earth, and 
released the block from rest from the same point, what (if anything) would change about 
the motion?

42. Consider again the situation described in Exercise 40. Now, a different block is released 
from the point shown, 124 cm above the flat part of the track. This block does not reach 
the other side at all, but instead it stops somewhere in the rough section of the track. (a) 
What could be different about this block compared to the block in exercise 35?  (b) What, 
if anything, can you say about the coefficient of kinetic friction between this block and 
the rough surface based on the information given here?

43. Two ramps have the same length, height, and angle of incline. One of the ramps is 
frictionless, while for the second ramp the coefficient of kinetic friction between the ramp 
and a particular block is . You release the block from rest at the top of the 
frictionless ramp, and when it reaches the bottom of the incline its kinetic energy is a 
particular value . When you repeat the process with the second ramp, you find that the 

block’s kinetic energy at the bottom of the ramp is 80% of . At what angle with respect  
to the horizontal are the ramps inclined?
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Figure 7.20: A block released from rest 124 cm above the bottom of a track. The curved 
parts of the track are frictionless, while there is some friction between the track and the 
block on the 4.0-meter long horizontal section of the track. For Exercises 40 – 42.



44. Two blocks are connected by a string that passes over a massless, frictionless pulley, as 
shown in Figure 7.21. Block A, with a mass mA = 2.0 kg, rests on a ramp measuring 3.0 m 
vertically and 4.0 m horizontally. Block B hangs vertically 
below the pulley. Note that you can solve this exercise 
entirely using forces and the constant-acceleration 
equations, but see if you can apply energy ideas instead. 
Use g = 10 m/s2. When the system is released from rest, 
block A accelerates up the slope and block B accelerates 
straight down. When block B has fallen through a height h 
= 2.0 m, its speed is v = 6.0 m/s. (a) At any instant in time, 
how does the speed of block A compare to that of block B? 
(b) Assuming that no friction is acting on block A, what is 
the mass of block B?

45. Repeat Exercise 44, this time accounting for friction. If 
the coefficient of kinetic friction for the block A – ramp 
interaction is 0.625, what is the mass of block B?

46. Tarzan, with a mass of 80 kg, wants to swing across a ravine on a vine, but the cliff on the 
far side of the ravine is 1.0 m higher than the cliff where Tarzan is now and 2.0 m higher 
than Tarzan’s lowest point in his swing. Use g = 10 m/s2 to simplify the calculations. (a) 
If Tarzan wants to reach the cliff on the far side, how much kinetic energy must he have 
when he jumps off the cliff where he starts?  (b) How fast is Tarzan going at the bottom 
of his swing? (c) If Tarzan swings along a circular arc of radius 10 m, what is the tension 
in the vine when Tarzan reaches the lowest point in his swing?

47. A block of mass m is released from rest at a height h above the base of a frictionless loop-
the-loop track, as shown in Figure 7.22. The loop has a radius R. When the block is at 
point b, at the top of the loop, the 
normal force exerted on the block 
by the track is equal to mg. (a) 
What is h, in terms of R? (b) What 
is the normal force acting on the 
block at point a, at the bottom of 
the loop?

48. Consider again the situation 
described in Exercise 47, and 
shown in Figure 7.22. What is the 
block’s speed at (a) point a  (b) 
point b? Your answers should be 
given in terms of m, g, and/or R 
only.

49. A block of mass m is released from rest, at a height h above the base of a frictionless 
loop-the-loop track, as shown in Figure 7.22. The loop has a radius R. What is the 
minimum value of h necessary for the block to make it all the way around the loop 
without losing contact with the track? Express your answer in terms of R. 
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Figure 7.21: Two blocks connected 
by a string passing over a pulley, for 
Exercises 44 and 45.

Figure 7.22: A block released from rest from a height h above 
the bottom of a loop-the-loop track, for Exercises 47 – 49.



50. On an incline, set up a race between a low-friction block that slides easily down the 
incline and a ball that rolls down the incline. A good approximation of a low-friction 
block is a toy car, or a wheeled cart, with low-friction bearings in its wheels. (a) Predict 
the winner of the race if you release both objects from rest. Run the race to check your 
prediction. (b) If we assume that mechanical energy is conserved for both objects over the 
course of the race, how can you explain the result? Note: this is a preview of how we will 
handle energy conservation for rolling objects in chapter 11.

51. Two air-hockey pucks collide on a 
frictionless air-hockey table, as shown 
in Figure 7.23. Before the collision 
puck A, with a mass of m, is traveling 
at 20 m/s to the right, while puck B, 
with a mass of 4m, is stationary. After 
the collision puck A is traveling to the 
left at 4.0 m/s. (a) What is the velocity 
of puck B after the collision? (b) Is this 
collision super-elastic, elastic, or inelastic? 
Justify your answer.

52. Two identical carts experience a collision on a horizontal track. Immediately before the 
collision, cart 1 is moving at speed v to the right, directly toward cart 2, which is moving 
at speed v to the left. If the collision is completely inelastic then:  (a) What is the velocity 
of cart 1 immediately after the collision? (b) Is kinetic energy, or momentum, conserved 
in this collision? (c) What is the velocity of the system’s center of mass before the 
collision? (d) What is the velocity of the system’s center of mass after the collision?

53. Two carts experience a collision on a horizontal track. Immediately before the collision, 
cart 1 is moving at speed v to the right, directly toward cart 2, which is moving at speed v 
to the left. If cart 2’s mass is three times larger than cart 1’s mass, and the collision is 
completely inelastic, what is the velocity of cart 1 immediately after the collision?

54. A one-dimensional collision takes place between object 1, which has a mass m1 and a 
velocity that is directed toward object 2, which has mass m2 and is initially stationary. 
(a) If the collision is completely inelastic, what is the velocity of the two objects 
immediately after the collision? (b) If the collision is completely elastic, what are the 
velocities of the two objects after the collision? Hint: for part (b) make use of the 
elasticity, k, defined in equation 7.4. Making use of the result of part (b), (c) under what 
condition is object 1 stationary after the collision? (d) Under what condition does object 1 
reverse its direction because of the collision? 

55. A one-dimensional elastic collision between an object of mass m and velocity , and a 
second object of mass 3m and velocity , is a special case. (a) Find the velocities of 
the two objects after the collision to see why. Note that you can arrange such a collision 
by placing a baseball or tennis ball on top of a basketball and letting the balls fall straight 
down from rest. (b) Assuming the masses of the basketball and baseball are in the special 
3:1 ratio, that all collisions are elastic, and that the balls are dropped from a height h 
above the floor, how high up should the baseball go after the collision?
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Figure 7.23: Two air-hockey pucks just before 
and just after they collide, for Exercise 51.



56. Two cars of the same mass collide at an intersection. Just before the collision, one car is 
traveling east at 30 km/h and the other car is traveling south at 40 km/h. If the collision is 
completely inelastic, so that the two cars move as one object after the collision, what is 
the speed of the cars immediately after the collision?

57. Because you are an accident reconstruction expert, working with the local police 
department, you are called to the scene of an accident at a local parking lot. The speed 
limit posted in the parking lot is 20 miles per hour. Although nobody was hurt in the 
accident, the police officer in charge would like to determine whether or not anyone was 
at fault, for insurance purposes. When you reconstruct the accident, you find that the cars, 
an Acura MDX and a Volkswagen Jetta, were approaching one another at a 90˚ angle. 
After the collision, the cars locked together and slid for 3.3 m, traveling along a path at 
45˚ to their original paths, before coming to rest. You also determine that the Acura has a 
mass of 2000 kg, the Jetta’s mass is 1500 kg, and the coefficient of kinetic friction for the 
car tires sliding on the dry pavement is somewhere between 0.75 and 0.85. (a) Which car 
was traveling faster before the collision?  (b) Should either one of the drivers be given a 
speeding ticket and be determined to be at fault for the accident? Justify your answer.

58. A wooden block with a mass of 200 g rests on two supports. A piece of sticky chewing 
gum with a mass of 50 g is fired straight up at the block, colliding with the block when 
the gum’s speed is 10 m/s. The gum sticks to the block, and we want to find the 
maximum height reached by the block and gum in its subsequent motion. (a) To solve for 
this maximum height, should we set the gum’s kinetic energy before the collision equal to 
the gravitational potential energy of the gum-block system after the collision? Why or 
why not? (b) What is the maximum height reached by the gum-block system?

59. Re-do Exploration 7.6, but solve it another way, using a whole-vector approach by adding 
vectors graphically. First, add the momentum of the first object before the collision to that  
of the second object before the collision. That resultant vector is the total momentum 
before the collision, and because momentum is conserved, it is also the total momentum 
after the collision. Using this fact and the known momentum of the second object after 
the collision, you should be able to use the cosine law to find the momentum of the first 
object after the collision. Does the result match what we found using the component 
method in Exploration 7.6?

60. You release a rubber ball, from rest, at a point 1.00 m above the floor, and you observe 
that the ball bounces back to a height of 87.0 cm. (a) What is the net impulse experienced 
by the ball, which has a mass of 50.0 g, while it is in contact with the floor? (b) What is 
the elasticity, k, characterizing the collision between the ball and the floor? (c) Assuming 
the elasticity is the same for each collision, how many times will the ball bounce off the 
floor before losing half its mechanical energy?

61. Two different collisions take place in a large level parking lot, which is otherwise empty 
of vehicles. In collision A, a car with mass M traveling at a speed of vi , runs into a 
stationary truck of mass 4M.  In collision B, a truck of mass 4M, traveling at the same 
speed vi , runs into a stationary car of mass M.  In both collisions, the two vehicles stick 
together and the combined object skids to a halt because of friction. Assume that the force 
of friction is constant and the same for both collisions. (a) What is the speed of the 
combined object immediately after (i) collision A? (ii) collision B? (b) If, in collision A, 
the combined object slides for a time T and a distance D after the collision, for how long 
and through what distance does the combined object slide in collision B?
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62. Comment on the statements made by two students who are working together to solve the 
following problem, and state the answer to the problem. A cart with a mass of 2.0 kg has 
a velocity of 4.0 m/s in the positive x-direction. The first cart collides with a second cart, 
which is identical to the first and has a velocity of 2.0 m/s in the negative x-direction. 
After the collision, the first cart has a velocity of 1.0 m/s in the positive x-direction. What 
is the velocity of the second cart after the collision?

Martha: This is pretty easy. We can use momentum conservation, and we don’t even have 
to worry about the masses, because the masses are the same. So, we have a total of 4 plus 2 
equals 6 meters per second before the collision, so we must have a total of 6 meters per 
second afterwards, too. The first cart has 1 meter per second afterwards, so the second cart 
must have 5 meters per second afterwards.

George: But, what direction is it going afterwards? We need to give the velocity, so is it in the 
plus x-direction or the minus x-direction?

Martha: It can’t be minus x, because that would mean the two carts would pass through 
each other. It must bounce back, and go in the plus x-direction.
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