A box is placed on a horizontal board and then the angle between the board and the horizontal is gradually increased until that angle is 30°. During this process the box remains at rest on the board.

During this process, while the angle of the board is increasing from 0° to 30° :
(i) the magnitude of the component of the force of gravity acting on the box that is directed parallel to the slope:
[] increases
[] decreases
[] stays the same
(ii) the magnitude of the component of the force of gravity acting on the box that is directed perpendicular to the slope:
[] increases [] decreases [] stays the same
(iii) the magnitude of the normal force exerted on the box by the board:
[] increases
[] decreases
[] stays the same
(iv) the magnitude of the force of friction exerted on the box by the board:
[]increases [] decreases [] stays the same
(v) the magnitude of the maximum possible force of friction the box could exert on the board:
[]increases [] decreases [] stays the same

Two identical blocks, A and B, are placed at the bottom of almost-identical ramps and given initial velocities of $6.00 \mathrm{~m} / \mathrm{s}$ up their ramps. Both ramps are in the shape of 3-4-5 triangles, as shown, but block A's ramp is frictionless while the coefficient of kinetic friction between block B and its ramp is 0.250 . Both blocks slide up and down their ramps. Use $\mathbf{g}=\mathbf{1 0 . 0} \mathbf{~ m} / \mathbf{s}^{\mathbf{2}}$.
[6 points] (a) Block A travels a distance of d_{A} up its ramp before turning around. Sketch a freebody diagram of block A as it is sliding up the slope, and use this to determine the distance d_{A}.
[10 points] (b) Sketch a free-body diagram of block B as it is sliding up its ramp. For how much time is block B sliding up the ramp?
[4 points] (c) Select all the true statements about this situation from the list below. Grading scheme: +1 for each correct answer, -1 for each incorrect answer (but you can't get less than 0).
[] Block A travels a larger distance up its ramp than does block B.
[] Block A takes the same time to slide up the ramp as it does to slide down.
[] Block B takes the same time to slide up the ramp as it does to slide down.
[] Block B's average speed on the way up is larger than its average speed on the way down.
[] The time it takes block A to reach its highest point is the same as the time it takes block B to reach its highest point.
[] On the way up the slope the net force on block A is zero.
[] On the way down the slope the net force on block A is directed up the slope.
[] When the blocks are sliding down their ramps the magnitude of the net force on block A is larger than the magnitude of the net force on block B.

PROBLEM 3-15 points

Two identical boxes of mass m are sliding along a horizontal floor, but both eventually come to rest because of friction. Box A has an initial speed of v_{i}, while box B has an initial speed of $2 v_{i}$. The coefficient of kinetic friction between each box and the floor is μ_{K}, and the acceleration due to gravity is g.
(a) If it takes box A a time T to come to a stop, how much time does it take for box B to come to a stop?
(b) Find an expression for T in terms of the variables specified above.
(c) If box A travels a distance D before coming to rest, how far does box B travel before coming to rest?
(d) Find an expression for D in terms of the variables specified above.
(e) How does D, the stopping distance for box A, change if m is doubled?

