PROBLEM 1 - 10 points

The graph at right shows the position as a function of time for two students, Kim and John, as they move along a straight line.

For the time period shown in the graph ...
[2 points] (a) which student travels a larger
 distance?
[] Kim
[] John
[] equal for both
[2 points] (b) which student's displacement has the larger magnitude?
[] Kim's
[] John's
[] equal for both
[2 points] (c) which student has the larger average speed?
[] Kim
[] John
[] equal for both
[2 points] (d) which student's average velocity has the larger magnitude?
[] Kim's [] John's [] equal for both
[2 points] (e) At the instant indicated by the dashed line on the graph, which student has the higher speed?
[] Kim
[] John
[] equal for both

The graph shows your position as a function of time as you move along a sidewalk.

[4 points] (a) At $t=10 \mathrm{~s}$, what is your:
Position: \qquad Velocity: \qquad Acceleration: \qquad
[4 points] (b) At $t=40 \mathrm{~s}$, what is your:
\qquad
Position:
Velocity: \qquad Acceleration: \qquad
[4 points] (c) What is your average velocity over the interval from $t=0 \mathrm{~s}$ to $t=50 \mathrm{~s}$?
[4 points] (d) What is your average speed over the interval from $t=0 \mathrm{~s}$ to $t=50 \mathrm{~s}$?
[4 points] (e) Sketch a rough graph of your velocity as a function of time over the interval from $t=0 \mathrm{~s}$ to $t=50 \mathrm{~s}$.

PROBLEM 3-15 points

Two balls are launched at the same time. Ball A is released from rest from the top of a tall building of height H . Ball B is fired straight up from the ground with an initial velocity such that it just reaches the top of the same building. Neglect air resistance.
[3 points] (a) Which ball has the largest magnitude acceleration at the point they pass one another?
[] Ball A
[] Ball B
[] neither, they're equal

Briefly justify your answer:
[3 points] (b) If ball A takes a time T to reach the ground, and ball B takes the same time T to reach the top of the building, which ball has the highest speed at time $\mathrm{T} / 2$?
[] Ball A
[] Ball B
[] neither, they're equal

Briefly justify your answer:
[4 points] How far from the ground are the two balls when they pass one another? Express your answer in terms of H .
[5 points] (d) Sketch a graph showing the velocity of ball A, and the velocity of ball B, as a function from the time over the interval from when the balls are launched until ball A reaches the ground.

PROBLEM 4-15 points

A tortoise and a hare are having a 100 m race. When the starting gun goes off the hare lies down for a nap. The tortoise moves forward with a constant acceleration, reaching a speed of $2.0 \mathrm{~m} / \mathrm{s}$ when she is 20 m from the starting line. After this, the tortoise travels at a constant velocity of $2.0 \mathrm{~m} / \mathrm{s}$ until crossing the finish line. After 45 seconds the hare wakes up from his nap, and covers the 100 m with a constant acceleration of $2.0 \mathrm{~m} / \mathrm{s}^{2}$.
[6 points] (a) Who wins the race? Clearly justify your answer.
[2 points] (b) How much time passes between the winner reaching the finish line and the other animal reaching the finish line?
[2 points] (c) What is the distance between the animals when the winner crosses the finish line?
[5 points] (d) What is the distance between the animals at the only time (other than at the instant the starting gun is fired) they have the same velocity?

