(a) Three vectors have lengths of $6 \mathrm{~m}, 9 \mathrm{~m}$, and 12 m , respectively. The vectors can be arranged in any orientation you want. When you add the three vectors, what is the . \qquad
[6 points] (i) largest magnitude possible you can achieve for the resultant vector? Draw a rough sketch to show how you would arrange the three vectors.
$6 \mathrm{~m}+9 \mathrm{~m}+12 \mathrm{~m}=27 \mathrm{~m}$. The largest magnitude occurs when the vectors are lined up with them all pointing in the same direction:

[6 points] (ii) smallest magnitude possible you can achieve for the resultant vector? Draw a rough sketch to show how you would arrange the three vectors.

0 . You can align the $\mathbf{6 m}$ vector and the 9 m vector to make a vector of length 12 m , and then place the 12 m vector directly opposite. In other words, make a triangle with sides of $6 \mathrm{~m}, 9 \mathrm{~m}$, and 12 m :

[4 points] (b) Can you obtain resultant vectors with magnitudes covering the entire range between the maximum and minimum values above?
[X] Yes [] No
Briefly justify your answer: The fact that we can orient the vectors any way we want gives us so much flexibility that we can obtain a resultant vector with any magnitude we want between 0 and 27 m .
[4 points] (c) Whatever your answer to the previous question, could you add all three vectors together to get a resultant vector with a length of 12 m ? If so, draw a rough sketch to show how you could do it. If not, explain why not.

Yes, it can be done. One way to get a vector of length 12 m is to use our result from (a) part (ii). We can create an equilateral triangle with sides of 12 m each. One side is the resultant of the $\mathbf{6 ~ m}$ vector plus the $\mathbf{9 m}$ vector, the second side is the $\mathbf{1 2} \mathbf{~ m}$ vector, and the third side is the resultant, which also has a length of 12 m . This is just one of many possible ways to create a resultant with a magnitude of 12 m .

Essential Physics Chapter 1 (Introduction to Physics) Solutions to Sample Problems

