PROBLEM 1 - 20 points

(a) Three vectors have lengths of $6 \mathrm{~m}, 9 \mathrm{~m}$, and 12 m , respectively. The vectors can be arranged in any orientation you want. When you add the three vectors, what is the \qquad .:
[6 points] (i) largest magnitude possible you can achieve for the resultant vector? Draw a rough sketch to show how you would arrange the three vectors.
[6 points] (ii) smallest magnitude possible you can achieve for the resultant vector? Draw a rough sketch to show how you would arrange the three vectors.
[4 points] (b) Can you obtain resultant vectors with magnitudes covering the entire range between the maximum and minimum values above?
[] Yes [] No
Briefly justify your answer:
[4 points] (c) Whatever your answer to the previous question, could you add all three vectors together to get a resultant vector with a length of 12 m ? If so, draw a rough sketch to show how you could do it. If not, explain why not.

