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The photo shows a train wheel. Rolling is a concept we’ll investigate in this chapter.

Photo credit: by Leon Brooks, via http://www.public-domain-image.com.
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In this chapter, we continue to take concepts we examined previously, such as momentum
and energy, and apply them to rotational situations. As with Chapter 10, understanding how these
concepts apply in straight-line motion situations can give us considerable insight into how the
concepts apply in a rotational setting.

There are a variety of practical applications of the ideas we will discuss here. These
applications range from the rolling of wheels, which is relevant for driving cars and bicycles, to
the workings of yo-yo’s, to how gyroscopes work, which are important for maintaining the
orientation of orbiting satellites.
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11-1 Applying Newton’s Second Law for Rotation

Let’s learn how to apply Newton’s second law for rotation to systems in
which the angular acceleration & is non-zero. The analysis of such systems is

known as rotational dynamics.

EXPLORATION 11.1 — A mass and a pulley

A pulley with a mass M and a radius R is mounted on a frictionless M
horizontal axle passing through the center of the pulley. A block with a mass M
hangs down from a string that is wrapped around the outside of the
pulley. Assume that the pulley is a uniform solid disk. The goal of this Figure 11.1: A diagram of the
Exploration is to determine the acceleration of the block when the system | pyjley and block system. The block
is released from rest. Before we do anything else, we should draw a hangs down from a string wrapped
diagram of the situation based on the description above. The diagram is around the outside of the pulley.
shown in Figure 11.1.

The block accelerates down when the system is released, which means that the block
must have a net force acting on it that is directed down. There are only two forces acting
on the block, an upward force of tension and a downward force of gravity. Thus, for the M
net force to be directed down, the force of tension must have a smaller magnitude than
the force of gravity. Note that a common mistake is to assume that the force of tension is
equal to the force of gravity acting on the block. Thinking about Newton’s second law F
and how it applies to the block helps us to avoid making this error. (

Step 1 — Draw a free-body diagram of the block after the system is released from rest. T
F |

Figure 11.2: The free-body

Step 2 — Draw a free-body diagram of the pulley. diagram of the block

A complete free-body diagram of the pulley, shown in Figure 11.3 (a), reflects
that fact that the center-of-mass of the pulley remains at rest, so the net force
must be zero. There is still a non-zero net torque, about an axis
through the center of the pulley and perpendicular to the page,
that gives rise to an angular acceleration. Generally, when we sum
torques about an axis through the center, we draw a rotational
free-body diagram, as in Figure 11.3 (b), including only forces
that produce a torque. In this case, the only force producing a
torque about the center of the pulley is the force of tension. As we
discussed in Step 1, above, the force of tension is not equal to the
weight of the block when the block has a non-zero acceleration.

Step 3 — Apply Newton’s Second Law to the block. (a)
The block accelerates down, so let’s define down to be the

positive direction. Newton’s second law is ¥ F = Mz . Using the

(b)

Figure 11.3: The full free-body diagram of
the pulley, in (a), and the rotational free-
body diagram in (b), showing the only
force acting on the pulley that produces a
+Mg - =+Ma . torque about an axis perpendicular to the
page through the center of the pulley.

free-body diagram in Figure 11.2 to evaluate the left-hand side
gives:
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Step 4 — Apply Newton’s second law for rotation to the pulley. Here, let’s define clockwise to be
positive for rotation, both because this is the direction of the angular acceleration and because the
pulley going clockwise is consistent with the block moving down, in the direction we defined as
positive for the block’s motion.

Newton’s second law for rotation is YT =/t . Using the free-body diagram in 11.4(b) to
evaluate the left-hand side gives: +R F, sin(90°) = +1o. .

In the description of the problem we were told, “the pulley is a uniform solid disk.” This
tells us what to use for the rotational inertia, /, on the right-hand side of the equation. Looking up

the expression for the rotational inertia of a solid disk in Figure 10.22, we get ] = MR*/2.

Inserting this into the equation above, and using the fact that sin(90°) = 1, gives:

+RF, :+%MRZOL :

Canceling a factor of R gives: +F, = +%MROC .

Step 5 — Put the resulting equations together to solve for the block’s acceleration. Looking at
the force equation, +Mg — F,, =+Ma , and the equation we obtained from summing torques,
+F, =+MRo./2 , we have only two equations but three unknowns, £, a, and o.. We could put

the two equations together to eliminate the force of tension but then we’d be stuck.

Fortunately, we have another connection we can exploit, which is o =a/R. The

justification here is as follows. As the block accelerates down, every point on the string moves
with the same magnitude acceleration as the block. We assume the string does not slip on the
pulley, so the outer edge of the pulley (the part in contact with the string), moves with the string.
Thus, the tangential acceleration of a point on the outer edge of the pulley is equal in magnitude
to the acceleration of the string, which equals the magnitude of the block’s acceleration. Finally,
we connect the magnitude of the tangential acceleration of the outer edge of the pulley to the

magnitude of the pulley’s angular acceleration using o = a, / R. Putting everything together boils

down toq =a/ R, which we can substitute into the equation that came from summing torques:

FF =i MR =+ MR =+ 1 Ma.
2 2R 2

Using this result in the force equation gives: + Mg — F, =+Ma .
Substituting in for the force of tension gives: +Mg —l Ma=+Ma.

Thus, a=2g/3, with the acceleration being directed down.

ey ideas: Applying Newton’s second law for rotation helps us analyze situations that are purely
otational. Problems that involve both rotation and straight-line motion, as is the case in
xploration 11.1, can be analyzed by combining a torque analysis with a force analysis.

elated End-of-Chapter Exercises: 1, 13.

Essential Question 11.1: 1f the pulley in Exploration 11.1 is changed from a uniform solid disk to
a uniform solid sphere of the same mass and radius as the disk, how does that affect the block’s
acceleration? How does that affect the tension in the string?
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Answer to Essential Question 11.1: The effect of the change would be to decrease the rotational
inertia of the pulley, because the rotational inertia of a solid sphere is 0.4 MR* compared with

0.5MR? for the disk. The smaller the rotational inertia of the pulley, the less the pulley holds

back the block, so the block’s acceleration would increase. On the other hand, the force of tension
would decrease. This is most easily seen by analyzing the block. If the block’s acceleration
increases, the net force on the block must increase. The force of gravity acting on the block
remains constant, so the only way to increase the net force acting down on the block is to
decrease the upward force of tension.

11-2 A General Method, and Rolling without Slipping

Let’s begin by summarizing a general method for analyzing situations involving
Newton’s second law for rotation, such as the situation in Exploration 1.1. We will then explore
rolling. We will tie together the two themes of this section in sections 11-3 and 11-4.

A General Method for Solving a Newton’s Second Law for Rotation Problem
These problems generally involve both forces and torques.
1. Draw a diagram of the situation.
2. Draw a free-body diagram showing all the forces acting on the object.
3. Choose a rotational coordinate system. Pick an appropriate axis to take torques about, and

then apply Newton’s second law for rotation ( > = /¢ ) to obtain a torque equation.

4. Choose an appropriate x-y coordinate system for forces. Apply Newton’s second law
(X F = ma) to obtain one or more force equations. The positive directions for the

rotational and x-y coordinate systems should be consistent with one another.
5. Combine the resulting equations to solve the problem.

Rolling without Slipping

Let’s now examine a rolling wheel, which could be a bicycle wheel or a wheel on a car,
truck, or bus. We will focus on a special kind of rolling, called rolling without slipping, in which
the object rolls across a surface without slipping on that surface. This is actually what most
rolling situations are, although our analysis would not apply to situations such as you spinning
your car wheels on an icy road. Let’s consider various aspects of rolling without slipping.

When we dealt with projectile motion in Chapter 4, we generally split the motion into
two components, which were usually horizontal and vertical. To help understand rolling, we will
follow a similar process. Rolling can be viewed as a combination, or superposition, of purely
translational motion (moving a wheel from one place to another with no rotation) and purely
rotational motion (only rotation with no movement of the center of the wheel). In the special case
of rolling without slipping, there is a special connection between the translational component of
the motion and the rotational component. Let’s explore that connection.

EXPLORATION 11.2 — Rolling, rolling, rolling
We have a wheel of radius R that we will roll across a horizontal floor so that the wheel
makes exactly one revolution. The wheel rolls without slipping on the floor.

Step 1 — Consider the rotational part of the motion only (focus on the fact that the wheel spins

around exactly once). What distance does a point on the outer edge of the wheel travel because
of this spinning motion?
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circumference of the wheel itself.
This is a distance of 2w R . See the

top diagram in Figure 11.4.

... combined with
pure translation...

Step 2 — Now consider the
translational part of the motion only
(i.e., ignore the fact that the wheel is
spinning, and imagine that we
simply drag the wheel a particular
distance without allowing the wheel
to rotate). What is the distance that \\",/
any point on the wheel moves if we \

drag the wheel a distance equal to 504
that it would move if we rolled it so / \
it rolled through exactly one ‘l
revolution? To determine what this

distance is, imagine that we placed

some double-sided tape around the wheel | Figure 11.4: A pictorial representation of how the rotational

Because we’re ignoring the rotational Pure rotati
motion, the distance traveled by a UG TOLAton....
point on the outer edge of the wheel

because of the spin is equal to the

... produces rolling.

before we rolled it, and that the tape component and the translational component of the motion
sticks to the floor. This is shown in the combine to produce the interesting shape of the path traced
middle diagram in Figure 11.4. Rolling out by a point on the outer edge of the wheel that is rolling
the wheel through one revolution lays without slipping. This shape is known as a cycloid.

down all the tape on the floor, covering a

distance that is again equal to the

circumference of the wheel. Thus, focusing on the translational distance only, the translational
distance moved by every point on the wheel as the wheel rolls through one revolution is 2R .

Step 3 — Assuming the rolling is done at constant speed, compare the speed of a point on the
outer rim, associated only with the wheel’s rotation, to the translational speed of the wheel’s
center of mass. We can find these speeds by dividing the appropriate distances by the time
during which the motion takes place. Because the distances associated with the two components
of the motion are equal, and the time of the motion is the same for the two components, these two
speeds are equal.

ey ideas for rolling: Rolling can be considered to be a superposition of a pure translational

otion and a pure rotational motion. In the special case of rolling without slipping, the distance

oved by a point on the outer edge of a wheel associated with the rotational component is equal
o the translational distance of the wheel. The speed of a point on the outer edge because of the
otational component is also equal to the translational speed of the wheel.

elated End-of-Chapter Exercises: 4, 17.

Essential Question 11.2: Different points on a wheel that is rolling without slipping have
different speeds. Considering one particular instant, which point on the wheel is moving slowest?
Which point is moving the fastest?
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Answer to Essential Question 11.2: As we will investigate in more detail in section 11-3, when a
wheel rolls without slipping, the point at the bottom of the wheel has the smallest speed (the
speed there is zero, in fact), while the point at the top of the wheel is moving fastest.

11-3 Further Investigations of Rolling

Let’s continue our analysis of rolling, starting by thinking about the velocity of various
points on a wheel that rolls without slipping. We will then go on to investigate rolling spools.

EXPLORATION 11.3 — Determining velocity

Let’s turn now from thinking about speeds to thinking about velocities. Consider a wheel
rolling without slipping with a constant translational velocity v, directed to the right, across a
level surface. For each point below, determine the point’s net velocity by combining, as vectors,
the point’s translational velocity (the velocity associated with the translational component of the
motion) with its velocity because of the rotational component of the motion.

Step 1 — Find the net velocity of the center of the wheel.
Our axis of rotation passes through the center of the wheel. The center of

the wheel therefore has no rotational velocity (because v =rw, and r = 0). Thus,

the net velocity of the center of the wheel is its translational velocity, v . Note that

every point on the wheel has the same translational velocity. Two equal vectors are
shown at the center of the wheel in Figure 11.5. One represents the translational
velocity at that point, and the other represents the net velocity at that point.

Step 2 — Find the net velocity of the point at the very top of the wheel.

Here, we use the fact that the rotational speed is equal to the
translational speed, so we are adding two velocities of equal magnitude. At
the top of the wheel, the velocities also point in the same direction, so the
net velocity is2v , as shown in Figure 11.5.

Figure 11.5: The translational
(equal vectors all directed right),
rotational (tangent to the circle),
and net velocities of various
points on the wheel. The net
velocity at a point is a vector
Step 3 — Find the net velocity of the point at the very bottom of the wheel. | sum of the translational and

At the bottom of the wheel, the rotational velocity exactly cancels rotational velocities.
the translational velocity, because the vectors point in opposite directions
and have equal magnitudes. The net velocity of that point is zero — the
point is instantaneously at rest! This is a special condition that is characteristic of rolling without
slipping. No slipping implies no relative motion between the surfaces in contact, which means the
point at the bottom of the wheel that is in contact with the road surface is at rest.

Figure 11.5 also shows the net velocity at another point on the wheel, a point above and
to the left of the center. As with all points, the translational velocity is a vector directed to the
right. The velocity associated with the pure rotation is tangent to the circle that passes through the
point (and centered at the center of the wheel) - this has a magnitude of v/2, because the point is
halfway between the center and the rim. The net velocity is the longest of the three vectors at that
point, the vector sum of the translational and rotational velocities.

ey ideas for rolling: The net velocity of a point on a rolling wheel can be found by adding, as
ectors, the point’s translational velocity and its rotational velocity. In the special case of a wheel
olling without slipping with a translational velocity v, the net velocity of the center of the wheel

is v ; while that of the point at the top of the wheel is 2V . A point on the outer edge of the wheel

actually comes instantaneously to rest when it reaches the bottom of the wheel.
elated End-of-Chapter Exercises: S, 6.
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EXAMPLE 11.3 — Unrolling a ribbon from a spool

A long ribbon is wrapped around the outer edge of a spool. You pull horizontally on the
end of the ribbon so the ribbon starts to unwind from the spool as the spool rolls without slipping
across a level surface.

(a) When you have moved the end of the ribbon through a horizontal
distance L, how far has the spool moved?

(b) Does your answer change if the ribbon is instead wrapped around
the spool’s axle, which has a radius equal to half the radius of the
spool? If so, how does the answer change?

SOLUTION

(a) A diagram of the situation is shown in Figure 11.6. Once again, we
can think of the spool’s rolling motion as a combination of its translational
motion and its rotational motion. We can thus say that the end of the
ribbon moves because (a) the spool has a translational motion, and (b) the
spool is rotating. The speed of the ribbon matches the speed of the top of
the spool, because there is no slipping between the ribbon and the spool.
Recalling the result from Exploration 11.3, the top of the spool has a
velocity twice that of the center of the spool. Putting these facts together
means that the center of the spool has a velocity half that of the end of the
ribbon at any instant, and so the spool covers a distance of L/2, half the

Figure 11.6: A spool is rolling
without slipping to the right
because you are pulling, to the
right, on the red ribbon that is
wrapped around the spool.

distance covered by the end of the ribbon.

(b) What if the ribbon is wrapped around the spool’s axle and you
move the end of the ribbon through a distance L? The answer changes
because the rotational contribution to the net velocity changes. As shown in
Figure 11.7, the ribbon now comes off the axle at the top of the axle, at a
point halfway between the edge and the center of the spool. The net velocity
at that point on the spool is 1.5 times the velocity of the center of the
spool: the translational velocity is equal to the velocity of the center,
while the rotational velocity is half that of the center, because at a radius | Figure 11.7: The ribbon is
of R/2 we have: wrapped around the axle of the

spool, which has a radius half
1 1 that of the spool. The ribbon

R
ror = 30) = ER(D = EVW,” . comes off the axle at the top.

v

Putting it another way, the velocity of the center of the spool is
now two-thirds of the velocity of the end of the ribbon. If the end of the
ribbon travels a distance L, the spool translates through a distance of 2L/3.

Related End-of-Chapter Exercises: 18, 19.

Essential Question 11.3: In a situation similar to that in Figure 11.7, you
pull to the right on a ribbon wrapped around the axle of a spool. This time,
however, the ribbon is wound so it comes away from the spool
underneath the axle, as shown in Figure 11.8. When you pull to the right
on the ribbon, the spool rolls without slipping. In which direction does it Figure 11.8: A ribbon is
roll? Sketch a free-body diagram of the spool to help you think about wrapped around the axle of
this. the spool so the ribbon comes
off the axle below the axle.
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Answer to Essential Question 11.3: Many people focus on the
counterclockwise torque, relative to an axis perpendicular to the page that
passes through the center of the spool, exerted by the force of tension and
conclude that the spool rolls to the left. Before jumping to conclusions,
however, draw the free-body diagram (after drawing your own, see Figure
11.9). As usual there is a downward force of gravity and an upward normal
force. Horizontally there is a force of tension, directed right, exerted by the
ribbon. With no friction, the force of tension would cause the spool to move Fg Fg
right and spin counterclockwise, so the bottom of the spool would move right
with respect to the horizontal surface. Friction must therefore be directed left .
to oppose this, and, because we know the spool rolls without slipping, the F}gure 11.9: The free-body
force of friction must be static friction. diagram of the spool.

Now we have the complete free-body diagram, we can see that the answer to the question
is not obvious. There is one force left and one force right — which is larger? Relative to an axis
through the center, there is one torque clockwise and one counterclockwise — which is larger? A
quick way to get the answer is to consider an axis perpendicular to the page, passing through the
point where the spool makes contact with the horizontal surface. Relative to this axis, three of the
four forces give no torque, and the torque from the tension in the string is in a clockwise
direction. Clockwise rotation of the spool, relative to the point where the spool
touches the surface, is consistent with the spool rolling without slipping to the
right. This is opposite to what you would conclude by focusing only on the
torque about the center from the force of tension. The spool rolls to the right.

11-4 Combining Rolling and Newton’s Second Law
for Rotation

Let’s now look at how we can combine torque ideas with rolling-
without-slipping concepts.

EXPLORATION 11.4 — A vertical force but a horizontal motion

A spool of mass M has a string wrapped around its axle. The
radius of the axle is half that of the spool. An upward force of magnitude Figure 11.10: An upward force is
Fris exerted on the end of the string, as shown in Figure 11.10. This exerted on the string wrapped
causes the spool, which is initially at rest, to roll without slipping as it around the axle of the spool.
accelerates across the level surface.

In which direction does the spool roll? Which horizontal force is
responsible for the spool’s horizontal acceleration? Let’s begin by drawing a
free-body diagram of the spool. Figure 11.11 shows a partial free-body diagram,
showing only the vertical forces acting on the spool. There is a downward force
of gravity acting on the spool, and an upward force of tension applied by the
string (note that /7 must be less than or equal to Mg, so the spool has no
vertical acceleration). There is also an upward normal force, required to balance
the vertical forces.

Is there a horizontal force? If there is, what could it be? Let’s go back
and think about what is interacting with the spool. The force of gravity accounts
for the interaction between the Earth and the spool, and the force of tension
accounts for the interaction between the string and the spool. The only
interaction left is the interaction between the surface and the spool. The Figure 11.11: A partial free-body
surface exerts a contact force on the spool. Remember that we generally | diagram of the spool, showing

the vertical forces acting on it.
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split the contact force into components, the normal force (which we have accounted for) and the
force of friction (which we have not).

If there is a horizontal force acting, it can only be a force of friction. Do we need friction
in this situation? Consider what would happen if the free-body diagram shown in Figure 11.11
was complete, and there was no friction. Taking an axis perpendicular to the page through the
center of the spool, the tension force would give rise to a counterclockwise torque. Because the
net force acting on the spool would be zero, however, the spool would simply spin
counterclockwise without moving. This is inconsistent with the rolling-without-slipping motion
we are told is occurring. There must be a force of friction acting on the spool to cause the
horizontal motion.

Note that, without friction, the bottom of the spool rotates to the right relative to the
surface. The force of friction must therefore be directed to the left, acting to oppose the relative
motion that would occur without friction. Because the force of friction is the only
horizontal force acting on the spool, the spool accelerates to the left.

To gain another perspective on this situation, we can follow the procedure
discussed in the Answer to Essential Question 11.3, and consider the sum of the
torques about the contact point (the point where the spool makes contact with the
ground). Both the normal force and the force of gravity pass through the contact
point, so they don’t give rise to any torques about the contact point. If there is a
force of friction, whether it is directed to the right or the left it would also pass
through the contact point, giving rise to no torque about that point. Thus, the only
force that produces a torque about the contact point is the tension force. Relative to
the contact point, this torque is directed counter-clockwise, which is consistent
with rolling without slipping to the left. Starting from rest, rolling to the
left requires a horizontal force directed to the left, which can only be a
friction force. Figure 11.12: The complete

free-body diagram of the spool.

Is the force of friction kinetic friction or static friction? Because
the spool is rolling without slipping, and the bottom of the spool is
instantaneously at rest relative to the surface it is in contact with, the force of friction is the static
force of friction. This may sound counter-intuitive, since there is relative motion between the
spool as a whole and the surface, but it is very similar to the walking (without slipping) situation
that we thought about in Chapter 5. When walking, as long as our shoes do not slip on the floor, a
force of static friction acts in the direction of motion. The same thing happens here - in this case,
the force of static friction is the only horizontal force acting on the spool, so it is the force
accelerating the wheel horizontally. The complete free-body diagram for
the rolling-without-slipping situation is shown in Figure 11.12.

Key ideas for rolling without slipping: Rolling without slipping o
often involves a force of friction, which must be a static force of t‘,

friction. The static force of friction is often (although not always) —
in the direction of motion. {{./2
Related End-of-Chapter Exercises: 3, 50. =

Essential Question 11.4: In the situation shown in Figure 11.13, you

pull on the end of a ribbon wrapped around the axle of a spool. Your Figure 11.13: A ribbon is
force is exerted in the direction shown. If the spool rolls without wrapped around the axle of the
slipping, in which direction does the spool roll? spool so the ribbon comes off the

axle in the direction shown.
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Answer to Essential Question 11.4: Once again, it is simplest to take torques about an axis
perpendicular to the page, passing through the point at which the spool touches the ground. The
only force giving rise to a torque about this point is the tension in the ribbon, which gives a
clockwise torque. If the spool rotates clockwise with respect to its bottom point, the motion of the
spool is to the right.

11-5 Analyzing the Motion of a Spool

EXPLORATION 11.5 — Continuing the analysis of the rolling spool

Let’s return to the situation described in Exploration 11.4, and focus in
particular on the free-body diagram in Figure 11.12. Our goal is to determine the
magnitude of the spool’s acceleration in terms of F'r and M. The spool consists of
two disks, each of mass M/3 and radius R, connected by an axle of mass M/3 and
radius R/2.

Step 1 — Apply Newton’s Second Law for the horizontal forces.
The spool accelerates left, so let’s define left to be the positive

direction. Figure 11.12: The complete

YF.=Ma,. free-body diagram of the spool.

Because the acceleration is entirely in the x-direction, we can replace a, by a.

Evaluating the left-hand side of this expression with the aid of Figure 11.12 gives:
+F,=+Ma.

Step 2 — Find the expression for the spool’s rotational inertia about an axis perpendicular to
the page passing through the center of the spool.

Why are we doing this? Well, we’ll need to apply Newton’s second law for rotation to
solve this problem, and that involves the spool’s rotational inertia. To find the spool’s rotational
inertia, we can use the expression for the rotational inertia of a solid disk or cylinder (I = % mr?)
about the center . Let’s apply this equation to the three pieces of the spool and add them together
to find the net rotational inertia.

Each of the two disks contributes %(% ] R’ = % MR? to the rotational inertia.

2
The axle contributes HMYRY_ LMR2 )
21 3 2 24

The total rotational inertia is [ = %MR2 +%MR2 +Lj\4R2 = iMR2 = 3]\4}32 .

24 24 8

Step 3 — Apply Newton’s Second Law for Rotation to obtain a connection between the force of
friction and the upward force FT applied to the string.

Taking torques about an axis perpendicular to the page and passing through the center of
the spool is a good way to do this, because the force of gravity and the normal force pass through
this axis and therefore give no torque about that axis. Since the spool has a counterclockwise
angular acceleration let’s take counterclockwise to be positive for torques. Applying Newton’s
second law for rotation gives:

St =10 -
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Referring to Figure 11.12, and using the equation T = F'sin6 , we have:
R . .
+3FT sin (900)— RFsin (90°)= +lo .

Recognizing that sin (90°) =1, and substituting the expression for the spool’s rotational
inertia we found above, gives:

R
+3FT ~RF,= +§MR20c :

Canceling a factor of R gives: +%FT -Fs= +§MROL .

Step 4 — What is the connection between the spool’s acceleration and its angular acceleration?
For rolling without slipping, the connection between the acceleration and the angular
acceleration is ¢ = Ra. , although it is always a good idea to check whether the positive direction

for the straight-line motion is consistent with the positive direction for rotation. In our case they
are consistent, since we chose them based on the motion. If we had reversed one of the positive
directions, however, we would have had a negative sign in the equation.

Step 5 — Combine the results above to determine the spool’s acceleration in terms of Fr and M.
Let’s first substitute g = Rq into our final expression from step 3, to get:

1 3
+—F,—Fy=+>Ma.

270 e
In step 1, we determined that F, =M a, so we get:
+lFT —Ma= +§Ma ;

2 8

+1FT :+EMa;
2 8

a= AF; ,directed to the left.
11M

otion, analyzing the one-dimensional motion, and combining the analyses.

Eey idea: Solving a rolling-without-slipping problem often involves analyzing the rotational
elated End-of-Chapter Exercises: 51, 53.

Essential Question 11.5: Consider a hard ball that is rolling without slipping across a smooth
level surface. If the ball maintains a constant velocity, in what direction is the static force of
friction acting on the ball? Consider the three-possible free-body diagrams for the ball in Figure
11.14 below, and state which free-body diagram is appropriate for this situation.

(a) AN (b) AN () AN
Figure 11.14: Possible free-body
diagrams for a ball rolling, without v v
slipping, at constant velocity to the ’ »

right across a horizontal surface.

ol |
w
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h?(‘.
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Answer to Essential Question 11.5: No friction force can act on the ball, so the correct free-body
diagram is that shown in Figure 11.14 (c). A force of friction in the direction of motion would
increase the ball’s translational speed, and the counterclockwise torque from the force of friction
would decrease the ball’s angular speed. A force of static friction directed opposite to the ball’s
velocity would decrease the translational speed while increasing the rotational speed. The ball
rolls horizontally at constant velocity only if no friction force acts.

11-6 Angular Momentum

By now, we have looked at enough analogies between straight-line motion and rotational
motion that we can simply take a straight-line motion equation, replace the straight-line motion
variables by their rotational counterparts, and write down the equivalent rotational equation. We
could also derive the rotational equations following a derivation parallel to the one we used for
the straight-line motion equation, but the end result would be the same.

Let’s try this for angular momentum. In Chapter 6, we used the following expression for
the linear momentum, p , of an object of mass m moving with velocity v: p=mv .

Using the symbol [, to represent angular momentum, we can come up with the
equivalent expression for angular momentum by replacing mass m by its rotational equivalent,
rotational inertia /, and velocity v by its rotational equivalent ® :

L=I®. (Equation 11.1: Angular momentum)

We made a number of statements about momentum in Chapter 6. Equivalent statements
apply to angular momentum, including:
e Angular momentum is a vector, pointing in the direction of angular velocity.
e The angular momentum of a system can be changed by applying a net torque.
e Ifno net torque acts on a system, its angular momentum is conserved.
Let’s explore this idea of angular momentum conservation.

EXPLORATION 11.6 — Jumping on the merry-go-round

A little red-haired girl named Sarah, with mass m, runs toward a playground merry-go-
round, which is initially at rest, and jumps on at its edge. Sarah's velocity v is tangent to the
circular merry-go-round. Sarah and the merry-go-round then spin together with a constant angular
velocity @, . The merry-go-round has a mass M, a radius R, and has the form of a uniform solid

disk. Assume that Sarah’s “radius” is small compared to R. The goal of this Exploration is to
determine an expression for @, . We can treat this as a collision.

Step 1 — Sketch two diagrams, one showing Sarah running toward the merry-go-round and the
other showing Sarah and the merry-go-round rotating together after Sarah has jumped on.
Imagine that you’re looking down on the situation
from above. These two diagrams are shown in
Figure 11.15.

w (l)f

Figure 11.15: On the left is the situation before the

collision, as Sarah runs toward the merry-go- Sarah
round, while on the right is the situation after the m
collision, with Sarah and the merry-go-round m
rotating together with a constant angular velocity. Before the collision After the collision
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Step 2 — What kind of momentum does the Sarah/merry-go-round system have, if any, before
Sarah jumps on the merry-go-round? What about after Sarah jumps on? After the collision,
when the system is rotating, the system clearly has a non-zero angular momentum. Before the
collision, however, it is not obvious that the system has any angular momentum, because nothing
is rotating. Sarah certainly has a linear momentum, however, because she has a non-zero velocity.

Step 3 — Convert Sarah’s linear momentum before the collision to an angular momentum,
using a method modeled on the way we convert a force to a torque. Although there is no rotation
before the collision, we can say that the system has an angular momentum with respect to an axis
perpendicular to the page that passes through the center of the merry-go-round. Consider how we
get torque from force, where the magnitude of the torque is given by 1t = Fsin¢ . Angular

momentum is found from linear momentum in a similar fashion, with its magnitude given by:
L=rpsing =r(mv)sing, (Eq. 11.2: Connecting angular momentum to linear momentum)

where ¢ is the angle between the line we measure distance along and the
line of the linear momentum.

Relative to the axis through the center of the merry-go-round, the angular
momentum is: Zl. = Rmvsin(90°) = Rmv, in a counterclockwise direction.

Step 4 — Apply angular momentum conservation to express ©, the Qo> =

. . . m p = mv
angular velocity of the system after the collision, in terms of the
variables above. Angular momentum is conserved because there are Figure 11.16: The lever-arm method to
no external torques acting on the Sarah/merry-go-round system, determine Sarah’s angular momentum,
relative to a vertical axis passing through the center of the turntable. with respect to an axis passing through

We will justify this further in section 11-7. Thus, we can say: Angular | the center of the merry-go-round.
momentum before the collision = angular momentum afterwards.

The angular momentum afterwards is =10, The system’s rotational inertia after the
collision is the sum of the rotational inertias of Sarah, and the > MR? of the merry-go-round.
Sarah’s “radius” is small compared to R, so we treat Sarah as a point, assuming that all her mass
is the same distance, R , from the center of the turntable. Sarah’s rotational inertia is thus mR> .

Thus, the rotational inertia of the system after the collision is [ = % MR? + mR* .

Taking counterclockwise to be positive, angular momentum conservation gives: [, = P

+Rmv =16, = (lMR2 +mR? )osf :
2
Solving for the final angular velocity of the system gives:

- my _ my . .
O, =+— or, O, =7 directed counterclockwise.

%MR+mR ‘ %MR+mR

ey ideas: Linear momentum converts to angular momentum in the same way force converts to
orque. Also, we apply momentum conservation ideas to rotational collisions in the same way we
analyze collisions in one and two dimensions. Related End-of-Chapter Exercises: 32, 34, 59.

Essential Question 11.6: Is it possible for Sarah, with the same initial speed, to jump onto the
merry-go-round at the same point, but not make it spin? If so, how could she do this?
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Answer to Essential Question 11.6: One way for Sarah to jump onto the merry-go-round, without
causing the merry-go-round to spin, is for Sarah to direct her velocity at the center of the merry-
go-round, instead of tangent to it. If Sarah ran directly toward the center of the merry-go-round
she would have no angular momentum before the collision and there would be no reason for the
system to spin after the collision.

11-7 Considering Conservation, and Rotational Kinetic Energy

In step 4 of Exploration 11.6, we stated that the angular momentum of the system
consisting of Sarah and the merry-go-round was conserved, because no external torques were
acting on the system. Let’s justify that statement. We do not have to concern ourselves with
vertical forces, such as the force of gravity or the normal force applied to the merry-go-round by
the ground, because vertical forces give no torque about a vertical axis of rotation. We also do not
have to concern ourselves with the force that Sarah exerts on the merry-go-round, or the equal-
and-opposite force the merry-go-round exerts on Sarah, because the system we’re considering
consists of the combination of Sarah and the merry-go-round, so those are internal forces and
cancel one another. Still, let’s examine those forces a little.

Individual free-body diagrams for Sarah and the merry-go-round when Sarah first jumps
on the merry-go-round are shown in Figure 11.17. Through some combination of friction between
her shoes and the merry-go-round, and a contact force between her hands and any handholds on
the merry-go-round, there is a force component that acts to the left on Sarah from the merry-go-
round (this reduces her speed), and an equal-and-opposite force component that acts to the right
on the turntable by Sarah (providing the torque that gives the merry-go-round an angular
acceleration). However, the turntable does not accelerate to the right. This is because there is a
horizontal force applied on the turntable by whatever the turntable’s axis is connected to, which
we can consider to be the Earth. As shown in Figure 11.17, the Sarah/merry-go-round system has
a net external force acting on it at this point, which is why the /inear momentum of the system is
not conserved. However, this net external force gives rise to no torque about an axis through the
center of the merry-go-round, because the force passes through that axis. Because there is no net
external torque acting on the system, the system’s angular momentum is conserved.

ground ground

(a)

. friction ‘
(b) Ffriction (c)

Figure 11.17: Free-body diagrams for Sarah, the merry-go-round, and the system
consisting of Sarah and the merry-go-round together, when Sarah initially makes
contact with the merry-go-round. Vertical forces are ignored in this overhead view.
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Rotational Kinetic Energy

Let’s now move from the rotational equivalent of linear momentum to the rotational
equivalent of translational kinetic energy. The equation we used previously for kinetic energy is K
= %% mv°. We can find the equivalent expression for kinetic energy in a rotational setting by
replacing mass m by rotational inertia /, and speed v by angular speed ® . The kinetic energy of a

purely rotating object is thus given by:

K= %I(o2 . (Equation 11.3: Rotational kinetic energy)

(a) (b)

/ /

Figure 11.18: (a) A rod that has been released from rest when it was horizontal is
now moving. We can find its kinetic energy by breaking the rod into small pieces,
as shown in (b), finding the kinetic energy of each piece, and adding these kinetic
energies together to find the net kinetic energy.

Let’s make sure our substituting-the-equivalent-rotational-variables method of arriving at
rotational equations makes sense. Consider, for instance, a uniform rod that can rotate about an
axis through one end. If we hold the rod horizontal and then release it from rest, the rod swings
down. What is the rod’s kinetic energy at a particular instant, say at the instant shown in Figure
11.18 (a)? One thing we could do is, as shown in Figure 11.18 (b), break the rod into small pieces

of mass m,, determine the speed v, of each piece, find the kinetic energy lmi v? of each piece,
2

and then add up all these kinetic energies to find the total kinetic energy:
K=Y 15
= —m.Vv. .
2 [

Because the speed of each piece is different, while the angular speed of each piece is the
same, let’s write the sum in terms of the rod’s angular speed instead:

1 2
K ZZE’";‘ (”i('*)) .

If we bring the constants of % and > out in front of the sum, our expression becomes

K= %0)2 Zmi ’?2 , which we can write as K = 510)2 , because the definition of rotational inertia

is [ = Z m, rl.z . This expression for the kinetic energy agrees with what we came up with above
(and it works for any rotating object, not just a rod!).
Essential Question 11.7: In Chapter 7 we used names such as “elastic collision” and “inelastic

collision” to classify various collisions. Under what category would the Sarah/merry-go-round
collision described in the previous Exploration fall?
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Answer to Essential Question 11.7: Because Sarah and the merry-go-round stick together and
move as one after the collision, the collision is completely inelastic.

11-8 Racing Shapes

Let’s make use of the expression for rotational kinetic energy we derived in section 11-7,
and apply it to analyze the motion of an object that rolls without slipping down a slope. The
analysis can be done in terms of energy conservation (as we will do), or in terms of thinking
about forces and torques and applying Newton’s second law and Newton’s second law for
rotation. The analysis in those terms can be found on the accompanying web site.

EXPLORATION 11.8 — Racing shapes

You have various shapes, including a few different solid spheres, a few rings, and a few
uniform disks and cylinders. The objects have various masses and radii. When you race the
objects by releasing them from rest two at a time, they roll without slipping down an incline of
constant angle. Our goal is to determine which object reaches the bottom of the incline in the
shortest time. Let’s analyze this for a generic object of mass M, radius R, and rotational inertia,

about an axis through the center of mass, of ¢MR” .

Fy
Step 1 — Sketch a free-body diagram for the object as it rolls /
without slipping down the ramp. v
A diagram and a free-body diagram is shown in Figure 11.19. A ;\
The Earth applies a downward force of gravity to the object, h Sy F
while the incline applies a contact force. We split the contact o
force into two forces, a normal force perpendicular to the
incline and a force of friction directed up the slope. This is a
static force of friction, because the object does not slip as it Figure 11.19: The diagram and free-body
rolls. The force of static friction is directed up the slope, not diagram of an object as it rolls without
because the motion of the object is down the slope, but because | slipping down a ramp. A force of friction

the object has a clockwise angular acceleration (its angular directed up the ramp provides the
velocity is clockwise and increasing as it rolls down). Taking an | clockwise torque associated with the
axis through the center of the object, the static force of friction object’s clockwise angular acceleration.
is the only force that can provide the torque associated with this | The force of friction is static because the
angular acceleration — the other two forces pass through the object does not slip as it rolls.

center of the object and thus give no torque about that axis.

Step 2 — Let’s analyze this in terms of energy conservation, using the same conservation of
energy equation we used in previous chapters. Start by eliminating the terms that are zero in
the equation. Recall that the energy conservation equation is: K; +U,+W, =K, +U,. The

object is released from rest, so the initial kinetic energy K, is zero. We can also define the bottom

of the incline to be the zero level for gravitational potential energy, so the final potential energy is
U, =0. We also have no work being done by non-conservative forces. This may seem somewhat

counter-intuitive at first, because static friction acts on each object as it rolls down the hill, but it
is kinetic friction that is associated with a loss of mechanical energy. Static friction, because it
involves no relative motion (and therefore no displacement to use in the work equation), does not
produce a loss of mechanical energy.

The conservation of energy equation can thus be written: U, = K iz
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Let’s say that each object starts from a height 4 above the bottom of the incline. Because
the zero for potential energy is at the bottom, the initial gravitational potential energy can be
written as: U, = Mgh . Our energy conservation term can thus be written Mgh=K .

Step 3 — Split the kinetic energy term into two pieces, one representing the translational kinetic
energy and one representing the rotational kinetic energy. Express the rotational kinetic energy
in terms of M and v, (the speed at the bottom of the incline) and solve for v . First, let’s think

about why considering two types of kinetic energy is appropriate. When an object’s center-of-

mass is moving, the object has translational kinetic energy KFE

trans

= % My* . When an object is

only rotating, it has a rotational kinetic energy KE 6 = 51 ®° . A rolling object, however, is both

translating as well as rotating, and thus it has both these forms of kinetic energy.

Our energy equation now becomes: Mgh = lei +llm}% .

Let’s make two substitutions to rewrite the rotational kinetic energy term. First, we can
use our expression for rotational inertia, 7 =¢ MR?. Then, we use the relationship between speed
and angular speed that applies to rolling without slipping,: = v/ R . Our energy equation is now:

2

1. 5 1 2 Vr
Mgh=—Mv, +—c MR —.
TR R?

Note that all factors of mass M and radius R cancel, leaving: gh = %V? +lcv/2, .

Solving for v, the object’s speed at the bottom of the incline, gives: v = /lzih .
’ +c

This result is consistent with the v ;=A |2gh result we obtained in previous chapters (for

the speed of a ball dropped from rest through a height 4, for instance), giving us some confidence
that the answer is correct.

So, which object wins the race? The winner is the object with the highest speed at the
bottom, which requires the smallest value of ¢. Recall that ¢ is the numerical factor in the moment

of inertia, 7 = ¢ MR*. For the various shapes we were racing we have ¢ = 2/5 for solid spheres;

¢ = 1/2 for uniform disks and cylinders; and ¢ =1 for rings. Thus, in the rolling races, a solid
sphere beats any disk (or cylinder) and any ring, while any disk or cylinder beats any ring.

ey ideas: We can apply energy conservation in an analysis of rotating, or rolling, objects, just as
e did in previous situations. Our energy conservation equation from Chapter 7 needs no
odification. All we have to do is to use the expression for the kinetic energy of rotating objects:

1
KE,, = 51032. Related End-of-Chapter Exercises: 7, 8, 10.

Essential Question 11.8: In Exploration 11.8, we determined that, in the races of rolling objects,
a solid sphere would beat a disk or cylinder, which would beat a ring. What if we raced two of the
same kind of object against one another (such as a sphere versus a sphere)? Which object would
win? The object with the larger mass, smaller mass, larger radius, or smaller radius?
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Answer to Essential Question 11.8: Review the analysis in step 3 of Exploration 11.8. Both the
mass and radius cancel out of the energy conservation equation. This tells us, surprisingly, that
the mass and radius are irrelevant. In other words, all uniform solid spheres roll the same, all
uniform solid disks (or cylinders) roll the same, and all rings roll the same — all the races
involving two of the same kind of object end in a tie.

11-9 Rotational Impulse and Rotational Work

Let’s continue our method of determining rotational equations from their straight-line
motion counterparts by writing down expressions for rotational impulse and rotational work. In

Chapter 6, the impulse relationship we came up with was: Ap=F _ A¢. In words, this equation

net
tells us that the change in momentum an object experiences is equal to the product of the net force
applied to the object multiplied by the time interval over which it is applied. Transforming this to
a rotational setting, an object’s change in angular momentum is equal to the net torque it
experiences multiplied by the time interval over which that net torque is applied:

AL=T  At. (Equation 11.4: Rotational impulse)

— Ynet

Similarly, we can consider the concept of work in a rotational setting. For straight-line
motion, if we meld the work equation with the work-energy theorem we get:

AK=W,  =F eAi=F

net — ' net net

Arcoso - (Equation 6.8: Work-kinetic energy theorem)

In chapter 6, we used the variable 6 to represent the angle between the net force F,, and

net

the displacement A7 . We’ll use ¢ here instead because in this chapter we’re using 6 to represent

the angular position of a rotating object.

To find the expression for work in a rotational setting, start with equation 6.8. Replace
force F by its rotational equivalent, T , and replace displacement A7 by its rotational equivalent

A . This gives:
AK =W,

net

=T, ® ) =1,,AB coso - (Equation 11.5: Rotational work)

If the dot product notation confuses you, feel free to ignore it! Because we’ll deal only
with rotation about one axis (rotation in one dimension), we can make Equation 11.5 simpler:

AK =W AO . (Eg. 11.6: Work-Kkinetic energy theorem, for rotation)

net

=17

net
We use the plus sign when the torque is in the same direction as the angular displacement,
and the minus sign when the torque is opposite to the direction of the angular displacement.

EXAMPLE 11.9 — Comparing the motions

Note — compare this example to Example 6.3. The methods of analysis in that example
and this one are virtually identical. Two objects, 4 and B, are initially at rest. The objects have
the same mass and radius. Object 4 is a uniform solid disk, while object B is a bicycle wheel that
can, for this purpose, be considered to be a ring. Each object rotates with no friction about an axis
through its center, perpendicular to the plane of the disk/wheel. Identical net torques are then
applied to the objects by pulling on strings wrapped around their outer rims. Each net torque is
removed once the object it is applied to has accelerated through one complete rotation.

(a) After the net torques are removed which object has more kinetic energy?

(b) After the net torques are removed which object has more speed?

(c) After the net torques are removed, which object has more momentum?
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SOLUTION o
(a) A diagram of this situation is shown in Figure
11.20. Because the objects start from rest, the angular F F
displacement of each is in the same direction as the net torque
(clockwise, in the case shown in Figure 11.20). Because the
objects experience equal torques and equal angular . ] ]
displacements the work done on the objects is the same, by Figure 11.20: Dlagrams of the disk and
Equation 11.6. This means the change in kinetic energy is the | Wheel. Each object starts from rest and
same for each, and, because they both start with no kinetic rotates about an axis perpendicular to the
energy, their final kinetic energies are equal. page passing through the center of the
object. The force exerted on the string
(b) Unlike Example 6.3, in which the objects had wrapped around the object is removed
different masses, these objects have the same mass M and the | once the object has accelerated through
same radius R. This is a rotational situation, however, so what | exactly one revolution.
matters is how their rotational inertias compare. Object 4, a
uniform solid disk rotating about an axis through its center,

has a rotational inertia of [, = 1 MR? . Object B, which we are treating as a ring, has a rotational
2

inertia of 7, = MR*. Thus the relationship between the rotational inertias is 7, = % I,. 1f the

objects have the same kinetic energy but B has a larger rotational inertia then 4 must have a larger
angular speed. Setting the final kinetic energies equal, K , = K, gives:

1 1
EIACOj 2513(0123 .

Canceling factors of % gives: [, 0 =1,0,;

Bringing in the relationship between the rotational inertias gives: % [,0)=1,0;.
This gives @, = 2 ®; » S0 object 4 has a larger angular speed than object B.

(c) One way to find the angular momenta is as follows:

2 N N1
Li=1i04=310,=3 1 (R0 e 1a0u= L

Thus, object B, the wheel, has a larger angular momentum than object 4, the disk. As in
Example 6.3, we can understand this result conceptually. The change in angular momentum is the
net torque multiplied by the time over which the net torque acts. Both objects experience identical
torques, but because B has a larger rotational inertia, B takes more time to spin through one
revolution than 4 does. Because the torque is applied to B for a longer time, B’s change in angular
momentum, and final angular momentum, has a larger magnitude than A4’s.

Related End-of-Chapter Exercises: 22, 23.

Essential Question 11.9: Return to the situation described in Example 11.9, but now object B is
replaced by object C, a bicycle wheel of the same mass as object A but with a different radius.
Once again, we can treat the bicycle wheel as a ring. The situation described in Example 11.9 is
repeated, but this time objects 4 and C end up with the same rotational kinetic energy and the
same angular momentum. How is this possible? Be as quantitative about your answer as you can.
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Answer to Essential Question 11.9: 1f the two objects have the same kinetic energy and angular
momentum, they must have the same rotational inertia. This allows us to solve for the radius of
object C:

Iy=1¢; %MRj:MRé; R.=—=R,.

NG

Chapter Summary

Essential Idea
Concepts that we found to be powerful for analyzing motion in previous chapters, such as
Newton’s Second Law, Conservation of Momentum, and Conservation of Energy, are equally
powerful for analyzing motion in a rotational setting.

A General Method for Solving a Problem Involving Newton’s Second Law for Rotation

1. Draw a diagram of the situation.

2. Draw a free-body diagram showing all the forces acting on the object.

3. Choose a rotational coordinate system. Pick an appropriate axis to take torques about, and
apply Newton’s Second Law for Rotation ( YT = /¢ ) to obtain a torque equation.

4. Choose an appropriate x-y coordinate system for forces. Apply Newton’s Second Law
(3 F = ma ) to obtain one or more force equations. The positive directions for the rotational

and x-y coordinate systems should be consistent with one another.
5. Combine the resulting equations to solve the problem.

Rolling
It can be very helpful to look at rolling as a combination of purely translational motion and
purely rotational motion.

Angular Momentum

Angular momentum is a vector, pointing in the direction of angular velocity. The angular
momentum of a system can be changed by applying a net torque. If no net torque acts on a system
its angular momentum is conserved.

Straight-line motion concept Analogous rotational motion concept | Connection
Newton’s Second Law, Y F =ma Second Law for Rotation, > = I Same form
Momentum: p =mv Angular momentum: L = I & L=rpsin®
Translational kinetic energy: . o 1, Same form

1 Rotational kinetic energy: K =—J®

K =—mv? 2
2

Impulse: F At =Ap Rotational impulse: T Az = AL Same form
Work: AK =W, =F,, Arcos¢  [Work: AK =W, , =1, ABcos¢ =+, AB | Same form

Table 11.1: The equations we use in rotational situations are completely analogous to
those we use in analyzing motion in one, two, or three dimensions.

Chapter 11 — Rotation II: Rotational Dynamics Page 11 - 20



End-of-Chapter Exercises

Exercises 1 — 12 are conceptual questions that are designed to see if you have understood the
main concepts of the chapter.

1. Figure 11.21 shows four different cases involving a uniform rod of length L and mass M
is subjected to two forces of equal magnitude. The rod is free to rotate about an axis that
either passes through one end of the rod, as in (a) and (b), or passes through the middle of
the rod, as in (¢) and (d). The axis is marked by the red and black circle, and is
perpendicular to the page in each case. This is an overhead view, and we can neglect any
effect of the force of gravity acting on the rod. Rank these four situations based on the
magnitude of their angular acceleration, from largest to smallest.

(a) F (b) F (c) F (d) F
Y Y Y Y

I @ [+ ] |
iy i
F F F F

Figure 11.21: Four situations involving a uniform rod that can rotate about an axis
being subjected to two forces of equal magnitude. For Exercise 1.

2. Apulley has a mass M, a radius R, and is in the
form of a uniform solid disk. The pulley can rotate
without friction about a horizontal axis through its
center. As shown in Figure 11.22, the string RON
wrapped around the outside edge of the pulley is
subjected to an 8.0 N force in case 1, while, in case

2, a block with a weight of 8.0 N hangs Case 1 Case 2

down from the string. In which case is the

angular acceleration of the pulley larger? Figure 11.22: A frictionless pulley with a string wrapped
Briefly justify your answer. around its outer edge. The string is subjected to an 8.0 N

force in case 1, while in case 2 a block with a weight of
8.0 N hangs from the end of the string. For Exercise 2.

3. Consider again the spool shown in Figure 11.23, which we
examined in Essential Question 11.2. In Essential Question
11.2, the spool rolled without slipping when a force to the
right was exerted on the end of the string, but in this case let’s
say there is no friction between the spool and the horizontal
surface. (a) Does the spool move? If so, which way
does it move? (b) Does the spool rotate? If so, which
way does it rotate?

Figure 11.23: A spool with a ribbon
wrapped around its axle. A force directed to
the right is applied to the end of the ribbon.
For Exercise 3.
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4. In Exploration 11.2, we looked at how rolling motion can be viewed as a superposition of
two simpler motions, pure translation and pure rotation. Have we done this before,
broken down a more complicated motion into two simpler motions? If so, in what sort of
situation? Comment on the similarities and differences between what we did previously
and what we’re doing in this chapter, for rolling.

5. Auniform solid cylinder rolls without slipping at constant velocity across a horizontal
surface. In Exploration 11.3, we looked at how the net velocity of any point on such a
rolling object can be determined. Is there any point on the cylinder with a net velocity
directed in exactly the opposite direction as the cylinder’s translational velocity? Briefly
justify your answer.

6. You take a photograph of a bicycle race. Later, when you get home and look at the photo,
you notice that some parts of each bicycle wheel in your photo are blurred, while others
are not, or not as badly blurred. Compare the sharpness of the center of a wheel, the top
of a wheel, and the bottom of a wheel. (a) Which point do you expect to be the most
blurred? Why? (b) Which point do you expect to be in the sharpest focus? Why?

7. You have a race between two objects that have the same mass and radius by rolling them,
without slipping, up a ramp. One object is a uniform solid sphere while the other is a ring.
(a) Sketch a free-body diagram for one of the objects as it rolls without slipping up the
ramp. (b) If the two objects have the same velocity at the bottom of the ramp, which
object rolls farther up the ramp before turning around? Briefly justify your answer.

8. Repeat part (b) of the previous exercise, but this time the objects have the same total
kinetic energy at the bottom of the ramp.

9. A figure skater is whirling around with her arms held out from her body. (a) What
happens to her angular speed when she pulls her arms in close to her body? Why? (b)
What happens to the skater’s kinetic energy in this process? Explain your answer.

10. A solid cylinder is released from rest at the top of the ramp, and the cylinder rolls without
slipping down the ramp. Defining the zero for gravitational potential energy to be at the
level of the bottom of the ramp, the cylinder has a gravitational potential energy of 24 J
when it is released. Draw a set of energy bar graphs to represent the cylinder’s
gravitational potential energy, translational kinetic energy, rotational kinetic energy, and
total mechanical energy when the cylinder is (a) at the top of the ramp; (b) halfway down
the ramp; and (c) at the bottom of the ramp.

11. Repeat Exercise 10, replacing the solid cylinder by a ring.
12. You have a race between a uniform solid sphere and a basketball, by releasing both

objects from rest at the top of an incline. Which object reaches the bottom of the ramp
first, assuming they both roll without slipping? Justify your answer.
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Exercises 13 — 16 are designed to give you practice solving typical Newton’s second law for
rotation problems. For each exercise start with the following steps: (a) draw a diagram; (b) draw
one or more free-body diagrams, as appropriate; (c) choose an appropriate rotational coordinate
system and apply Newton’s second law for rotation; (d) apply Newton’s second law.

13.

14.

15.

16.

A block with a mass of 500 g is at rest on a frictionless table. A horizontal string tied to
the block passes over a pulley mounted on the edge of the table, and the end of the string
hangs down vertically below the pulley. The pulley is a uniform solid disk with a mass of
2.0 kg and a radius of 20 cm that rotates with no friction about an axis through its center.
You then exert a constant force of 4.0 N down on the end of the string. The goal is to
determine the acceleration of the block. Use g = 10 m/s%. Parts (a) — (d) as described
above. (e) Find the block’s acceleration.

Repeat the previous exercise, but now there is some friction between the block and the
table. The coefficient of static friction is ug =0.40, while the coefficient of kinetic

friction is p, =0.30.

A 2.0-m long board is placed with one end on the floor and the other resting on a box that
has a height of 30 cm. A uniform solid sphere is released from rest from the higher end of
this board and rolls without slipping to the lower end. The goal is to determine how long
the sphere takes to move from one end of the board to the other. Parts (a) — (d) as
described above. (¢) Combine your equations to determine the sphere’s acceleration. (f)
How long does it take the sphere to reach the lower end of the board?

A uniform solid cylinder with a mass of 2.0 kg rests on its side on a horizontal surface. A
ribbon is wrapped around the outside of the cylinder with the end of the ribbon coming
away from the cylinder horizontally from its highest point. When you exert a constant
force of 4.0 N on the cylinder, the cylinder rolls without slipping in the direction of the
force. The goal of this exercise is to determine the cylinder’s acceleration. Parts (a) — (d)
as described above. (e) Find the magnitude and direction of the force of friction exerted
on the cylinder. (f) Find the cylinder’s acceleration.

Exercises 17 — 21 deal with rolling situations.

17.

18.

19.

A particular wheel has a radius of 50 cm. It rolls without slipping exactly half a rotation.
(a) What is the translational distance moved by the wheel? (b) Considering motion due to
the wheel’s rotation only, what is the distance traveled by a point on the outer edge of the
wheel? (c) Consider now the magnitude of the total displacement experienced by the
point on the outer edge of the wheel that started at the top of the wheel. Is this equal to
the sum of your two answers from (a) and (b)? Explain why or why not. (d) Work out the
magnitude of the displacement of the point referred to in (c).

One end of a 2.0-m long board rests on a cylinder that has been placed on its side on a
horizontal surface. You hold the other end of the board so the board is horizontal. When
you walk forward, the cylinder rolls so the board does not slip on the cylinder, and the
cylinder also rolls without slipping across the floor. When you move forward 1.0 m, how
far does the cylinder move?

A particular point on a wheel is halfway between the center and the outer edge. When the
point is at the same distance from the ground as the center of the wheel, the point’s speed
is 25.2 m/s. If the wheel has a radius of 35.0 cm and is rolling without slipping, find the
translational speed of the wheel.
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20. A solid sphere is released from rest and rolls without slipping down a ramp inclined at
12° to the horizontal. What is the sphere’s speed when it is 1.0 m (measuring vertically)
below the level it started?

21. Return to the situation described in Exercise 20, but this time the incline is changed to 6°.
The sphere again rolls without slipping starting from rest. Comparing the sphere’s speed
in both cases when it is 1.0 m (measuring vertically) below its starting point, in which
case is the sphere moving faster? Rather then doing another calculation, see if you can
come up with a conceptual argument to justify your answer.

Exercises 22 — 31 are modeled after similar exercises in previous chapters. Note the
similarities between how we analyze rotational situations and how we analyze straight-line
motion situations.

22. Two uniform solid disks, 4 and B, are initially at rest. The mass of disk B is two times
larger than that of disk 4. Identical net torques are then applied to the two disks, giving
them each an angular acceleration as they rotate about their centers. Each net torque is
removed once the object it is applied to has rotated through two revolutions. After both
net torques are removed, how do: (a) the kinetic energies compare? (b) the angular speeds
compare? (c) the angular momenta compare? (Compare this to Exercise 9 in Chapter 6.)

23. Repeat Exercise 22, assuming that both net torques are removed after the same amount of
time instead. (Compare this to Exercise 10 in Chapter 6.)

24. Two identical grinding wheels of mass m and radius r are spinning about their centers.
Wheel A has an initial angular speed of ®, while wheel B has an initial angular speed of
2 . Both wheels are being used to sharpen tools. As shown in Figure 11.24, in both
cases the tool is being pressed against the wheel with a force ' directed toward the center
of the wheel, and the coefficient of kinetic friction between the wheel and the tool is L1, .
The tool does not move from the position shown in the diagram. (a) If it takes wheel A a
time 7 to come to a stop, how long does it take for wheel B to

come to a stop? (b) Find an expression for 7 in terms of the
variables specified in the exercise. (c) If wheel A rotates through

an angle @ before coming to rest, through what angle does wheel
B rotate before coming to rest? (d) Find an expression for 9 in

terms of the variables specified in the exercise. (Compare this to
Exercise 52 in Chapter 6.)

25. Return to the situation described in Exercise 24. How would
T, the stopping time for wheel A, change if (a) m was Figure 11.24: Sharpening a tool
doubled? (b) ® was doubled? (c) p, was doubled? by holding it against a grinding

(Compare this to Exercise 53 in Chapter 6.) wheel, for Exercises 24 - 26.

26. Return to the situation described in Exercise 24. How would 0 , the angle wheel A rotates
through before stopping, change if (a) m was doubled? (b) ® was doubled? (c) [, was
doubled? (Compare this to Exercise 54 in Chapter 6.)
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27. You pick up a bicycle wheel, with a mass of 800 grams and a radius of 40 cm, and spin it
so the wheel rotates about its center. Assume that the mass of the wheel is concentrated in
the rim. The initial angular speed is 5.0 rad/s, but after 10 s the angular speed is 3.0 rad/s.
The goal here is to determine the magnitude of the frictional torque acting to slow the
wheel, assuming it to be constant. (a) Sketch a diagram of the situation. (b) Choose a
positive direction, and show this on the diagram. (c) Draw a free-body diagram of the
wheel, focusing on the torque(s) acting on the wheel. (d) Write an expression for the net
torque acting on the wheel. (e) Write an expression representing the wheel’s change in

angular momentum over the 10-second period. (f) Use the equation T Az = AL to relate

28.

29.

30.

the expressions you wrote down in parts (d) and (e). (g) Solve for the frictional torque
acting on the wheel. (Compare this to Exercise 23 in Chapter 6.)

At a time ¢ = 0, a bicycle wheel with a mass of 4.00 kg
has an angular velocity of 5.00 rad/s directed
clockwise. For the next 8.00 seconds it then
experiences a net torque, as shown in the graph in
Figure 11.25 (taking clockwise to be positive). The
wheel rotates about its center, and we can treat the

wheel as a ring with a radius of 1 m. (a) Sketch a
2
graph of the wheel’s angular momentum as a function
of time. (b) What is the cart’s maximum angular speed
during the 8.00-second interval the varying torque is
being applied? At what time does the cart reach this
maximum speed? (c) What is the cart’s minimum
angular speed during the 8.00-second interval the
varying torque is being applied? At what time does the
cart reach this minimum speed? (Compare this to
Exercise 24 in Chapter 6.)

Two blocks are connected by a string that passes over a

Torque
(N m)

4

o

Figure 11.25: A plot of the torque

applie

d to a bicycle wheel as a

function of time, for Exercise 28.

frictionless pulley, as shown in Figure 11.26. Block A, with a
mass m4 = 2.0 kg, rests on a ramp measuring 3.0 m vertically
and 4.0 m horizontally. Block B hangs vertically below the
pulley. The pulley has a mass of 1.0 kg, and can be treated as a
uniform solid disk that rotates about its center. Note that you
can solve this exercise entirely using forces and the constant-
acceleration equations, but see if you can apply energy ideas
instead. Use g = 10 m/s2. When the system is released from
rest, block A accelerates up the slope and block B accelerates
straight down. When block B has fallen through a height 4 =

2.0 m, its speed is v = 6.0 m/s. (a) At any instant in time,

how does the speed of block A compare to that of block B?

(b) Assuming there is no friction acting on block A, what is c

the mass of block B? (Compare this to Exercise 44 in
Chapter 7.)

a

— 40m ——

Figure 11.26: Two blocks

onnected by a string passing over
pulley, for Exercises 29 and 30.

Repeat Exercise 29, this time accounting for friction. If the coefficient of kinetic friction
for the block A — ramp interaction is 0.625, what is the mass of block B? (Compare this to

Exercise 45 in Chapter 7.)
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31. A uniform solid sphere of mass m is released
from rest at a height /# above the base of a
loop-the-loop track, as shown in Figure

11.27. The loop has a radius R. What is the R
minimum value of 4 necessary for the sphere

to make it all the way around the loop

without losing contact with the track?

Express your answer in terms of R, and Figure 11.27: A solid sphere released from
assume that the sphere’s radius is much rest from a height 4 above the bottom of a

smaller than the loop’s. (Compare this to loop-the-loop track, for Exercise 31.
Exercise 49 in Chapter 7.)

Exercises 32 — 34 deal with angular momentum conservation.

32. A beetle with a mass of 20 g is initially at rest on the outer edge of a horizontal turntable
that is also initially at rest. The turntable, which is free to rotate with no friction about an
axis through its center, has a mass of 80 g and can be treated as a uniform disk. The
beetle then starts to walk around the edge of the turntable, traveling at an angular velocity
of 0.060 rad/s clockwise with respect to the turntable. (a) Qualitatively, what does the
turntable do while the beetle is walking? Why? (b) With respect to you, motionless as you
watch the beetle and turntable, what is the angular velocity of the beetle? What is the
angular velocity of the turntable? (c) If a mark was placed on the turntable at the beetle’s
starting point, how long does it take the beetle to reach the mark? (d) Upon reaching the
mark, the beetle stops. What does the turntable do? Why?

33. A bullet with a mass of 12 g is fired at a wooden rod that hangs vertically down from a
pivot point that passes through the upper end of the rod. The bullet embeds itself in the
lower end of the rod and the rod/bullet system swings up, reaching a maximum angular
displacement of 60° from the vertical. The rod has a mass of 300 g, a length of 1.2 m, and
we can assume the rod rotates without friction about the pivot point. What is the bullet’s
speed when it hits the rod? Assume the bullet is traveling horizontally when it hits the
rod, and use g = 10 m/s2.

34. A particular horizontal turntable can be modeled as a uniform disk with a mass of 200 g
and a radius of 20 cm that rotates without friction about a vertical axis passing through its
center. The angular speed of the turntable is 2.0 rad/s. A ball of clay, with a mass of 40 g,
is dropped from a height of 35 cm above the turntable. It hits the turntable at a distance of
15 cm from the middle, and sticks where it hits. Assuming the turntable is firmly
supported by its axle so it remains horizontal at all times, find the final angular speed of
the turntable-clay system.

Use conservation of energy to solve Exercises 35 — 38. For each exercise begin by (a) writing
down the energy conservation equation and choosing a zero level for gravitational potential
energy; (b) identifying the terms that are zero and eliminating them; (c) writing out expressions
for the remaining terms, remembering to account for both translational kinetic energy and
rotational kinetic energy.

35. A uniform solid disk is released from rest at the top of a ramp, and rolls without slipping
down the ramp. The goal of the exercise is to determine the disk’s speed when it reaches
a level 50 cm below (measured vertically) its starting point. Parts (a) — (c) as described
above. (d) What is that speed?
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36. The pulley shown in Figure 11.28 has a mass M = 2.0 kg and radius
R =50 cm, and can be treated as a uniform solid disk that can rotate
about its center. The block (which has a mass of 800 g) hanging from
the string wrapped around the pulley is then released from rest. The
goal of the exercise is to determine the speed of the block when it has
dropped 1.0 m. Parts (a) — (c) as described above. (d) What is the
block’s speed after dropping through 1.0 m?

m

Figure 11.28: A block and
a pulley, for Exercise 36.

37. A uniform solid sphere with a mass M = 1.0 kg and radius R = 40 cm is mounted on a
frictionless vertical axle that passes through the center of the sphere. The sphere is
initially at rest. You then pull on a string wrapped around the sphere’s equator, exerting a
constant force of 5.0 N. The string unwraps from the sphere when you have moved the
end of the string through a distance of 2.0 m. The goal of the exercise is to determine the
resulting angular speed of the sphere. Parts (a) — (c) as described above. (d) What is the
resulting angular speed?

38. A uniform solid sphere with a mass of M = 1.6 kg and radius R = 20 c¢m is rolling without
slipping on a horizontal surface at a constant speed of 2.1 m/s. It then encounters a ramp
inclined at an angle of 10° with the horizontal, and proceeds to roll without slipping up
the ramp. The goal of this exercise is to determine the distance the sphere rolls up the
ramp (measured along the ramp) before it turns around. Parts (a) — (c) as described above.
(d) How far does the sphere roll up the ramp? () Which of the values given in this
exercise did you not need to find the solution?

General Problems and Conceptual Questions.

39. Figure 11.29 shows four different cases involving a uniform rod of length L and mass M
is subjected to two forces of equal magnitude. The rod is free to rotate about an axis that
either passes through one end of the rod, as in (a) and (b), or passes through the middle of
the rod, as in (c) and (d). The axis is marked by the red and black circle, and is
perpendicular to the page in each case. This is an overhead view, and we can neglect any
effect of the force of gravity acting on the rod. If the rod has a length of 1.0 m, a mass of
3.0 kg, and each force has a magnitude of 5.0 N, determine the magnitude and direction
of the angular acceleration of the rod in (a) Case (a); (b) Case (b); (c) Case (c); (d) Case

(d).

(a) F (b) F (c) F (d) "F

a [ ]
I B
‘F F F ‘F

Figure 11.29: Four situations involving a uniform rod that can rotate about an axis
being subjected to two forces of equal magnitude. For Exercise 39.
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40. A pulley has a mass M, a radius R, and is in
the form of a uniform solid disk. The pulley
can rotate without friction about a horizontal
axis through its center. As shown in Figure
11.30, the string wrapped around the outside
edge of the pulley is subjected to an 8.0 N Case 1 Case 2
force in case 1, while in case 2 a block with
a weight of 8.0 N hangs down from the

8.0N

X Figure 11.30: A frictionless pulley with a string
string. If M = 2.0 kg and R = 50 cm, wrapped around its outer edge. The string is subjected
calculate the angular acceleration of the to an 8.0 N force in case 1, while in case 2 a block
pulley in (a) case 1; (b) case 2. with a weight of 8.0 N hangs from the end of the
string. For Exercise 40.

41. Atwood’s machine is a system consisting of two blocks that have
different masses connected by a string that passes over a frictionless
pulley, as shown in Figure 11.31. The pulley has a mass m,. Compare °
the tension in the part of the string just above the block with the larger
mass, M, to that in the part of the string just above the block with the
smaller mass, m, in the following cases: (a) You hold on to the
smaller-mass block to keep the system at rest; (b) The system is
released from rest; (c) You hold on to the smaller-mass block and pull M
down so the blocks move with constant velocity. Justify your answers
in each case. m

mp

42. Atwood’s machine is a system consisting of two objects
connected by a string that passes over a frictionless pulley, as Figure 11.31: Atwood’s machine — a

shown in Figure 11.31. In Chapter 5, we neglected the effect device consisting of two objects
of the pulley, but now we know how to account for the connected by a string that passes
pulley’s impact on the system. (a) If the two objects have over a pulley. For Exercises 41 — 43.

masses of M and m, with M > m, and the pulley is in the shape

of a uniform solid disk and has a mass m,, derive an

expression for the acceleration of either block, in terms of the given masses and g. (b)
What does the expression reduce to in the limit where the mass of the pulley approaches
zero? (c) How does accounting for the fact that the pulley has a non-zero mass affect the
magnitude of the acceleration of a block?

43. Consider again the Atwood’s machine described in Exercise 42 and pictured in Figure
11.31. (a) If M =500 g, m = 300 g, and the pulley mass is m, = 400 g, what is the
magnitude of the acceleration of one of the blocks? (b) If the system is released from rest,
what is the angular velocity of the pulley 2.0 seconds after the motion begins? The pulley
has a radius of 10 cm.
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44. A particular double-pulley consists of a small pulley of radius 20 cm
mounted on a large pulley of radius 50 cm, as shown in Figure 11.32.
A block of mass 2.0 kg hangs from a string wrapped around the large
pulley. To keep the system at rest, what mass block should be hung
from the small pulley?

45. A particular double pulley consists of a small pulley of radius 20 cm M
mounted on a large pulley of radius 50 cm, as shown in Figure 11.32.
The pulleys rotate together, rather than independently. A block of mass
2.0 kg hangs from a string wrapped around the large pulley, while a m
second block of mass 2.0 kg hangs from the small pulley.
Each pulley has a mass of 1.0 kg and is in the form of a

uniform solid disk. Use g = 9.8 m/s%. (a) What is the Figure 11.32: A double-pulley
acceleration of the block attached to the large pulley? (b) system, with a 2.0 kg block hung
What is the acceleration of the block attached to the small from the string wrapped around the
pulley? large pulley and a second block hung
from the string wrapped around the
46. A pulley consists of a small uniform disk of radius 0.50 m small pulley. For Exercises 44 — 46.

mounted on a larger uniform disk of radius 1.0 m. Each disk

has a mass of 1.0 kg. The pulley can rotate without friction

about an axis through its center. As shown in Figure 11.32, a block with mass m = 1.0 kg
hangs down from the larger disk while a block of mass M hangs down from the smaller
disk. If the angular acceleration of the system has a magnitude of 1.0 rad/s?> what is the
value of M? Consider all possible answers, and use g = 10 m/s2.

47. A yo-yo consists of two identical disks, each with a mass of 40 g and a radius of 4.0 cm,
joined by a small cylindrical axle with negligible mass and a radius of 1.0 cm. When the
yo-yo is released it essentially rolls without slipping down the string wrapped around the
axle. If the end of the string (the one you would hold) remains fixed in place, determine
the acceleration of the yo-yo. Use g = 9.8 m/s2.

48. As shown in Figure 11.33, blocks A and B are connected
by a massless string that passes over the outer edge of a
pulley that is a uniform solid disk. The mass of block A is A
equal to that of block B; the mass of the pulley,
coincidentally, is also the same as that of block A. When
the system is released from rest it experiences a constant
(and non-zero) acceleration. There is no friction between
block A and the surface. Use g = 10.0 m/s?. (a) What is the
acceleration of the system? (b) The two parts of the string B
have different tensions. In which part of the string is the
tension larger, between block A and the pulley or between
the pulley and block B? Briefly justify your answer. (c) If
the tension in one part of the string is 3.00 N larger than
the tension in the other part, what are the values of the
tensions in the two parts of the string?

Figure 11.33: Two blocks
49. Repeat Exercise 48, but this time there is some friction connected by a string passing over

between block A and the surface, with a coefficient of a pulley, for Exercises 48 and 49.
kinetic friction of 0.500.
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50. A spool has a string wrapped around its axle, with the
string coming away from the underside of the spool.
The spool is on a ramp inclined at 20° with the
horizontal, as shown in Figure 11.34. There is no
friction between the spool and the ramp. Assuming
you can exert as much or as little force on the end of
the string as you wish (always directed up the slope)
which of the following situations are possible? If so,
explain how the situation could be achieved; if not, 2(0°
explain why not. (a) The spool remains completely
motionless. (b) The spool rotates about its center but
does not move up or down the ramp. (c) The spool has Figure 11.34: A spool on a ramp

no rotation but moves down the ramp. inclined at 20° with the horizontal.

o o ) The string wrapped around the spool’s
51. Return to the situation described in Exercise 50 and shown | gx]e comes away from the spool on its

in Figure 11.34, but now there is friction between the underside. Any force exerted on the
spool and the ramp. Is it possible for the spool to remain end of the string is exerted up the
completely motionless now? If so, explain how. If not, slope. For Exercises 50 and 51.

explain why not.

52. Consider the spool shown in Figure 11.35. The spool
has a radius R, while the spool’s axle has a radius of
R/2. There is some friction between the spool and the
horizontal surface it is on, so that when a modest
tension is exerted on the string the spool may roll one
way or the other without slipping. It turns out that
when the angle® between the string and the vertical is

larger than some critical value 0, the spool rolls

without slipping one way; when 6 <0 , the spool

rolls the other way, and when 6 =0, , the spool

remains at rest. (a) Find 0. (b) Which way does the Figure 11.35: A spool on a horizontal

spool roll when® <0, ? surface, for Exercise 52.

53. A spool consists of two disks, each of radius R and mass M, connected by a cylindrical
axle of radius R/2 and mass M. When an upward force of magnitude F is exerted on a
string wrapped around the axle, the spool will roll without slipping as long as F'is not too
large. (a) What is the spool’s rotational inertia, in terms of M and R, about an axis through
its center? (b) If the coefficient of static friction between the spool and the horizontal
surface it is on is 0.50, what is the maximum value F can be, in terms of M and g, for the
spool to roll without slipping?

54. A solid sphere rolls without slipping when it is released from rest at the top of a ramp that
is inclined at 30° with respect to the horizontal, but, if the angle exceeds 30°, the sphere
slips as it rolls. Calculate the coefficient of static friction between the sphere and the
incline.
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55. While fixing your bicycle, you remove the front wheel from the frame. A bicycle wheel
can be approximated as a ring, with all the mass of the wheel concentrated on the wheel’s
outer edge. The wheel has a mass M, a radius R, and it is initially spinning at a particular
angular velocity. There is a constant frictional torque that is causing the wheel to slow
down, however. You also have a uniform solid disk of the same mass and radius as the
bicycle wheel. It also has the same initial angular velocity and the same frictional torque
as the wheel. Which of these objects will spin for the longer time? Justify your answer.

56. As shown in Figure 11.36, a bowling ball of mass M and radius R = 20.0 cm is released
with an initial translational velocity of V= 14.0 m/s to the right and an initial angular

velocity of ®, = 0. The bowling ball can be treated as a uniform solid sphere. The

coefficient of kinetic friction between the ball and the surface
is W =0.200. The force of kinetic friction causes a linear

acceleration, as well as a torque that causes the ball to spin.
The ball slides along the horizontal surface for some time,
and then rolls without slipping at constant velocity after that.
Use g = 10 m/s%. (a) Draw the free-body diagram of the ball
showing all the forces acting on it while it is sliding. (b) What
is the acceleration of the ball while it is sliding? (c) What is
the angular acceleration of the ball while it is sliding? (d)
How far does the ball travel while it is sliding? (¢) What is the
constant speed of the ball when it rolls without slipping?

Figure 11.36: The initial state of a
bowling ball, for Exercise 56.

57. Figure 11.37 shows the side view of a meter stick that can rotate without friction about an
axis passing through one end. Pennies (of negligible mass in comparison to the mass of
the meter stick) have been placed on the meter stick at regular intervals. When the meter
stick is released from rest, it rotates about the axis. Some of the pennies remain in contact
with the meter stick while some lose contact with it. (a) Which pennies do you expect to
lose contact with the meter stick, the ones close to the axis or the ones farther from it? (b)
Determine the initial acceleration of the right end of the meter stick, and of the center of
the meter stick, to help justify your conclusion in (a).

Figure 11.37: A side view of a meter stick, with pennies resting on it at
regular intervals, that is initially held horizontal. The meter stick can rotate
without friction about an axis through the left end. For Exercises 57 and 58.

58. Return to the situation described in Exercise 57 and shown in Figure 11.37. Assuming the
axis is at the 0-cm mark of the meter stick, determine the point on the meter stick beyond
which the pennies will lose contact with the meter stick when the system is released from
rest.
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59. A particularly large playground merry-go-round is essentially a uniform solid disk of
mass 4M and radius R that can rotate with no friction about a central axis. You, with a
mass M, are a distance of R/2 from the center of the merry-go-round, rotating together
with it at an angular velocity of 2.4 rad/s clockwise (when viewed from above). You then
walk to the outside of the merry-go-round so you are a distance R from the center, still
rotating with the merry-go-round. Consider you and the merry-go-round to be one
system. (a) When you walk to the outside of the merry-go-round, does the angular
momentum of the system increase, decrease, or stay the same? Why? (b) Does the kinetic
energy of the system increase, decrease, or stay the same? Why? (c) If you started
running around the outer edge of the merry-go-round, at what angular velocity would you
have to run to make the merry-go-round alone come to a complete stop? Specify the
magnitude and direction.

60. Consider the following situations. For each, state whether you would apply energy
methods, torque/rotational kinematics methods, or either to solve the exercise. You don’t
need to solve the exercise. (a) Find the final speed of a uniform solid sphere that rolls
without slipping down a ramp inclined at 8.0° with the horizontal, if the sphere is released
from rest and the vertical component of its displacement is 1.0 m. (b) Find the time it
takes the sphere in (a) to reach the bottom of the ramp. (c) Find the number of rotations
the sphere in (a) makes as it rolls down the ramp, if the sphere’s radius is 15 cm.

61. Return to Exercise 60, and this time solve each part.

62. The planet Earth orbits the Sun in an orbit that is roughly circular. Assuming the orbit is
exactly circular, which of the following is conserved as the Earth travels along its orbit?
(a) Its momentum? (b) Its angular momentum, relative to an axis passing through the
center, and perpendicular to the plane, of the orbit? (c) Its translational kinetic energy? (d)
Its gravitational potential energy? (e) Its total mechanical energy? For any that are not
conserved, explain why:.

63. A typical comet orbit ranges from relatively close to the Sun to many times farther than
the Sun. Which of the following is conserved as the comet travels along its orbit? (a) Its
angular momentum, relative to an axis passing through the Sun, and perpendicular to the
plane, of the orbit? (b) Its translational kinetic energy? (c) Its gravitational potential
energy? (d) Its total mechanical energy? For any that are not conserved, explain why.

64. Two of your classmates, Alex and Shaun, are carrying on a conversation about a physics
problem. Comment on each of their statements.

Alex: In this situation, we have to draw the free-body diagram for a sphere that is
rolling without slipping up an incline. OK, so, there's a force of gravity acting down,

and a normal force perpendicular to the surface. Is there a friction force?

Shaun: Don’t we need another force directed up the incline, in the direction of
motion?

Alex: I dont think so. I think we just need to add a kinetic friction force down the
incline, opposing the motion.

Shaun: Wait a second — isn’t it static friction? Isn’t it always static friction when
something rolls without slipping?
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