Light can be described by several different models. In Chapters 23 and 24, we will make use of a relatively simple model of light known as the ray model. The ray model will help us to understand how light interacts with mirrors and lenses, and help us understand how the reflection of light can produce beautiful photographs, such as the photograph of Mt. Hood, shown here twice! (Photo credit: public-domain image from Oregon’s Mt. Hood Territory)

Chapter 23 – Reflection and Mirrors

CHAPTER CONTENTS

23-1 The Ray Model of Light
23-2 The Law of Reflection; Plane Mirrors
23-3 Spherical Mirrors: Ray Diagrams
23-4 A Qualitative Approach: Image Characteristics
23-5 A Quantitative Approach: The Mirror Equation
23-6 Analyzing the Concave Mirror
23-7 An Example Problem

In Chapter 22, we looked at how light is an electromagnetic wave, made up of oscillating electric and magnetic fields propagating through space. In this chapter, we look at the reflection of light, how light interacts with mirrors, and how mirrors can be used to form images. To understand reflection and image formation, we will use a model of light based on rays and wave fronts – this is a much simpler model than the electromagnetic wave perspective. In this chapter and in Chapter 24, we are investigating geometrical optics, in which the optics of mirrors and lenses can be understood in terms of the geometry of similar triangles.

Light plays an integral role in the lives of almost all living things. It is certainly the primary way that most of us interact with the world around us. Light provides us with information about the current state of the traffic light as we wait at an intersection; with the state of mind of someone we are talking to, by communicating facial expressions and body language; with the pictures on a movie screen; and with information about the entire universe via the light of stars, emitted many years ago, as we gaze up at the sky on a clear night.

The reflection of light also plays an important role in our lives. Almost all of us take at least one look in a mirror before leaving the house, to make sure we are presentable, with our hair neatly brushed, etc. When driving, mirrors are also incredibly useful to us, providing information about what is going on beside us and behind us, without our needing to look behind. Reflect on this (pun intended): how many times do you think you use a mirror every day? Try to keep a count – the total will probably surprise you.
23-1 The Ray Model of Light

We will start our investigation of geometrical optics (optics based on the geometry of similar triangles) by learning the basics of the ray model of light. We will then apply this model to understand reflection and mirrors, in this chapter, and refraction and lenses, in chapter 24. Using the triangles that result from applying the ray model, we will derive equations we can apply to predict where the image created by a mirror or lens will be formed.

A ray is a narrow beam of light that tends to travel in a straight line. An example of a ray is the beam of light from a laser or laser pointer. In the ray model of light, a ray travels in a straight line until it hits something, like a mirror, or an interface between two different materials. The interaction between the light ray and the mirror or interface generally causes the ray to change direction, at which point the ray again travels in a straight line until it encounters something else that causes a change in direction. An example in which the ray model of light applies is shown in Figure 23.1, in which the beams of sunlight travel in straight lines.

A laser emits a single ray of light, but we can also apply the ray model in situations in which a light source sends out many rays, in many directions. Examples of such sources include the filaments of light bulbs, and the Sun. If we are far away from such a source, in relation to the size of the source itself, we often treat the source as a point source, and assume that the source emits light, usually in all directions, from a single point. Light bulbs, and the Sun, are often treated as point sources. In other situations, such as when we are close to a light bulb that has a long filament, we treat the source as a distributed source. Each point on the source can be treated as a point source, so a distributed source is like a collection of point sources, as shown in Figure 23.2.

Wave fronts

In addition to rays of light, we will also mention wave fronts. A wave front is a surface connecting light that was emitted by the light source at the same time. As shown in Figure 23.3, the wave fronts for a point source are spherical shells centered on the source, which propagate away from the source at the speed of light. For a beam of light, like that from a flashlight, in which the rays are parallel, the wave fronts are parallel lines that are perpendicular to the beam.
Shadows
The ray model of light can also be used to understand shadows. Figure 23.4 shows how the shadow cast by a point source can be larger than the object creating the shadow, while that from parallel rays is the same size as the object, as long as the surface on which the shadow is cast is perpendicular to the direction of the rays. Distributed sources create more complicated shadows, but they can be understood as the superposition of the shadows from multiple point sources.

Treat sources that do not themselves emit light as light sources
In some cases, we will use objects that actually emit light, such as a light bulb or the Sun, as the objects that send light toward a mirror or lens. In other cases we will use objects, such as you, that do not emit light themselves. How can we do this? In general, objects that do not emit light themselves are illuminated by other light sources. As shown in Figure 23.5, such sources can be treated as if they emit light, because they scatter much of the light incident on them in many different directions.

How we see objects
To see an object, rays of light need either to be emitted by, or reflected from, the object, and then pass into our eyes. Our brains assume that the rays of light travel in straight lines, so we trace the rays of light back until they meet at the location of the object, as shown in Figure 23.6.

Related End-of-Chapter Exercises: 3, 4, 30.

*Essential Question 23.1*: The Sun is a very large object, much larger than the Earth. Give an example in which we can treat the Sun as a point source when applying the ray model. Give an example in which the Sun must be treated as a distributed source of light.
**Answer to Essential Question 23.1:** To explain the formation of your own shadow on a sunny day, we can treat the Sun as a point source located 150 million km away. On the other hand, the shadow that the Earth casts on the Moon during a lunar eclipse has a very dark region (the umbra) and a semi-dark region (the penumbra). This more complex shadow pattern can be partly explained by treating the Sun as a distributed source.

### 23-2 The Law of Reflection; Plane Mirrors

A ray of light that reflects from a surface obeys a very simple rule, known as the law of reflection. See, also, the illustrations in Figure 23.7.

**The Law of Reflection:** for a ray of light reflecting from a surface, the angle of incidence is equal to the angle of reflection. These angles are generally measured from the normal (perpendicular) to the surface.

A surface acts as a mirror when the law of reflection is followed on a large scale, as shown in Figure 23.8 (a). In that case, the whole beam of light, with many parallel rays, reflects as expected according to the law. This is known as **specular reflection:** mirror-like reflection that preserves the wave-front structure. In Figure 23.8 (b), however, the surface does not seem to obey the law of reflection. If we look at the magnified view, in (c), however, we see that the surface is irregular. The law of reflection is obeyed for each ray individually, but the irregularities in the surface cause the rays to move off in many different directions after being reflected. This is known as **diffuse reflection:** reflection in which the wave fronts are not preserved. Diffuse reflection explains why some surfaces that appear to be flat, such as a table or a road, do not act as mirrors. As far as light is concerned, these surfaces are far from flat.

The surface in Figure 23.8(a) is known as a plane mirror. Common examples are the mirrors in every bathroom. When we look at ourselves in such a mirror, where do we see our image? How large is the image? To answer such questions, we can use a ray diagram to determine where an image is formed and what its characteristics are.

**EXPLORATION 23.2 – Using a ray diagram to find the location of an image**

**Step 1 –** An arrow is placed in front of a vertical plane mirror, as shown in Figure 23.9. Sketch two rays of light, which travel in different directions, that leave the tip of the arrow and reflect off the mirror. Show the direction of these rays after they reflect from the mirror.

---

**Figure 23.7:** In each case, the ray obeys the Law of Reflection, in that the angle of incidence, measured from the normal, is equal to the angle of reflection. In the specific examples shown, both the incident ray and the reflected ray are at an angle, measured from the normal, of (a) 60°, (b) 45°, and (c) 30°.

**Figure 23.8:** (a) Specular reflection from a flat mirror, in which all rays reflect at the same angle. (b) Many flat surfaces exhibit diffuse reflection, in which rays reflect at different angles. (c) A magnified view of the situation in (b). Even though the surface may appear flat to us, the surface is actually quite irregular as far as light is concerned.

**Figure 23.9:** An arrow located some distance in front of a plane mirror.
Figure 23.10 shows a number of rays leaving the arrow and reflecting from the mirror, obeying the law of reflection. One of these, the horizontal ray, in red, that strikes the mirror at a 0° angle of incidence (measured from the normal to the mirror) is special, in that it reflects back along the path the ray came in on, and is thus easy to draw. However, you do not need to use this particular ray in the ray diagram – any two rays of light that reflect from the mirror can be used.

**Step 2 – The point where the reflected rays meet is where the tip of the image is located. Sketch the image of the arrow.** The reflected rays diverge as they travel away from the mirror to the left, but if we extend the reflected rays back through the mirror to the right, we find a point where they intersect. This is where the image of the tip of the arrow is located. Note that all the reflected rays, when they are extended back, pass through this point, which is why we can use any two reflected rays to create the ray diagram. Because the base of the arrow, which we call the object, is located on the principal axis (the horizontal line bisecting the mirror), we know that the base of the image will also be located there, so we draw an image of the arrow between the point where the image of the tip is and the principal axis.

**Step 3 – Prove that the image is located as shown in Figure 23.11 by drawing two more ray diagrams, one showing the location of the image of the midpoint of the arrow, and one showing the location of the image of the base (bottom) of the arrow.** Figure 23.12 combines the ray diagram for the tip with those of the arrow’s base and midpoint, showing that the image really is at the location shown in Figure 23.11.

**Step 4 – Compare the reflected rays in Figure 23.12 to the rays in Figure 23.6.** Our brains cannot tell the difference between the two situations, which is why we see an image of the arrow formed at the location shown in Figure 23.13.

**Key idea for ray diagrams:** The location of the image of any point on an object, when the image is created by a mirror, can be found by drawing rays of light that leave that point on the object and reflect from the mirror. The direction of the reflected rays must be consistent with the law of reflection. The point where the reflected rays meet is where the image of that point is.

**Related End-of-Chapter Exercises:** 1, 2, 5, 14.

**Essential Question 23.2:** First, make a prediction. When the arrow in Exploration 23.2 is moved closer to the mirror, will its image be larger, smaller, or the same size as the image we found in Step 2 above? Sketch a new ray diagram to check your prediction.
Answer to Essential Question 23.2: Images from plane mirrors are always the same size as the original object. We can see this in the ray diagram in Figure 23.14.

23-3 Spherical Mirrors: Ray Diagrams

Let us move now from plane mirrors to spherical mirrors, which curve like the surface of a sphere. Spherical mirrors can be convex, such as the mirrors on the passenger side of cars, or concave, such as shaving or makeup mirrors. Unlike plane mirrors, which always produce an image that is the same size as the object, the image in a convex mirror is always smaller than the object, while the image in a concave mirror can be larger, smaller, or the same size as the object.

The focal point of a spherical mirror is defined by what the mirror does to a set of rays of light that are parallel to one another and to the principal axis of the mirror. As shown in Figure 23.15, a concave mirror reflects the rays so they converge to pass through the focal point, \( F \). A convex mirror, in contrast, reflects parallel rays so that they diverge away from the focal point. Note that each ray obeys the law of reflection when it reflects from the mirror. The location of the focal point depends on the curvature of the mirror. The smaller the radius of curvature of the mirror, the closer the focal point is to the mirror’s surface.

What we show here for spherical mirrors is an approximation, valid for rays that are not too far from the principal axis, in relation to the magnitude of the mirror’s focal length. A mirror actually needs to have a parabolic shape to reflect all parallel rays through one point (or away from one point, for a diverging mirror). The fact that spherical mirrors do not really bring all such rays to a point (or diverge them away from a point) is a defect called spherical aberration.

Figure 23.14: Compare this figure to Figure 23.12. Moving the object closer to the mirror moves the image closer to the mirror, but the height of the image is still equal to the height of the object.

Figure 23.15: Focal points are shown for four different mirrors. In (a) and (b), concave mirrors reflect parallel rays so that they converge to a single point called the focal point. In (c) and (d), convex mirrors reflect parallel rays so that they diverge away from the mirror’s focal point. The location of the focal point depends on the mirror’s radius of curvature. In each case, \( C \) is the mirror’s center of curvature, \( R \) is the radius of curvature, and \( F \) is the focal point.

Focal length of a spherical mirror: The focal point of a spherical mirror is located halfway between the surface of the mirror and the mirror’s center of curvature. Thus, the focal length of a spherical mirror has a magnitude of \( R/2 \), where \( R \) is the radius of curvature of the mirror. By convention, an object that diverges parallel light rays has a negative focal length (\( f \)), while an object that converges parallel light rays has a positive focal length. Thus:

For a concave mirror: \( f = +\frac{R}{2} \). (Eq. 23.1)
For a convex mirror: \( f = -\frac{R}{2} \). (Eq. 23.2)

In the limit that the radius of curvature approaches infinity, the mirror becomes a plane mirror and the focal length is either + infinity or – infinity (it does not matter which sign is used).
Following the wave fronts

Figure 23.16 shows what spherical mirrors do to wave fronts. For the converging mirror, the waves take the same time to get from the left to the focal point. For the diverging mirror, once the waves reflect from the mirror, it is as if they left the focal point at the same time.

EXPLORATION 23.3 – Ray diagram for a convex mirror

We will follow a process similar to that for plane mirrors to draw a ray diagram for a convex (diverging) mirror.

Step 1 – First, locate the mirror’s focal point. Then, draw a light ray that leaves the tip of the object (its top) and goes parallel to the principal axis. Show how this parallel ray reflects from the mirror. The focal point is halfway between the point where the principal axis intersects the mirror, and the center of curvature. For a convex mirror, all parallel rays appear to diverge from the focal point, so we draw the reflected ray reflecting along a line that takes it directly away from the focal point, as in Figure 23.18.

Step 2 – Sketch a second ray that leaves the tip of the object and reflects from the mirror. Using your reflected rays, draw the image. One useful ray, the lower ray in Figure 23.19, reflects from the point on the mirror that the principal axis passes through. At that location, the reflection is like that from a vertical plane mirror. Another useful ray goes straight toward the mirror’s center of curvature. This ray has a 0° angle of incidence, and thus reflects back along the same line. The reflected rays diverge on the left of the mirror, but we can extend them back to meet on the right side of the mirror, showing us where the tip of the image is. The image, smaller than the object, is drawn from the tip down to the principal axis.

Key idea: As with a plane mirror, when a number of rays leave the same point on an object and reflect from a spherical mirror, the corresponding point on the image is located at the intersection of the reflected rays.

Essential Question 23.3: (a) Modify the ray diagram in Figure 23.19 to show what happens to the image when the object is moved closer to the mirror. (b) Add several more rays (leaving the tip of the object) to your modified ray diagram, showing what the rays do when they reflect from the mirror. How do you know how to draw the reflected rays?
**Answer to Essential Question 23.3:** (a) The parallel ray is nice to work with, because its reflection does not change direction when the object is moved left or right. The ray that strikes the mirror at the principal axis, however, comes in at a larger angle of incidence, and thus reflects at a larger angle. As shown in Figure 23.20, when the object is closer to the mirror, the image increases in size and moves closer to the mirror.

(b) We have two ways of knowing how to draw the reflected rays properly. First, the law of reflection must be obeyed when the rays reflect from the mirror. Second, we know that when we extend the reflected rays back, they will pass through the tip of the image, which we located in Figure 23.20. Three additional rays are shown in Figure 23.21.

**23-4 A Qualitative Approach: Image Characteristics**

So far, we have looked at ray diagrams in two cases, the case of a plane mirror (section 23-2) and that of a convex mirror (section 23-3). In both cases, we had to extend the reflected rays back through the mirror to get the rays to intersect, giving us an image behind the mirror. We see this all the time with plane mirrors. If you stand 1.0 m in front of a plane mirror, you see an image of yourself 1.0 m behind the mirror. Is it always true that the image created by a mirror is located behind the mirror? We will first investigate the concave mirror, the last case we will deal with, and we will then summarize various image characteristics.

**EXAMPLE 23.4 – A ray diagram for a concave mirror**

An object, represented by an arrow, is located 15.0 cm in front of a concave mirror that has a focal length of +10.0 cm, as shown in Figure 23.22. Sketch a ray diagram to find the location of the tip of the image of the arrow, and sketch the image on the diagram.

**SOLUTION**

Let’s use the same procedure we have used previously, starting by drawing rays of light that leave the tip of the object. Again, one useful ray, shown in red, is the ray that travels parallel to the principal axis. The concave mirror reflects this ray so that it passes through the mirror’s focal point. A second ray that we know how to draw is the one, in blue, that reflects from the mirror at the principal axis, reflecting at that point as if the mirror were a vertical plane mirror. Note that these two rays meet to the left of the mirror, giving us the location of the tip of the image. As usual, we draw the image of the arrow from that point to the principal axis, because the base of the object is also on the principal axis.
Wave fronts
Figure 23.24 shows how the converging mirror affects the wave fronts (in purple). The light leaving the tip of the object, reflecting from the mirror, and arriving at the tip of the image, takes the same time no matter which path it takes.

Image characteristics
The image in Figure 23.23 is quite different from images we have seen earlier in the chapter. First, the image is inverted (upside down) compared to the object. Second, the image is larger than the object. Third, the image is formed from light rays that actually pass through the image. Note that concave mirrors do not always form images with these characteristics, as we will investigate in more detail in section 23-6. For now, however, let’s discuss some general issues related to image characteristics.

Upright or inverted?
As we have seen, plane mirrors and convex mirrors produce an upright image. This is an image that is in the same orientation as the object. An inverted image, like that in Example 23.4, is one in which the image is upside down in relation to the object.

Real or virtual?
Most of the images we see on a daily basis in mirrors are virtual. A virtual image is one that the light does not actually pass through. Instead, our brains see an image there because, when we look in the mirror at the object, our brains are so used to light traveling in straight lines that we trace all the reflected rays back to their apparent source, the point behind the mirror where the light appears to come from. For a single mirror, when the image is virtual it is also upright.

In Example 23.4, we saw a situation in which the light rays passed through the mirror, creating a real image. Real images, from concave mirrors, have a three-dimensional quality that virtual images do not have, and it is worth going out of your way to see one. For a single mirror, when the image is real it is also inverted.

Larger or smaller?
A plane mirror, as we investigated earlier, produces an image that is always the same size as the object. Convex (diverging) mirrors, on the other hand, always produce an image that is smaller than the object. Concave (converging) mirrors, as we will investigate further in section 23-6, can produce an image that is larger, smaller, or the same size as the object. We will discuss these ideas in a more quantitative way when we define the magnification of a mirror, in section 23-5.

Related End-of-Chapter Exercises: 7, 11, 12.

Essential Question 23.4: Consider the ray diagram in Figure 23.23. If an object of the same size of the image was placed at the image’s position, where would its image be located?
Answer to Essential Question 23.4: The image would be located where the object in Figure 23.23 is located. This demonstrates an important fact about light rays – they are reversible. As Figure 23.25 shows, we can simply reverse the direction of the rays from Figure 23.23 to obtain the appropriate ray diagram. Note that we can do this only when the image is a real image.

23-5 A Quantitative Approach: The Mirror Equation

The branch of optics that involves mirrors and lenses is generally called geometrical optics, because it is based on the geometry of similar triangles. Let’s investigate this geometry, and use it to derive an important relationship between the image distance, object distance, and the focal length.

Let’s look again at the ray diagram we drew in Figure 23.23 of section 23-4, shown again here in Figure 23.26.

Remove the parallel ray (and its reflection), and examine the two shaded triangles in Figure 23.27, bounded by the other ray and its reflection, the principal axis, and the object and image. The two triangles are similar, because the three angles in one triangle are the same as the three angles in the other triangle. We can now define the following variables:

- \( d_o \) is the object distance, the distance of the object from the center of the mirror;
- \( d_i \) is the image distance, the distance of the image from the center of the mirror;
- \( h_o \) is the height of the object;
- \( h_i \) is the height of the image.

Using the fact that the ratios of the lengths of corresponding sides in similar triangles are equal, we find that:

\[
\frac{h_i}{h_o} = \frac{d_i}{d_o}.
\]  
(Equation 23.3)

The image height is negative because the image is inverted, which is why we need the minus sign in the equation. Let’s now return to Figure 23.26, and use the parallel ray instead. This gives us the shaded similar triangles shown in Figure 23.28.

We use an approximation, which is valid as long as the object height is relatively small, that the length of the smaller triangle is \( f \), the focal length. Again, using the fact that the ratios of the lengths of corresponding sides in similar triangles are equal, we find that:

\[
\frac{d_i - f}{f} = \frac{h_i}{h_o}.
\]
Simplifying the left side, and bringing in equation 23.3, we get: 
\[
\frac{d_i}{f} - 1 = \frac{d_i}{d_o}.
\]
Dividing both sides by \( d_i \) gives: 
\[
\frac{1}{f} - \frac{1}{d_i} = \frac{1}{d_o},
\]
which is generally written as:
\[
\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}.
\]
(Equation 23.4: The mirror equation)

The mnemonic “If I do I di” can help you to remember the mirror equation.

Often, we know the focal length \( f \) and the object distance \( d_o \), so equation 23.4 can be solved for \( d_i \), the image distance:
\[
d_i = \frac{d_o \times f}{d_o - f}.
\]
(Equation 23.5: The mirror equation, solved for the image distance)

**Sign conventions**

We derived the mirror equation above by using a specific case involving a concave mirror. The equation can also be applied to a plane mirror, a convex mirror, and all situations involving a concave mirror if we use the following sign conventions.

- The focal length is positive for a concave mirror, and negative for a convex mirror.
- The image distance is positive if the image is on the reflective side of the mirror (a real image), and negative if the image is behind the mirror (a virtual image).
- The image height is positive when the image is above the principal axis, and negative when the image is below the principal axis. A similar rule applies to the object height.

**Magnification**

The magnification, \( m \), is defined as the ratio of the height of the image (\( h_i \)) to the height of the object (\( h_o \)). Making use of Equation 23.3, we can write the magnification as:
\[
m = \frac{h_i}{h_o} = \frac{d_i}{d_o}.
\]
(Equation 23.6: Magnification)

The relative sizes of the image and object are as follows:
- The image is larger than the object if \(|m| > 1\).
- The image and object have the same size if \(|m| = 1\).
- The image is smaller than the object if \(|m| < 1\).

The sign of the magnification tells us whether the image is upright (+) or inverted (−) compared to the object.

**Related End-of-Chapter Exercises:** 15 – 19.

**Essential Question 23.5:** As you are analyzing a spherical mirror situation, you write an equation that states: 
\[
\frac{1}{f} = \frac{1}{+12 \text{ cm}} + \frac{1}{+24 \text{ cm}}.
\]
What is the value of \( 1/f \) in this situation? What is \( f \)?


**Answer to Essential Question 23.5**: To add fractions you need to find a common denominator.

\[
\frac{1}{12} + \frac{1}{24} = \frac{2}{24} + \frac{1}{24} = \frac{3}{24} = \frac{1}{8}
\]

This gives \( f = \frac{+24 \text{ cm}}{3} = 8.0 \text{ cm} \).


**23-6 Analyzing the Concave Mirror**

In section 23-4, we drew one ray diagram for a concave mirror. Let’s investigate the range of ray diagrams we can draw for such a mirror.

**EXPLORATION 23.6 – Ray diagrams for a concave mirror**

**Step 1 – Draw a ray diagram for an object located 40 cm from a concave mirror that has a radius of curvature of 20 cm. Verify the image location on your diagram with the mirror equation.** In drawing a ray diagram, it is helpful to know where the mirror’s focal point is. For a spherical mirror, the focal point is halfway between the mirror’s center of curvature and the point at which the principal axis intersects the mirror. Thus, the focal length in this case is +10 cm.

In Figure 23.29, two rays are shown. One is the parallel ray, which leaves the tip of the object, travels parallel to the principal axis, and reflects from the mirror so that it passes through the focal point. The second ray reflects off the mirror at the point at which the principal axis meets the mirror, reflecting as if the mirror was a vertical plane mirror.

Applying the mirror equation, in the form of equation 23.5, to find the image distance:

\[
d_i = \frac{d_o \times f}{d_o - f} = \frac{(40 \text{ cm}) \times (+10 \text{ cm})}{40 \text{ cm} - (+10 \text{ cm})} = \frac{+400 \text{ cm}^2}{30 \text{ cm}} = +13.3 \text{ cm}
\]

This image distance is consistent with the ray diagram in Figure 23.29.

**Step 2 – Repeat step 1, with the object now moved to the center of curvature.** The parallel ray follows the same path as it did Figure 23.29. As shown in Figure 23.30, the ray that reflects from the center of the mirror follows a different path, because shifting the object changes the angle of incidence for that ray. This situation is a special case. When the object is located at the center of curvature, the image is inverted, also at the center of curvature, and the same size as the object because the object and image are the same distance from the mirror.

Applying the mirror equation to find the image distance, we get:

\[
d_i = \frac{d_o \times f}{d_o - f} = \frac{(20 \text{ cm}) \times (+10 \text{ cm})}{20 \text{ cm} - (+10 \text{ cm})} = \frac{+200 \text{ cm}^2}{10 \text{ cm}} = +20 \text{ cm},
\]

matching the ray diagram.
Step 3 – Repeat step 1, with the object 15 cm from the mirror. No matter where the object is, the parallel ray follows the same path. The path of the second ray, in blue, depends on the object’s position. The ray diagram (Figure 23.31) shows that the image is real, inverted, larger than the object, and about twice as far from the mirror as the object.

Applying the mirror equation gives:

\[ d_i = \frac{d_o \times f}{d_o - f} = \frac{(15 \text{ cm}) \times (+10 \text{ cm})}{(15 \text{ cm}) - (+10 \text{ cm})} = \frac{150 \text{ cm}^2}{5.0 \text{ cm}} = +30 \text{ cm}, \] matching the ray diagram.

Step 4 – Repeat step 1, with the object at the mirror’s focal point. As shown in Figure 23.32, the two reflected rays are parallel to one another, and never meet. In such a case the image is formed at infinity.

Applying the mirror equation gives:

\[ d_i = \frac{d_o \times f}{d_o - f} = \frac{(10 \text{ cm}) \times (+10 \text{ cm})}{(10 \text{ cm}) - (+10 \text{ cm})} = \frac{100 \text{ cm}^2}{0 \text{ cm}} = +\infty, \]

which agrees with the ray diagram.

Step 5 – Repeat step 1, with the object 5.0 cm from the mirror. When the object is closer to the mirror than the focal point, the two reflected rays diverge to the left of the mirror, and they must be extended back to meet on the right of the mirror. The result is a virtual, upright image that is larger than the object, as shown in Figure 23.33.

Applying the mirror equation to find the image distance gives:

\[ d_i = \frac{d_o \times f}{d_o - f} = \frac{(5.0 \text{ cm}) \times (+10 \text{ cm})}{(5.0 \text{ cm}) - (+10 \text{ cm})} = \frac{50 \text{ cm}^2}{-5.0 \text{ cm}} = -10 \text{ cm}. \]

Recalling the sign convention that a negative image distance is consistent with a virtual image, the result from the mirror equation is consistent with the ray diagram.

Key idea for concave mirrors: Depending on where the object is placed relative to a concave mirror’s focal point, the mirror can form an image of the object that is real or virtual. If the image is real, it can be larger than, smaller than, or the same size as the object. If the image is virtual, the image is larger than the object. Related End-of-Chapter Exercises: 27 and 47 – 49.

Essential Question 23.6: When an object is placed 20 cm from a spherical mirror, the image formed by the mirror is larger than the object. What kind of mirror is it? What, if anything, can you say about the mirror’s focal length?
**Answer to Essential Question 23.6:** The mirror must be concave, because a convex mirror cannot produce an image that is larger than the object. A concave mirror produces an image larger than the object only when the object is between the mirror and twice the focal length. So, twice the focal length must be at least +20 cm, and the focal length must be at least +10 cm. All we can say is that the focal length is greater than or equal to +10 cm.

### 23-7 An Example Problem

Let’s begin by discussing a general approach we can use to solve problems involving mirrors. We will then apply the method to a particular situation.

**A general method for solving problems involving mirrors**

1. Sketch a ray diagram, showing rays leaving the tip of the object and reflecting from the mirror. Where the reflected rays meet is where the tip of the image is located. The ray diagram gives us qualitative information about the location and size of the image and about the characteristics of the image.
2. Apply the mirror equation and/or the magnification equation. Make sure that the signs you use match those listed in the sign convention in section 23-5. The equations provide quantitative information about the location and size of the image and about the image characteristics.
3. Check the results of applying the equations with your ray diagram, to see if the equations and the ray diagram give consistent results.

**Rays that are easy to draw the reflections for**

To locate an image on a ray diagram, you need a minimum of two rays. If you draw more than two rays, however, you can check the image location you find with the first two rays. Remember, too, that you can draw any number of rays reflecting from the mirror, and that all the rays should obey the law of reflection. There are at least four rays that are easy to draw the reflections for. These rays are shown on Figure 23.34, and include:

1. The ray that goes parallel to the principal axis, and reflects so that it passes through the focal point (concave mirror), or away from the focal point (convex mirror).
2. The ray that reflects from the point on the principal axis that intersects the surface of the mirror. The principal axis is perpendicular to the surface of the mirror, so the angle between the incident ray and the principal axis is the same as the angle between the reflected ray and the principal axis.
3. The ray that travels along the straight line connecting the tip of the object and the mirror’s center of curvature. This ray is incident on the mirror along the normal to the mirror’s surface, and thus reflects straight back along the same line.
4. The ray that travels along the straight line connecting the tip of the object and the focal point. This ray reflects to go parallel to the principal axis.

**Figure 23.34:** An example of the four rays that are easy to draw the reflections for. All the reflected rays meet at the tip of the image.
EXAMPLE 23.7 – Applying the general method

When you stand in front of a mirror that has a radius of curvature of 40 cm, you see an image that is half your size. What kind of mirror is it? How far from the mirror are you? Sketch a ray diagram to check your calculations.

SOLUTION

In this case, let’s first apply the equations and then draw the ray diagram. The mirror could be convex, because convex mirrors always produce images that are smaller than the object. A convex mirror produces a virtual, upright image, so the sign of the magnification is positive. Applying the magnification equation, we get:

\[ m = \frac{1}{2} = -\frac{d_i}{d_o} , \text{ which tells us that } \frac{1}{d_i} = -\frac{2}{d_o} . \]

For a convex mirror, the focal length is \(-R/2\), which in this case is \(-20\) cm. Applying the mirror equation:

\[ \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{d_o} - \frac{2}{d_o} = -\frac{1}{d_o} . \]

Thus, we find that \( d_o = -f = +20 \) cm, and we can show that \( d_i = -10 \) cm.

The ray diagram for this situation is shown in Figure 23.35, confirming the calculations.

The solution above is only one of the possible answers. The mirror could also be concave, because a concave mirror can produce a real, inverted image, so the sign of the magnification is negative. Applying the magnification equation, we get:

\[ m = -\frac{1}{2} = -\frac{d_i}{d_o} , \text{ which tells us that } \frac{1}{d_i} = \frac{2}{d_o} . \]

For a concave mirror the focal length is \(+R/2\), which in this case is \(+20\) cm. Applying the mirror equation:

\[ \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{d_o} + \frac{2}{d_o} = \frac{3}{d_o} . \]

Thus, we find that \( d_o = 3f = +60 \) cm, and we can show that \( d_i = +30 \) cm.

The ray diagram for this situation is shown in Figure 23.36, again confirming the calculations above.

Related End-of-Chapter Exercises: 20, 21, 23, 24, 43.

Essential Question 23.7: Return to the situation described in Example 23.7. Would there still be two solutions if the image was larger than the object? Explain.
**Answer to Essential Question 23.7:** Yes, there would still be two solutions, but we would not have a solution associated with a convex mirror, because the convex mirror cannot produce an image that is larger than the object. Instead, both solutions would be associated with a concave mirror. One solution would be for a real image, and the other solution would be for a virtual image.

**Chapter Summary**

**Essential Idea: Reflection and Mirrors.**

To understand the image that is created by a mirror, we make use of a simple model of light called the ray model. In the ray model, a ray of light travels in a straight line until it encounters an object. When a ray of light reflects from an object, the light obeys the law of reflection.

**The Law of Reflection**

The angle of incidence is equal to the angle of reflection. These angles are generally measured from the normal to the surface.

**Image Formation**

For a mirror to form an image of an object, light rays must leave the object and be reflected by the mirror. If the rays leaving a single point on the object are reflected so that they pass through a single point, a real image is formed. If, instead, such reflected rays appear to diverge from a single point behind the mirror (as is the case for a typical bathroom mirror), a virtual image is formed.

**Ray Diagrams**

When drawing a ray diagram, we generally show rays leaving the tip of the object and reflecting from the mirror. Where the reflected rays meet is where the tip of the image is located. The ray diagram gives us qualitative information about the location and size of the image and about the image characteristics. All rays obey the law of reflection when they reflect from the mirror, but some reflected rays are particularly easy to draw. A summary of four such rays is given in section 23-7.

**Plane and Spherical Mirrors**

<table>
<thead>
<tr>
<th>Type of mirror</th>
<th>Focal length</th>
<th>Image characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plane</td>
<td>$\infty$</td>
<td>The image is virtual, upright, the same size as the object, and the same distance behind the mirror that the object is in front of the mirror.</td>
</tr>
<tr>
<td>Convex (diverging)</td>
<td>$-R/2$, $R$ being the mirror’s radius of curvature</td>
<td>The image is virtual, upright, smaller than the object, and located between the mirror and the mirror’s focal point.</td>
</tr>
<tr>
<td>Concave (converging)</td>
<td>$+R/2$</td>
<td>The image can be real or virtual, and larger than, smaller than, or the same size as the object. See the table below for details.</td>
</tr>
</tbody>
</table>

**Table 23.1:** A summary of the mirrors we investigated in this chapter.
Images formed by a Concave (Converging) Mirror

<table>
<thead>
<tr>
<th>Object position</th>
<th>Image position</th>
<th>Image characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\infty$</td>
<td>At the focal point</td>
<td>Real image with height of zero.</td>
</tr>
<tr>
<td>Moving from $\infty$ toward the center of curvature.</td>
<td>Moving from the focal point toward the center of curvature.</td>
<td>The image is real, inverted, and smaller than the object. The image moves closer to the center of curvature, and increases in height, as the object is moved closer to the center of curvature.</td>
</tr>
<tr>
<td>At the center of curvature.</td>
<td>At the center of curvature.</td>
<td>The image is real, inverted, and the same size as the object.</td>
</tr>
<tr>
<td>Moving from the center of curvature toward the focal point.</td>
<td>Moving from the center of curvature toward infinity.</td>
<td>The image is real, inverted, and larger than the object. The image moves farther from the mirror, and increases in height, as the object is moved closer to the focal point.</td>
</tr>
<tr>
<td>At the focal point.</td>
<td>At infinity.</td>
<td>The image is at infinity, and is infinitely tall.</td>
</tr>
<tr>
<td>Closer to the mirror than the focal point.</td>
<td>Behind the mirror</td>
<td>The image is virtual, upright, and larger than the object. The image moves closer to the mirror, and decreases in height, as the object is moved closer to the mirror.</td>
</tr>
</tbody>
</table>

Table 23.2: A summary of the image positions and characteristics for various object positions with a concave mirror.

**The mirror equation**

The mirror equation relates the object distance, $d_o$, the image distance, $d_i$, and the mirror’s focal length, $f$. The mnemonic “If I do I di” can help you to remember the mirror equation.

$$\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}.$$  \hspace{1cm} \text{(Equation 23.4: The mirror equation)}

$$d_i = \frac{d_o \times f}{d_o - f}$$  \hspace{1cm} \text{(Equation 23.5: The mirror equation, solved for the image distance)}

**Sign conventions**

The focal length is positive for a concave mirror, and negative for a convex mirror.

The image distance is positive if the image is on the reflective side of the mirror (a real image), and negative if the image is behind the mirror (a virtual image).

The image height is positive when the image is above the principal axis, and negative when the image is below the principal axis. A similar rule applies to the object height.

The image height is positive when the image is upright, and negative when the image is inverted. A similar rule applies to the object height.

**Magnification**

The magnification, $m$, is the ratio of the image height ($h_i$) to the object height ($h_o$).

$$m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}.$$  \hspace{1cm} \text{(Equation 23.6: Magnification)}

- The image is larger than the object if $|m| > 1$.
- The image and object have the same size if $|m| = 1$.
- The image is smaller than the object if $|m| < 1$.

The magnification is positive if the image is upright, and negative if the image is inverted.
End-of-Chapter Exercises

Exercises 1 – 12 are conceptual questions designed to see whether you understand the main concepts of the chapter.

1. You and your friend Leigh can both see Leigh’s reflection in the same plane mirror. Leigh sees her image at a particular location. You are observing the situation from a different position than Leigh. Do you observe Leigh’s image in the same position that Leigh does, or in a different position? Explain.

2. Figure 23.37 shows a red ball that is near a small plane mirror. Is it possible to see a reflection of the ball in this mirror? If so, sketch a diagram showing the location of the ball’s image, and showing where your eye could be located so as to see the ball’s image. If not, explain why not.

3. As shown in Figure 23.38, a point source of light shines on a card that has a narrow vertical slit cut in it. The card is halfway between the source and a screen. Sketch the resulting pattern on the screen.

4. As shown in Figure 23.39, a light bulb with a long narrow vertical filament illuminates a card that has a small hole in it. The card is two-thirds of the way from the light bulb to a screen. Sketch the resulting pattern on the screen.

5. Two plane mirrors are placed so they are perpendicular to one another, and you stand in front of this pair of mirrors. You are represented by the red dot in Figure 23.40. (a) How many images of yourself do you observe? (b) Draw a diagram to show where the image(s) is/are located. (c) For the image farthest from you, sketch a ray diagram to show how the image is formed.

6. Figure 23.41 shows a single ray on a ray diagram. Duplicate the diagram, and add a second ray to show the position of the image.
7. Two rays of light are shown on the ray diagram in Figure 23.42, along with two arrows representing the object and the image. Which arrow represents the object, and which represents the image?

8. Figure 23.43 shows an object in front of a concave mirror. First, re-draw the diagram, preferably on a piece of graph paper. For parts (a) – (d), start the ray from the tip of the object and show how the ray reflects from the mirror. (a) On your diagram, draw a ray that travels parallel to the principal axis toward the mirror. (b) Draw a ray that reflects from the mirror at the point the principal axis intersects the mirror. (c) Draw a ray that travels toward the mirror along the line connecting the tip of the object and the focal point. (d) Draw a ray that travels toward the mirror along the line connecting the tip of the object and the center of curvature. (e) Use the rays to locate the image on the diagram.

9. Three rays of light are shown on the ray diagram in Figure 23.44. One of them is drawn incorrectly. (a) Identify the ray that is drawn incorrectly. (b) Draw a corrected diagram and show the location of the image.

10. Figure 23.45 shows a concave mirror, and the virtual image formed by this mirror. Draw a ray diagram to show the location of the object in this situation.

11. Identify whether the mirror in this situation is a plane mirror, a convex mirror, or a concave mirror. For each part below, determine which of the possibilities you can rule out, if any. (a) First, when an object is placed 10 cm from a mirror, a virtual image is observed. (b) Then, when the object is moved a little closer to the mirror, the image is observed to move closer to the mirror. (c) As the object is moved closer to the mirror, the image is observed to decrease in size.

12. Identify whether the mirror in this situation is plane, convex, or concave. For each part below, determine which of the possibilities you can rule out, if any. (a) First, when an object is placed 10 cm from a mirror, a virtual image is observed. (b) Then, when the object is moved a little closer to the mirror, the image is observed to increase in size. (c) What, if anything, can you conclude about the mirror’s focal length?
Exercises 13 – 14 involve plane mirrors.

13. A laser beam reflects from a plane mirror, as shown in Figure 23.46. The incident beam is at 40°, as measured from the horizontal. Initially, the reflected beam is horizontal. (a) What is the angle, initially, between the mirror and the horizontal? (b) When the mirror is tilted by 10°, what is the angle between the reflected beam and the horizontal?

14. Maria stands 50 cm away from a small plane mirror that is mounted on the wall in front of her. Maria’s face is about 20 cm tall. (a) If Maria is to be able to see the image of her entire face without moving, what is the minimum height the mirror can be? (b) Describe how this minimum-height mirror should be mounted on the wall. (c) If Maria is 1.0 m from the mirror, what is the minimum height the mirror can be? (d) Sketch one or more ray diagrams to support your answers to parts (a) – (c).

Exercises 15 – 19 are designed to give you practice applying the mirror equation.

15. As you are analyzing a spherical mirror situation, you write an equation that states:
\[
\frac{1}{f} = \frac{1}{20 \text{ cm}} + \frac{1}{30 \text{ cm}}
\]
(a) What is the value of \(1/f\) in this situation? (b) What is the mirror’s focal length? (c) What kind of mirror is this?

16. Return to Exercise 15. What is the object distance in this situation, and what is the image distance?

17. As you are analyzing a spherical mirror situation, you write an equation that states:
\[
\frac{1}{f} = \frac{1}{20 \text{ cm}} + \frac{1}{60 \text{ cm}}
\]
(a) What is the value of \(1/f\) in this situation? (b) What is the mirror’s focal length? (c) What kind of mirror is this?

18. As you are analyzing a spherical mirror situation, you write an equation that states:
\[
\frac{1}{f} = \frac{1}{20 \text{ cm}} + \frac{1}{-10 \text{ cm}}
\]
(a) What is the value of \(1/f\) in this situation? (b) What is the mirror’s focal length? (c) What kind of mirror is this?

19. As you are analyzing a spherical mirror situation, you write an equation that states:
\[
\frac{1}{d_i} = \frac{1}{20 \text{ cm}} + \frac{1}{d_i}
\]
(a) What is the value of \(1/d_i\) in this situation? (b) What is the image distance?
Exercises 20 – 24 are designed to give you practice applying the general method for analyzing a problem involving mirrors.

20. An object is placed 25 cm away from a mirror that has a focal length of 10 cm. (a) Sketch a ray diagram, to show the position of the image and the image characteristics. (b) Determine the image distance. (c) Determine the magnification.

21. An object is placed 25 cm away from a mirror that has a focal length of –10 cm. (a) Sketch a ray diagram, to show the position of the image and the image characteristics. (b) Determine the image distance. (c) Determine the magnification.

22. Some people like to place large reflective balls in their gardens. Let’s say that such a ball has a radius of curvature of 20 cm, and a bird perched on a branch is 1.0 m from the ball. (a) Determine the image distance for the bird’s image. (b) Sketch a ray diagram to verify your calculation in part (a).

23. A shiny spoon can be approximated as a spherical mirror with a radius of curvature of 8.0 cm. You hold your finger 12.0 cm from the spoon’s concave side. (a) Sketch a ray diagram to determine the image location and the image characteristics. (b) Apply the mirror equation and the magnification equation to determine the location of the image of your finger, and the size of the image compared to the size of your finger.

24. Repeat Exercise 23 but, this time, flip the spoon over so your finger is 12.0 cm from the spoon’s convex side.

Exercises 25 – 29 involve applications of reflection and mirrors.

25. The Federal Motor Carrier Safety Administration, in the United States, mandates that all cars have a convex passenger-side rear-view mirror. A particular rear-view mirror on a car has a radius of curvature of 1.2 m. If a large truck is 8.0 m away from this mirror, determine (a) the image distance, and (b) the magnification. (c) Which of these results explains why “Objects in mirror are closer than they appear,” which is the warning stamped on the mirror.

26. Figure 23.47 shows a picture of a periscope, such as that used by submarine captains to see what is at the surface of the water, or by spectators at golf tournaments to see over the heads of people standing in front. Two parallel plane mirrors are used to make the periscope. (a) Re-draw the diagram, and show the location of the image, created by mirror 1, of the object. (b) The image created by mirror 1 is the object for mirror 2. Show where the image created by mirror 2 is located. This is the image you see when you look in the periscope.

Figure 23.47: A periscope, which has two parallel plane mirrors, is an example of a practical device that involves reflection, for Exercise 26.
27. As part of a show about optical illusions, the illusionist sets up a large concave mirror, with a focal length of 2.0 m, at the back of the stage. This arrangement is shown in Figure 23.48. Hidden underneath the stage is a model of a lion, only \( \frac{1}{4} \) as tall as a real lion. (a) How far should the model be placed from the mirror so that the audience sees a life-size lion hovering over the stage? (b) If the audience is to see an upright lion, should the model be upright or inverted?

28. A concave mirror used by a person who is shaving or applying makeup creates a virtual image of the face that is 1.5 times larger than the person’s actual face when the face is 25 cm from the mirror. Determine (a) the image distance, and (b) the mirror’s focal length.

29. A particular convex mirror has a radius of curvature of 1.5 m. The mirror is mounted in the corner of a store, near the ceiling, to help prevent shoplifting. (a) Let’s say that you are 1.8 m tall, and that you are standing 2.0 m away from the mirror. How tall is your image in this mirror? (b) If, when you look in that mirror, you can see the face of the clerk at the checkout counter, does that mean that the clerk can see you in the mirror? Briefly justify your answer.

General problems and conceptual questions

30. If you hold your hand up in the beam of a film projector or slide projector, you can cast a shadow (in the shape of a rabbit’s head, for instance) on a screen. Is this shadow consistent with the ray model of light? Explain.

31. When you are on a train, you can often see clear reflections of some of the other passengers when you look at the train windows. Explain why it is generally easier to see these reflected images when the train is passing through a dark tunnel than when the train is traveling outside on a bright sunny day.

32. A well-known philosophical question about sound is “If a tree falls in a forest and there is no-one there to hear it, does it make a sound?” A similar question regarding light could be “If a mirror is placed near a tree and there is no-one there to look into the mirror, is there an image?” Based on the principles of physics covered in this chapter, what do you think?

33. When you are looking in a plane mirror at the image of an object that remains at rest, does the image of the object move when you shift position? Draw one or two ray diagrams to help explain your answer. Also, in your explanation, make a comparison between a window and a mirror. When you look through a window at an object that remains at rest, the object’s position stays fixed as you change your vantage point. Does the same thing happen with the image of a stationary object when viewed in a mirror, or not?

34. You are walking toward a plane mirror with a speed of 2.5 m/s. What is the velocity of your image, relative to you?
35. You are standing between two plane mirrors that are parallel to one another, and separated by 4.0 m. This situation, as you have probably observed, creates multiple images. You are 1.5 m from one of the mirrors, and 2.5 m from the other (neglecting your own width). (a) How far away is your image that is closest to you? (b) How far away are the three next-closest images?

36. You are 2.0 m from a plane mirror, holding a camera, and you want to take a photograph of your image in the mirror. To what distance should the camera be focused so you get the sharpest image of yourself?

37. Two rays of light are incident on a pair of plane mirrors that are mounted at 90° to one another, as shown in Figure 23.49. (a) After experiencing two reflections, one from each mirror, through what angle has the red ray been deflected? Sketch the path of the red ray. (b) Repeat for the green ray. Note that the grid can help you to sketch the path for the green ray.

38. A small plane mirror is mounted on a wall. A laser beam is incident on the mirror at a 45° angle, as shown in Figure 23.50. The reflected beam makes a spot on a wall 5.0 m from, and parallel to, the wall with the mirror. When you push on the wall with the mirror, you deform the wall a little, shifting the angle of the mirror slightly and moving the spot on the other wall. If the spot moves by 12.0 cm (down, in the figure), through what angle has the mirror been rotated?

39. A common application of mirrors is in astronomical telescopes. Choose one of the following, do some research about how it works, and write a couple of paragraphs describing it: 1. The Keck 1 and Keck 2 telescopes. 2. The Large Zenith Telescope. 3. The Hubble Space Telescope.

40. Exercise 39 involves research-grade optical telescopes. Mirrors are also used in many telescopes used by amateur astronomers. Choose one of the following, do some research about how it works, and write a couple of paragraphs describing it: 1. A Newtonian telescope. 2. A Cassegrain telescope. 3. A Dobsonian telescope.

41. In a particular case of an object in front of a spherical mirror, the object distance is 12 cm and the magnification is +4.0. Find (a) the image distance, (b) the mirror’s focal length.

42. In a particular case of an object in front of a spherical mirror with a focal length of 12 cm, the magnification is +4.0. Find (a) the object distance, (b) the image distance.

43. An object is placed 60 cm from a spherical mirror. When you look in the mirror, you see an image of the object that is 3.0 times larger than the object. (a) What kind of mirror is it? (b) How far from the mirror is the object? (c) Sketch a ray diagram to check your calculations. Make sure you find all possible solutions.
44. Figure 23.51 shows an object and a real image created by a spherical mirror. Assume the boxes on the grid measure 10 cm × 10 cm. Find the position of the mirror, and the mirror’s focal length.

45. Figure 23.52 shows an object (the larger arrow) and the virtual image of that object, created by a spherical mirror. Assume the boxes on the grid measure 10 cm × 10 cm. Find the position of the mirror, and the mirror’s focal length.

46. Sketch a ray diagram for the situation shown in (a) Figure 23.51, (b) Figure 23.52.

47. In the situation shown in Figure 23.53, a small red LED (light-emitting diode) is placed on the principal axis 7.0 cm from a concave mirror that has a radius of curvature of 14 cm. The LED can be considered to be a point source. Draw a ray diagram to show what happens to rays of light that are emitted by the LED and reflect from the mirror.

48. In the situation shown in Figure 23.54, a small red LED (light-emitting diode) is placed on the principal axis 4.0 cm from a concave mirror that has a radius of curvature of 14 cm. The LED can be considered to be a point source. Find the location of the image of the LED.

49. The LED from the previous exercise is moved to a location 2.0 cm above the principal axis, and 3.0 cm horizontally from the center of the mirror, as shown in Figure 23.55. Find the location of the image of the LED.

50. Draw several rays showing how the image of the LED is formed in (a) Figure 23.54, and (b) Figure 23.55.
51. A model of a horse is placed 32 cm away from a mirror that has a focal length of 20 cm. The model is 5.0 cm tall. Determine (a) the location of the image, (b) the height of the image, (c) whether the image is real or virtual, and (d) whether the image is upright or inverted.

52. Repeat Exercise 51, with the model of the horse 12 cm from the mirror instead.

53. A model of a horse is placed 32 cm away from a mirror that has a focal length of −20 cm. The model is 5.0 cm tall. Determine (a) the location of the image, (b) the height of the image, (c) whether the image is real or virtual, and (d) whether the image is upright or inverted.

54. Return to the situation described in Exercise 53. Describe what happens to the position and size of the image if the model is moved a little bit closer to the mirror.

55. Return to the situation described in Exercise 51. Describe what happens to the position and size of the image if the model is moved a little bit closer to the mirror.

56. Figure 23.56(a) shows an object placed in front of a vertical plane mirror. A convex mirror is then placed behind the plane mirror, in the location shown in Figure 23.56(b). Does adding the convex mirror cause the object’s image to shift to the left, the right, or does it have no effect? Explain.

57. A particular mirror has a focal length of +20 cm. (a) For this mirror, plot a graph of $1/d_i$ as a function of $1/d_o$ for object distances between +10 cm and +40 cm. (b) How can you read the focal length directly from the graph?

58. Repeat the previous exercise, but now plot a graph of $d_i$ as a function of $d_o$.

59. Figure 23.57 shows a graph of $1/d_i$ as a function of $1/d_o$ for a particular mirror. What kind of mirror is it, and what is the mirror’s focal length?

60. Refer to Figure 23.21, just above the start of section 23-4. (a) What, if anything, happens to the image if you cover up the bottom half of the mirror, preventing any light from reaching that part of the mirror? (b) Does your answer change if you cover up the top half of the mirror instead? Explain, and refer to Figure 23.21 in your explanations.
61. Figure 23.58 shows a small rectangular box, placed so its front surface is 10 cm from a convex mirror, while its back surface is 16 cm from the mirror. The mirror has a radius of curvature of 40 cm, while the box has a height of 8.0 cm. (a) Sketch a ray diagram to show the location of the image of the front surface of the box. (b) On the same diagram, show the location of the rear of the box. (c) How tall is the image of the front of the box? (d) How tall is the image of the rear of the box, when you look at the box in the mirror?

![Figure 23.58](image)

62. As shown in Figure 23.59, an object is placed halfway between two identical concave mirrors, at a point that corresponds to the center of curvature of both mirrors. (a) How many images of the object could you see if you looked in either one of the mirrors? (b) How many of these images would be larger than the object, and how many would be smaller than the object? (c) Where would these images be located, relative to the object?

![Figure 23.59](image)

63. Two students are having a conversation about a problem involving mirrors. Comment on each of their statements below. The problem is the following. We have an object in front of a spherical mirror. The image created by the mirror is smaller than the object, and real. We’re asked what happens to the image when the object is moved a little closer to the mirror – does the image get larger or smaller, and does it move toward the mirror or away from the mirror?

Heather: Doesn’t this depend on what kind of mirror we have? The problem just says it’s a spherical mirror. It must matter whether the mirror is concave or convex, don’t you think?

Mike: We could try both and see, I guess. How about we draw a ray diagram? Here, look at this. The ray that goes from the tip of the object, parallel to the principal axis, and then through the focal point, that ray stays the same even if we slide the object toward the mirror or away from the mirror. I think this tells us that, if the image gets closer to the mirror, it gets smaller, and if it gets farther away, it gets taller.

Heather: You drew that for a concave mirror. Does the same thing work for a convex mirror? I still think we need to know what kind of mirror we have.

Mike: Maybe there’s something in the problem that gives that away? What does it say about the image? It’s smaller, and real. Does that tell us what kind of mirror we have?