
 Physics is all around 
you. From the moment your alarm 
clock wakes you up in the morning 
to when you flip the light switch 
before you get into bed at night, 
you are immersed in a world that is 
governed by the laws of physics. 
Understanding physics can help 
you drive your car or bicycle more 
safely, improve your results in 
sports and in the playing of musical 
instruments, as well as giving you 
insights into how your iPod and 
cell phone work. Archery is just 
one example of an activity that 
involves physics. How many 
physics-related concepts can you 
come up with in looking at this 
picture of an archer getting ready to 
release an arrow from a bow? 

Picture credit: public-domain 
image from Wikimedia Commons, 
originally published in 1908 in the 
book The Witchery of Archery, by 
Maurice Thompson.
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In this chapter, we will discuss some of the mathematical tools we often apply in working 
through physics problems. These tools include the SI system of units, trigonometry, algebra, and 
vectors. You should be familiar with how to use these tools because we will use them throughout 
the book.

In Chapter 1, we will also go over how we use models in physics to help us understand 
the world around us. Modeling is a key feature of science in general, and the history of science is 
really the story of the models scientists created to understand the world around them, and of how 
these models evolved over time. We will discuss some of this history, too, as we go along.
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 1-1 Physics, Models, and Units
You will most likely be devoting several months to learn physics. Physics is the study of 

something, but of what? Take a minute and write one sentence describing what you think physics 
is.

Physics encompasses many different topics, but a nice one-sentence description is that 
physics is the study of how the world works. Physics could just as easily be described as the study 
of how the universe works, or the study of how things work. Physics can be very practical, 
explaining how a toaster works, for instance. It can also be mind-blowing stuff, as we will see 
when we talk about the quantum nature of the atom and Einstein’s theory of relativity. It is also 
important to keep in mind that physics is a science. Physics can, in some sense, also be thought of 
as a logical, systematic approach to analyzing physical situations.

Another important question to ask is, what is this book, Essential Physics? This is your 
guide to specific areas of physics. In some sense it is a history book as well as a science book, 
covering much of the same ground that was covered by natural philosophers, scientists, and 
physicists over the past 2500 years or so. This book is certainly not a comprehensive look at all of 
physics – you can always dig deeper to find more information – but it should at least give you a 
reasonable basis for understanding the world around you.

Models in Physics
 In this book, we will see plenty of questions about spaceships in outer space, balls, cars, 
people, etc. When we come to analyze situations involving such objects, however, we will often 
use simplifying assumptions (such as assuming that no air resistance acts on a ball in a particular 
case) and we will often use models in which we replace the object by something simpler.

 There are several reasons for using simplifying assumptions, including:
• The assumptions can allow us to solve a particular problem in a straightforward way.
• Anything we neglect should only have a minor impact on the result if we were to account 

for it.
• We may not know enough about the situation to include whatever it is we’re neglecting. 

In some cases we will address that as we go through the book, such as neglecting friction 
initially and then learning how to account for friction.

• The mathematical methods that would be required to solve the problem more generally 
are above the level of this book.

When we use a model that neglects something like air resistance, the answer we come up 
may not match what really happens. If the model is good, though, the answer should be a 
reasonable approximation of what happens. It’s important to think about how an answer would 
change if other factors were included. For instance, if we neglect air resistance and calculate that 
a particular baseball hit by Josh Hamilton just clears the outfield fence for a home run, that ball 
would, in reality, probably be caught by an outfielder, because air resistance tends to slow an 
object down and reduce how far it travels.

If you start to think that we neglect too much in this book and you’re interested in doing 
more, that’s terrific. This book is merely an introduction to physics, and there is plenty of exciting 
physics involved with going above and beyond what we’ll cover here.

Applying a model often means treating complicated objects, such as the car shown in 
Figure 1.1, as a simpler object, such as a particle. A modern car is rather complicated. Its shape is 
designed to reduce air resistance; it generally has anti-lock brakes and air bags to increase 
passenger safety; its engine operates under the laws of thermodynamics; and its onboard 
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computer and accompanying electric circuits are the 
analog of a human’s brain and central nervous system. 
To understand the motion of such a car along a road, 
however, we can generally ignore many of these 
complicated systems. In the early chapters of this 
book, for instance, we will treat cars, people, etc., as 
particles. We will use this particle model a great deal, 
mainly so we can focus on the big picture rather than 
on subtle details that depend on the precise object. As 
we continue through the book, our models will 
become more sophisticated, but when we use models 
we’re keeping a saying of Albert Einstein’s in mind: 
make the problem as simple as possible, but no 
simpler.

Units
Physics is an experimental science. Each 

time we measure something, we need to be aware of 
the units of the measurement. Take a minute and 
measure the length of this page. What do you get? It 
would be meaningless to say 8.5, or 21.2, or 212, but if you said 8.5 inches, or 21.2 centimeters, 
or 212 millimeters, that would be fine. Those three measurements are equivalent, and you could 
measure the length of the page in other length units, too, such as feet, miles, furlongs, kilometers, 
or light-years. Just remember that a measurement requires both a number and a unit.

In this book we will primarily use SI (système international) units. SI has several base 
units, including the meter (m) as the unit of length, the kilogram (kg) as the unit of mass, and the 
second (s) as the unit of time. Being based on powers of ten, SI is easy to use, unlike the English 
system of units in which you have to remember conversion factors such as how many cups are in 
a gallon. In the metric system the prefix tells you which power of 10 to use. Table 1.1 gives some 
examples of conversion factors, with a more complete table inside the front cover of the book.

Name Prefix Power of ten Example
mega M x 106 92.9 MHz – frequency of an FM radio station
kilo k x 103 110 km/h – speed limit on some Canadian highways
centi c x 10-2 30 cm – approximately equal to 1 foot
milli m x 10-3 500 mg – mass of Vitamin C in a Vitamin C capsule
micro µ x 10-6 150 µm – diameter of a human hair
nano n x 10-9 400 to 700 nm – wavelength range of visible light

Table 1.1: Common prefixes in the metric system.

Essential Question1.1: What is a good definition of a physical model?

Note that each section in the book ends with an Essential Question. The answer to each 
Essential Question is given at the top of the following page, but you should resist the temptation 
to immediately turn the page to look at the answer. Spending some time yourself thinking about 
the answer will really help you to learn the material.
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Figure 1.1: A photograph of a 2006 Volkswagen Jetta. 
A modern car is an incredibly complex object, but to 
understand the motion of a car like this along a straight 
road, we can treat the car as a particle. 
Photo credit: Wikimedia Commons.



Answer to Essential Question 1.1: A model is simplified version of physical situation. Using a 
model enables us to focus on the key elements of a particular situation, and is one way of getting 
a good idea of what is going on without having to consider every fine detail.

1-2 Unit Conversions, and Significant Figures
It is often necessary to convert a value from one set of units to another. To do this, we 

need to know the appropriate conversion factors. For instance, in Example 1.2 we will make use 
of these conversion factors:

• 1 hour = 3600 seconds
• 1 km = 1000 m
• 1 mile = 1.609344 km

EXAMPLE 1.2 – Unit conversions
At the 2009 World Championships in Athletics, held in Berlin, the Jamaican sprinter 

Usain Bolt set a world record for the 200-meter dash by running that distance in a time of 19.19 s. 
Assuming he ran exactly 200 m in this time, what was Usain Bolt’s average speed during the race 
in     (a) m/s; (b) km/h; (c) miles per hour?

SOLUTION
(a) The first thing we need to do is to understand what an average speed is. Average speed 

is the total distance covered divided by the time in which it was covered. If we divide the given 
distance by the given time we’ll get the answer we’re looking for:

 Usain Bolt’s average speed was:   
200 m
19.19 s

= 10.422094841063 m/s

This brings up the idea of significant figures, because you certainly do not want to quote 
an answer with 14 significant figures, as is shown above. Instead, round off the answer to four 
significant figures, because there are four in the time of 19.19 s. The rule is, when you multiply 
or divide numbers you look at the number of significant figures in the values going into the 
calculation and round off to the smallest number of significant figures. Here, we’re saying that 
the distance of 200 m is exact (see the assumption stated in the example), so that number has an 
infinite number of significant figures, while the time has four significant figures.

It would be more realistic to make the following argument. Lengths on a track, 
particularly at a major international competition such as the World Championships, are measured 
very accurately. For argument’s sake, let’s say the 200 meter distance is accurate to within 1 
centimeter. Thus, the distance Usain Bolt ran was 200.00 m, seeing as 1 cm = 0.01 m. There are 
five significant figures in 200.00, so when dividing a number with five significant figures by one 
with four, we should round off our final answer to four significant figures.

Thus, Usain Bolt’s average speed was 10.42 m/s.

(b) To convert from m/s to km/h, we need to know that there are 1000 m in 1 km, and that 
there are 3600 s in 1 hour. Then, we simply set these conversion factors up as ratios so that the 
units cancel properly, as follows:

10.4221 m
s
×

1 km
1000 m

×
3600 s

1 h
= 37.52 km/h .
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We treat conversion factors as having an infinite number of significant figures and we 
remember that the minimum number of significant figures in the factors going into the average 
speed in m/s was four. Thus, our final answer in this case should also have four significant 
figures. In carrying out the calculation, however, six digits are shown for the average speed in m/
s, even though we know the last two are not significant (this is why the final answer is rounded 
off to four significant figures in part (a)). We could even keep the 14 digits we had originally – 
the reason for keeping at least a couple of extra digits, and only rounding off at the end of the 
calculation when you state the final answer, is to state your answer as accurately as possible.

37.52 km/h does not differ by much from the 37.51 km/h we would get if we had started 
the conversion process with 10.42 m/s, but the 37.52 km/h value is more accurate.

(c) To state the average speed in miles per hour, we could start with the average speed in 
m/s and convert; however, it requires less work to start from km/h, so let’s do that. Again, let’s 
add an extra couple of digits for the intermediate values and round off to four significant figures 
at the end.

37.51956 km
h

×
1 mile

1.609344 km
= 23.31 miles/h.

So, we have now stated Usain Bolt’s average speed in three equivalent ways, all with 
different units. Don’t forget to be amazed by how fast that is!

Significant figures
If we add or subtract numbers, the rules are a little different from what we do when we 

multiply or divide. Let’s add the following three distances: 341.2 m, 25 cm, and 0.3367 m. First 
we need to convert everything to the same units. We could convert everything to meters, for 
instance. Then, do the addition:

341.2 m + 0.25 m + 0.3367 m = 341.7867 m.

At this point, we need to round off correctly. Here, we look at decimal places, not 
significant figures. The first number goes to 1 decimal place, the second number to 2 decimal 
places, and the third number goes to 4 decimal places. Round off the final answer to 1 decimal 
place, because that’s the smallest number of decimal places in any of the numbers going into the 
sum. When adding or subtracting, round off to the smallest number of decimal places. In this 
case, our final answer would be 341.8 m.

Many people get confused by zeroes, and whether to count them as significant figures. 
Leading zeroes do not count, but trailing zeroes do count as significant figures. If you forget, just 
convert a value to scientific notation and count the significant digits.

Related End-of-Chapter Exercises: 1, 2, 3, 11, 17.

Essential Question 1.2: How many significant figures are there in the value 0.0035 m? How 
many are in the value 35.00 m?
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Answer to Essential Question 1.2: There are only two significant figures in the value 0.0035 m, 
because it can be written as 3.5 x 10-3 m, which has only two significant figures. There are four 
significant figures in the value 35.00 m, because it can be written as 3.500 x 101 m, which has 
four significant figures. Trailing zeroes are very important! 3.5 x 101 m and 3.500 x 101 m 
represent the same length, but in the second case we know the length with greater precision than 
we do in the first case.

1-3 Trigonometry, Algebra, and Dimensional Analysis
 Solving a physics problem often involves the geometry of right-angled triangles. Such a 
triangle is shown in Figure 1.2. In a right-angled triangle there are several 
relationships between the angle shown in the diagram and the different sides of 
the triangle, including:

;     ;    .

 In a right-angled triangle, the Pythagorean Theorem relates the three 
sides:  

 .       (Equation 1.1: The Pythagorean theorem). 

A few special right-angled triangles include:
• The 3-4-5 triangle in which the sides are in a 3:4:5 ratio.
• The 5-12-13 triangle in which the sides are in a 5:12:13 ratio.

• The 30˚-60˚-90˚ triangle in which the sides are in a 1: :2 ratio.

Many triangles do not have a 90˚ angle. For a general triangle, 
such as that in Figure 1.3, if we know the length of two sides and one 
angle, or the length of one side and two angles, we can use the Sine Law 
and the Cosine Law to find the other sides and angles.

. (Equation 1.2: Sine Law)

. (Equation 1.3: Cosine Law)
              

Algebra
 In addition to understanding what concepts to apply in solving a particular physics 
problem, you will need to know how to manipulate equations to solve for a particular unknown. 
In other words, you’ll need to do algebra. 

EXAMPLE 1.3A – Solving an equation using algebra
Solve for v in the following equation:  . Take a minute to solve the 

equation on your own before looking at the solution.
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Figure 1.2: A right-
angled triangle.

Figure 1.3: A 
general triangle.



SOLUTION
To solve for a particular variable, you generally isolate that variable on one side and place 

everything else on the other side. Taking a step-by-step approach gives:
1. Bring all v terms to the left by adding v2 to both sides: 
2. Isolate the v term on the left by adding 7 to both sides: 

3. Divide by 5: 
4. Solve for v: 

It is tempting to say that , but it is important to remember that the negative square 
root is also a possibility.

We did not concern ourselves with units above, but whenever you come up with an 
equation it is a good idea to do some dimensional analysis (that is, check your units). If the units 
check out, that does not necessarily mean your equation is correct. If your units do not check out, 
however, you know for sure there is something wrong with the equation.

EXAMPLE 1.3B – Using dimensional analysis
You’re trying to solve for the velocity of a ball, 3 seconds after you throw it straight up in 

the air. You know that the velocity v has units of m/s, and you know the following parameters 
(defining the positive direction to be up): the initial velocity is ; the acceleration is 

; and the time is  Your friend Sara says the equation connecting these 

variables is: . Your friend Bob claims the equation is: . Can dimensional 
analysis (checking the units) help you to rule out one or both of these equations as incorrect?

SOLUTION
 Let’s try both equations, keeping careful track of the units as we go.

Sara’s method: .

For Sara’s equation, the left-hand side (v) has units of m/s, and both terms on the right-
hand side also have units of m/s. This is good. Quantities that are added or subtracted must have 
the same units, and the units on one side of an equation must match the units on the other.

Bob’s method: .

Bob’s equation is incorrect, because the two terms on the right do not have the same 
units, and the units of the last term do not match the units of the left side of the equation.

In fact, neither Sara nor Bob has the correct equation. As we will see in chapter 2, the 
correct equation relating the velocity to the initial velocity, acceleration, and time is . 
Dimensional analysis let us know that Bob’s equation was incorrect, but it could not tell us that 
Sara’s equation had an extra factor of  ½ in one term, because that extra factor had no units 
associated with it. Dimensional analysis can be helpful, but it is just one tool in our problem-
solving toolkit, and it needs to be used appropriately.

Related End-of-Chapter Exercises: 38, 45.

Essential Question 1.3: What is the connection between the Pythagorean theorem and the Cosine 
law?
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Answer to Essential Question 1.3: The Pythagorean theorem is a special case of the Cosine Law 
that applies to right-angled triangles. With an angle of 90˚ opposite the hypotenuse, the last term 
in the Cosine Law disappears because cos(90˚) = 0, leaving .

1-4 Vectors
It is always important to distinguish between a quantity that has only a magnitude, which 

we call a scalar, and a quantity that has both a magnitude and a direction, which we call a vector. 
When we work with scalars and vectors we handle minus signs quite differently. For instance, 
temperature is a scalar, and a temperature of +30˚C feels quite different to you than a temperature 
of –30˚C. On the other hand, velocity is a vector quantity. Driving at +30 m/s north feels much 
the same as driving at –30 m/s north (or, equivalently, +30 m/s south), assuming you’re going 
forward in both cases, at least! In the two cases, the speed at which you’re traveling is the same, 
it’s just the direction that changes. So, a minus sign for a vector tells us something about the 
direction of the vector; it does not affect the magnitude (the size) of the vector.

When we write out a vector we draw an arrow on top to represent the fact that it is a 
vector, for example . A, drawn without the arrow, represents the magnitude of the vector.

EXPLORATION 1.4 – Vector components
Consider the vectors  and  represented by the 

arrows in Figure 1.4. The vector  lines up exactly with one 
of the points on the grid. The vector  has a magnitude of 
4.00 m and is directed at an angle of 63.8˚ below the positive 
x-axis. It is often useful (if we’re adding the vectors together, 
for instance) to find the components of the vectors. In this 
Exploration, we’ll use a two-dimensional coordinate system 
with the positive x-direction to the right and the positive y-
direction up. Finding the x and y components of a vector 
involves determining how much of the vector is directed right 
or left, and how much is directed up or down, respectively.

Step 1 - Find the components of the vector . The x and y 
components of  ( and , respectively) can be determined 

directly from Figure 1.4. Conveniently, the tip of  is located at 
an intersection of grid lines. In this case, we go exactly 5 m to the left and exactly 2 m up, so we 
can express the x and y components as:

 to the left, or  to the right.

 up.

This makes it look like we know the components of  to an 
accuracy of only one significant figure. The components are known far 
more precisely than that, because  lines up exactly with the grid lines. 
The components of  are shown in Figure 1.5.
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Figure 1.5: Components of the vector .



Step 2 – Express the vector  in unit-vector notation. Any vector is the vector sum of its 
components. For example, . This is shown graphically in Figure 1.5. It is rather long-

winded to say to the right + 2 m up. We can express the vector in a more compact form 
by using unit vectors. A unit vector is a vector with a magnitude of 1 unit. We will draw a unit 
vector with a carat (^) on top, rather than an arrow, such as . This notation looks a bit like a hat, 
so we say  as “x hat”. Here we make use of the following unit vectors:

a vector with a magnitude of 1 unit pointing in the positive x-direction
a vector with a magnitude of 1 unit pointing in the positive y-direction

We can now express the vector  in the compact notation: (–5 m) + (2 m) .

Step 3 - Find the components of the vector . We will handle the components of differently 
from the method we used for , because does not conveniently line up with the grid lines like 

 does. Although we could measure the components of  carefully off the 
diagram, we will instead use the trigonometry associated with right-angled 
triangles to calculate these components because we know the magnitude and 
direction of the vector.

As shown in Figure 1.6, we draw a right-angled triangle with the 
vector as the hypotenuse, and with the other two sides parallel to the 
coordinate axes (horizontal and vertical, in this case). The x-component can 
be found from the relationship:

.  So .

We can use trigonometry to determine the magnitude of the 
component and then check the diagram to get the appropriate sign. From 
Figure 1.6, we see that the x-component of points to the right, so it is in 
the positive x-direction. We can then express the x-component of as:

.
The y-component can be found in a similar way:

.  So, .

The y-component of points down, so it is in the negative y-direction. Thus:
.

The vector can now be expressed in unit-vector notation as:
.

Key ideas for vectors: It can be useful to express a vector in terms of its components. One 
convenient way to do this is to make use of unit vectors; a unit vector is a vector with a 
magnitude of 1 unit.                  Related End-of-Chapter Exercises: 6, 18.

Essential Question 1.4: Temperature is a good example of a scalar, while velocity is a good 
example of a vector. List two more examples of scalars, and two more examples of vectors.
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Figure 1.6: Components of 
the vector .



Answer to Essential Question 1.4: Other examples of scalars include mass, distance, and speed. 
Examples of vectors, which have directions associated with them, include displacement, force, 
and acceleration.

1-5 Adding Vectors

EXAMPLE 1.5 – Adding vectors
Let’s define a vector  as being the sum of the two vectors  and  from Exploration 

1.4. A vector that results from the addition of two or more vectors is called a resultant vector.
(a) Draw the vectors  and  tip-to-tail to show geometrically the resultant vector .

(b) Use the components of vectors  and  to find the components of .

(c) Express  in unit-vector notation.
(d) Express  in terms of its magnitude and direction.

SOLUTION
(a) To add the vectors geometrically 

we can move the tail of  to the tip of , 
or the tail of  to the tip of . The order 
makes no difference. If we had more 
vectors, we could continue the process, 
drawing them tip-to-tail in sequence. The 
resultant vector always goes from the tail of 
the first vector to the tip of the last vector, 
as is shown in Figure 1.7.

 (b) Now let’s add the vectors using 
their components. We already know the x 
and y components of  and  (see 
Exploration 1.4), so we can use those to find 
the components of the resultant vector . 
Table 1.2 demonstrates the process. Note 
that the components of  are 
shown here to two decimal 
places, even though we know 
them with more precision. 
Because we’ll be adding the 
components of  to the 
components of , which we 
know to two decimal places, 
our final answers should also 
be expressed with two 
decimal places. 
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Vector x-component y-component

Figure 1.7: Adding vectors geometrically, tip-to-tail. In 
(a), the tail of vector  is placed at the tip of ; in (b), the 

tail of vector  is placed at the tip of . The same resultant 
vector  is produced - the order does not matter.

Table 1.2: Adding the vectors  and using components. The process is 
shown pictorially in Figure 1.8.



Note that we are solving this two-dimensional vector-
addition problem by using a technique that is very common in 
physics – splitting a two-dimensional problem into two separate 
one-dimensional problems. It is very easy to add vectors in one 
dimension, because the vectors can be added like scalars with 
signs. To find , for instance, we simply add the x-components 

of  and  together. To find , we carry out a similar process, 

adding the y-components of  and . After finding the individual 
components of , we then combine them, as in parts (c) and (d) 

below, to specify the vector .

(c) Using the bottom line in Table 1.2, the vector  can 
be expressed in unit-vector notation as: 

.

(d) If we know the components of a vector we can draw a 
right-angled triangle (see Figure 1.9) in which we know the 
lengths of two sides. Applying the Pythagorean theorem gives the length of the hypotenuse, 
which is the magnitude of the vector .

To find the angle between  and  we can use the relationship:

.

This gives .

We have dropped the signs from the components, but, in stating 
the vector  correctly in magnitude-direction form, we can check the 
diagram to make sure we’re accounting for which way  points:  = 
3.60 m at an angle of 26.2˚ below the negative x-axis. The phrase “below 
the negative x-axis” accounts for the fact that the vector  has negative x 
and y components.

Related End-of-Chapter Exercises: 24 – 30.

Essential Question 1.5: Consider again the vectors  and  from Exploration 1.4 and Example 
1.5. If the vector  is equal to , express  in terms of its components.
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Figure 1.8: This figure illustrates the 
process of splitting the vectors into 
components when adding. Each 
component of the resultant vector, , 
is the vector sum of the corresponding 
components of the vectors  and .  

Figure 1.9: The components 
of the vector .



Answer to Essential Question 1.5: .

1-6 Coordinate Systems
Now that we have looked at an example of the component method of vector addition, in 

Example 1.5, we can summarize the steps to follow.
 

A General Method for Adding Vectors Using Components
1. Draw a diagram of the situation, placing the vectors tip-to-tail to show how they add 

geometrically.
2. Show the coordinate system on the diagram, in particular showing the positive 

direction(s).
3. Make a table showing the x and y components of each vector you are adding together.
4. In the last line of this table, find the components of the resultant vector by adding up 

the components of the individual vectors.

Coordinate systems
A coordinate system typically consists of an x-axis and a y-axis 

that, when combined, show an origin and the positive directions, as in 
Figure 1.10. A coordinate system can have just one axis, which would 
be appropriate for handling a situation involving motion along one line, 
and it can also have more than two axes if that is appropriate. An 
important part of dealing with vectors is to think about the coordinate 
system or systems that is/are appropriate for dealing with a particular 
situation. Let’s explore this idea further.

EXPLORATION 1.6 – Buried treasure
While stranded on a desert island you find a note sealed inside a 

bottle that is half-buried near a big tree. Unfolding the note, you read: 
“Start 1 pace north of the big tree. Walk 10 paces northeast, 5 paces 
southeast, 6 paces southwest, 7 paces northwest, 4 paces southwest, and 
2 paces southeast. Then dig.” Realizing that your paces might differ in length from the paces of 
whoever left the note, rather than actually pacing out the distances you begin by drawing an x-y 
coordinate system in the sand, with positive x directed east and positive y directed north. After 
struggling to split the six vectors into components, however, you wonder whether there is a better 
way to solve the problem.

Step 1 - Is there only one correct coordinate system, or can you choose from a number of 
different coordinate systems to calculate a single resultant vector that represents the vector sum 
of the six vectors specified in the note? Any coordinate system will work, but there may be one 
coordinate system that makes the problem relatively easy, while others involve significantly more 
work to arrive at the answer. It’s always a good idea to spend some time thinking about which 
coordinate system would make the problem easiest.

In fact, you should also think about whether the component method is even the easiest 
method to use to solve the problem. Adding vectors geometrically would also be a relatively easy 
way of solving this problem. Thinking about adding them geometrically (it might help to look at 
the six displacements, as sketched in Figure 1.11), in fact, leads us straight to the most 
appropriate coordinate system.
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Figure 1.10: A typical x-y 
coordinate system.



Step 2 - What would be the simplest coordinate 
system to use to find the resultant vector? One 
thing to notice is that the directions given are 
northeast, southeast, southwest, or northwest. An 
appropriate coordinate system is one that is aligned 
with these directions. For instance, we could point 
the positive x-direction northeast, and the positive y-
direction northwest. In that case, out of the six 
different displacements, three are entirely in the x-
direction and the other three are entirely in the y-
direction. This makes the problem straightforward to 
solve. Figure 1.12 shows the vectors grouped by 
whether they are parallel to the x-axis or parallel to 
the y-axis.

Step 3 - Where should you dig? To determine where to dig, focus first on the displacements that 
are either in the +x direction (10 paces northeast) or the –x direction (6 paces southwest, and 4 
paces southwest). Because the total of 10 paces southwest exactly cancels the 10 paces northeast, 
there is no net displacement along the x-axis.

Now turn to the y-axis, where we have 7 paces northwest (the +y direction) and a total of 
5 + 2 = 7 paces southeast (the –y direction). Once again these exactly cancel. Because the two 
components are zero, the resultant displacement vector has a magnitude of zero. You should dig at  
the starting point, 1 pace north of the tree (assuming you can figure out which way north is!). 
Digging at that spot, you find a box with a few car batteries, a 12-volt lantern, a solar cell, several 
wires, and a physics textbook. Reading through the book you figure out how to wire the solar cell 
to the batteries so the batteries are charged up while the sun shines, and you then figure out how 
to wire the batteries to the lantern to create a bright light you can use to signal passing planes. 
Using this system, you are rescued just a few days later, although you make sure to bury 
everything again carefully near the tree, and place the map back in the bottle, to help the next 
person who gets stranded there.

Key ideas for coordinate systems: Thinking carefully about the coordinate system to use can 
save a lot of work. Any coordinate system will work, but, in some cases, choosing the most 
appropriate coordinate system can make a problem considerably easier to solve.  
Related End-of-Chapter Exercises: 5, 31, 41, 42.

Essential Question 1.6: In Exploration 1.6, the six displacements of 10 paces, 5 paces, 6 paces, 7 
paces, 4 paces, and 2 paces happen to completely cancel one another because of their particular 
directions. If you could adjust the directions of each of the six vectors to whatever direction you 
wanted, what is the maximum distance they could take you away from the starting point?
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Figure 1.11: A sketch of the six displacements specified on the treasure map.

Figure 1.12: Choosing a coordinate system that fits 
the problem can make the problem easier to solve. In 
this case we have three vectors aligned with the x-axis 
and three vectors aligned with the y-axis.



Answer to Essential Question 1.6: If you lined up all six vectors in the same direction, you 
would end up 34 paces away from the starting point. When the vectors point in the same direction 
(and only in this case) you can add their magnitudes. 10 + 5 + 6 + 7 + 4 + 2 = 34 paces.

1-7 The Quadratic Formula

EXAMPLE 1.7 – Solving a quadratic equation
Sometime, such as in some projectile-motion situations, we will have to solve a quadratic 

equation, such as . Try solving this yourself before looking at the solution.

SOLUTION
The usual first step is to write this in the form , with all the terms on the 

left side. In our case we get: .

 We could graph this on a computer or a calculator to find the values of x (if there are any) 
that satisfy the equation; we could try factoring it out to find solutions; or we can use the 
quadratic formula to find the solution(s). Let’s try the quadratic formula:

 .   (Equation 1.4: The quadratic formula)

 
In our example, with a = 2.0, b = –5.0, and c = –7.0, the two solutions work out to:

 , with appropriate units.

 , with appropriate units.

These values agree with the graph of the 
function shown in Figure 1.13. The graph crosses the x-
axis at two points, at x = –1 and also at x = +3.5. 

Related End-of-Chapter Exercises: 36, 46.

Essential Question 1.7: Could you have a quadratic 
equation in the form   that had no 
solutions for x (at least, no real solutions)? If so, what 
would happen when you tried to solve for x using the 
quadratic formula? What would the graph look like?
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Figure 1.13: A graph of the quadratic equation 
, for Example 1.7.



Answer to Essential Question 1.7: Yes, you could have an equation with no real solutions. In that 
case when you applied the quadratic formula you would get a negative under the square root, 
while the graph would still be parabolic but would not cross (or touch) the x-axis.

Chapter Summary

 Essential Idea
Physics is the study of how things work, and in analyzing physical situations we will try to 

apply a logical, systematic approach. Some of the basic tools we will use include: 

 Units
Our primary set of units is the système international (SI), based on meters, kilograms, and 

seconds, and four other base units. SI is widely accepted in science worldwide, and convenient 
because conversions are based on powers of ten. Converting between units is straightforward if 
you know the appropriate conversion factor(s).

 Significant Figures
Three useful guidelines to follow when rounding off include:

1. Round off only at the end of a calculation when you state the final answer.

2. When you multiply or divide, round your final answer to the smallest number of 
significant figures in the values going into the calculation.

3. When adding or subtracting, round your final answer to the smallest number of 
decimal places in the values going into the calculation.

 Trigonometry
In a right-angled triangle, we use the following relationships:

;      ;      .

 
We relate the three sides using: . (Eq. 1.1: The Pythagorean Theorem) 

Many triangles do not have a 90˚ angle. For a general triangle, such as that in Figure 1.3, 
if we know the length of two sides and one angle, or the length of one side and two angles, we 
can use the sine law and the cosine law to find the other sides and angles.

.  (Equation 1.2: Sine Law)

.  (Equation 1.3: Cosine Law)
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 Vectors
A vector is a quantity with both a magnitude and a direction. Vectors can be added 

geometrically (drawn tip-to-tail), or by using components.

A unit vector is a vector with a length of one unit. A unit vector is denoted by having a carat 
on top, which looks like a hat, like  (pronounced “x hat”).

A vector can be stated in unit-vector notation or in magnitude-direction notation.
 
 A Method for Adding Vectors Using Components

1. Draw a diagram of the situation, placing the vectors tip-to-tail to show how they 
add geometrically.

2. Show the coordinate system on the diagram, in particular showing the positive 
direction(s).

3. Make a table showing the x and y components of each vector you are adding 
together.

4. In the last line of this table, find the components of the resultant vector by adding 
up the components of the individual vectors.

 Algebra and Dimensional Analysis
Dimensional analysis can help check the validity of an equation. Units must be the same for 

values that are added or subtracted, as well as the same on both sides of an equation.

A quadratic equation in the form can be solved by using the quadratic 
formula: 

.  (Equation 1.4: The quadratic formula)

End-of-Chapter Exercises

Exercises 1 – 10 are conceptual questions that are designed to see if you have understood the  
main concepts of the chapter.

1. You can convert back and forth between miles and kilometers using the approximation 
that 1 mile is approximately 1.6 km. (a) Which is a greater distance, 1 mile or 1 km? (b) 
How many miles are in 32 km? (c) How many kilometers are in 50 miles?

2. (a) How many significant figures are in the number 0.040 kg? (b) How many grams are 
in 0.040 kg?

3. You have two numbers, 248.0 cm and 8 cm. Rounding off correctly, according to the 
rules of significant figures, what is the (a) sum, and (b) product of these two numbers?
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4. Figure 1.14 shows an 8-15-17 right-angled triangle. For the angle 
labeled θ in the triangle, express (as a ratio of integers) the 
angle’s (a) sine, (b) cosine, and (c) tangent.

5. You are adding two vectors by breaking them up into 
components. Your friend is adding the same two vectors, but is 
using a coordinate system that is rotated by 40˚ with respect to 
yours. Assuming you both follow the component method 
correctly, which of the following do the two of you agree on and which do you disagree 
about? (a) The magnitude of the resultant vector. (b) The direction of the resultant vector. 
(c) The x-component of the resultant vector. (d) The y-component of the resultant vector. 
(e) The angle between the x-axis and the resultant vector.

6. Three vectors are shown in Figure 1.15, 
along with an x-y coordinate system. Find the 
x and y components of (a) ,  (b) ,  and (c) 

.

7. The vectors and are specified in Figure 
1.15. What is the magnitude and direction of 
the vector  + ? 

8. You have two vectors, one with a length of 
length 4 m and the other with a length of 7 m. 
Each can be oriented in any direction you 
wish. If you add these two vectors together 
what is the (a) largest-magnitude resultant 
vector you can obtain? (b) smallest-magnitude 
resultant vector you can obtain?

9. You have three vectors, with lengths of 4 m, 7 m, 
and 9 m, respectively. If you add these three vectors together, what is the (a) largest-
magnitude resultant vector you can obtain? (b) smallest-magnitude resultant vector you 
can obtain?

10. You have three vectors, with lengths of 4 m, 7 m, and 15 m, respectively. If you add these 
three vectors together what is the (a) largest-magnitude resultant vector you can obtain? 
(b) smallest-magnitude resultant vector you can obtain?

Exercises 11 –  17 deal with unit conversions.

11. Using the conversion factors you find in some reference (such as on the Internet), convert 
the following to SI units. In other words, express the following in terms of meters, 
kilograms, and/or seconds.  (a) 1.00 years  (b) 1.00 light-years  (c) 8.0 furlongs  (d) 12 
slugs  (e) 26 miles, 385 yards (the length of a marathon).
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Figure 1.14: An 8-15-17 
triangle, for Exercise 4.

Figure 1.15: The vectors , for 
Exercises 6 and 7.



12. Using the fact that 1 inch is precisely 2.54 cm, 
fill in Table 1.3 to create your own table of 
conversion factors for various length units.

13. If someone were to give you a 50-carat diamond, 
what would be its mass in grams?

14. Fill in Table 1.4 to create your own table of 
conversion factors for various mass units.

15. (a) Which is larger, 1 acre or 1 hectare? (b) If you 
own a plot of land that has an area of exactly 
1 hectare and it is square, what is the length of 
one of its sides, in meters? (c) If your 1-hectare 
lot is rectangular with a width of 20 m, how long 
is it?

16. What is your height in (a) inches?  (b) cm?  What 
is your mass in (c) pounds?  (d) kg?

17. Firefighters using a fire hose can spray about 1.0 x 
102 gallons of water per minute on a fire. What is 
this in liters per second? Assume the firefighters are 
in the USA. (Why is this assumption necessary?)

Exercises 18 – 26 deal with various aspects of vectors and vector components.

18. In Exploration 1.4, we expressed the vector  in terms of its components. Assuming the 
magnitude of each component is known to three significant figures, express  in terms 
of its magnitude and direction.

19. Using the result of Exercise 18 to help you, and aided by Figure 1.7, use the sine law and/
or the cosine law to determine the magnitude and direction of the vector  shown in 
Figure 1.7. The vectors  and are defined in Exploration 1.4. Hint: you may find it 
helpful to use geometry to first determine the angle between the vectors  and . Show 
your work.

20. Two vectors and can be expressed in unit-vector notation as follows:

 and . Express the following in unit-

vector notation: (a)  (b)   (c) .

21. Repeat Exercise 20, but express your answers in magnitude-direction format instead.
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English Unit Metric Unit
1 inch 2.54 cm
1 foot               cm
1 foot               m         
             feet  1 m
1 mile              km
            miles 1 km

English Unit Metric Unit
1 ounce 28.35 g
1 lb.               g
1 lb.               kg         
             lbs.  1 kg
1 stone              kg
           stones 1 kg

Table 1.3: A table of conversion 
factors for length units.

Table 1.4: A table of conversion 
factors for mass units.



22. See Exercise 20 for the definitions of the vectors and . (a) Is it possible to solve for 

the number a in the equation ? If it is possible, then solve for a; if not, explain 
why not.  (b) How many different values of b 
are there such that the sum  has only an 
x-component? Find all such values of b.

23. Three vectors are shown in Figure 1.16, along 
with an x-y coordinate system. Use magnitude-
direction format to specify vector (a)   (b)   
(c) .

24. The vectors are shown in Figure 1.16. 
Consider the following vectors: 1.  ; 2. ;  3. 

 ;  4. . Rank those four vectors by 
their magnitude, from largest to smallest. Use 
notation such as 3 > 2 = 4 > 1. 

25. Three vectors are shown in Figure 1.16. (a) Use 
the geometric method of vector addition (add 
vectors tip-to-tail) to draw the vector representing 

. (b) Specify that resultant vector in unit-
vector notation.

26. Three vectors are shown in Figure 1.16. (a) Use the geometric method of vector addition 
(add vectors tip-to-tail) to draw the vector representing . (b) Specify that 
resultant vector in unit-vector notation. (c) Specify that resultant vector in magnitude-
direction notation.

Exercises 27 – 31 are designed to give you practice in applying the component method of 
vector addition. For each exercise, start with the following: (a) Draw a diagram showing how the 
vectors add geometrically (the tip-to-tail method). (b) Show the coordinate system (we’ll use the 
standard coordinate system shown in Figure 1.16 above). (c) Make a table showing the x and y 
components of each vector you’re adding together. (d) In the last row of the table, find the 
components of the resultant vector.

In addition to the vectors shown in Figure 1.16, let’s make use of these two vectors: 
the vector , and the vector  with a magnitude of 5.00 m at an 
angle of 30˚ above the positive x-axis.

27. Find the resultant vector representing . Answer parts (a) – (d) as specified 
above. (e) State the resultant vector in magnitude-direction notation.

28. Find the resultant vector representing . Answer parts (a) – (d) as specified above. 
(e) State the resultant vector in unit-vector notation.
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Figure 1.16: The vectors , 
for Exercises 23 – 31.



29. Find the resultant vector representing . Answer parts (a) – (d) as specified above. 
(e) State the resultant vector in magnitude-direction format.

30. Find the resultant vector representing . Answer parts (a) – (d) as specified above. 
(e) State the resultant vector in unit-vector notation. (f) State the resultant vector in 
magnitude-direction format.

31. Repeat Exercise 30, but now use an x-y coordinate system that is rotated so the positive x-
direction is the direction of the vector .

Exercises 32 – 36 involve applications of the physics concepts addressed in this chapter. 

32. In 1999, NASA had a high-profile failure when it lost contact with the Mars Climate 
Orbiter as it was trying to put the spacecraft into orbit around Mars. Do some research 
and write a paragraph or two about what was responsible for this failure, and how much 
the project cost.

33. In 1983, an Air Canada Boeing 767 airplane was nicknamed “The Gimli Glider.” Discuss 
the events that led to the plane getting this nickname, and how they relate to the topics in 
this chapter.

34. One way to travel from Salt Lake City, Utah, to Billings, Montana, is to first drive 
660 km north on interstate 15 to Butte, Montana, and then drive 370 km east to Billings 
on interstate 90. If you did this trip by plane, instead, traveling in a straight line between 
Salt Lake City and Billings, how far would you travel?

35. In the sport of orienteering, participants must plan carefully to get from one checkpoint to 
another in the shortest possible time. In one case, starting at a particular checkpoint, Sam 
decides to take a path that goes west for 600 meters, and then go northeast for 400 meters 
on another path to reach the next checkpoint. Between the same two checkpoints, Mary 
decides to take the shortest distance between the two checkpoints, traveling off the paths 
through the woods instead. What is the distance Mary travels along her route, and in what  
direction does she travel between the checkpoints?

36. You throw a ball almost straight up, with an initial speed of 10 m/s, from the top of a 20-
meter-high cliff. The approximate time it takes the ball to reach the base of the cliff can 
be found by solving the quadratic equation  . Solve the 
equation to find the approximate time the ball takes to reach the base of the cliff.

General problems and conceptual questions

37. Prior to the 2004 Boston Marathon, the Boston Globe newspaper carried a story about a 
running shoe called the Nike Mayfly. According to the newspaper, the shoes were 
designed to last for 62.5 miles. Does anything strike you as odd about this distance? If so, 
what?
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38. Do the following calculations make any sense? Why or why not? If any make sense, what 
could they represent? 

(a)   (b)   (c)    (d) .

39. The distance from Dar es Salaam, Tanzania to Nairobi, Kenya, is 677 km, while it is 1091 
km from Dar es Salaam to Kampala, Uganda. (a) Using these numbers alone, can you 
determine the distance between Nairobi and Kampala? Briefly justify your answer.  (b) 
Using only these numbers, what is the minimum possible distance between Nairobi and 
Kampala?  (c) What is the maximum possible distance?

40. Use the information given in Exercise 39, combined with the fact that it is 503 km from 
Nairobi to Kampala, to construct a triangle with the three cities at the vertices. What is 
the angle between the two lines that meet at (a) Dar es Salaam? (b) Nairobi?  (c) 
Kampala?

41. Figure 1.17 shows overhead views of similar sections of two different cities where the 
blocks are marked out in a square grid pattern. In City A, the streets run north-south and 
east-west, while in City B, the streets are at some angle with respect to those in City A. In 
City A, Anya intends to walk from the lower left corner (marked by a blue dot) to the 
upper right corner (marked by a yellow dot). In City B, Boris will walk a similar route 
between the colored dots, ending up due north of his starting point. For both cities, use a 
coordinate system where positive x is east and positive y is north. (a) Assuming Anya 
goes along the streets, marked in black, choose a route for Anya to follow that involves 
her changing direction only once. Express her route in unit-vector notation. (b) How 
many blocks does she travel? (c) Assuming Boris goes along the streets, choose a route 
for Boris to follow that involves him changing direction only once. Break Boris’ trip into 
two parts, the first ending at the corner where he changes direction and the second 
starting there, and express each part as a vector in unit-vector notation. (d) What do you 
get when you add the two vectors from 
part (c)?

42. Return to the situation described in 
Exercise 39, where for City B we used a 
coordinate system where positive x is 
east and positive y is north. Comment on 
the relative advantages and 
disadvantages of that coordinate system 
over one in which the coordinate axes are 
aligned parallel to the streets.

43. The top of a mountain is 2100 m north, 
3300 m west, and 2300 m vertically 
above the initial location of a mountain climber. 
(a) What is the straight-line distance between 
the top of the mountain and the climber? (b) 
Later in the climb, the climber finds that she is 
1200 m south, 900 m east, and 1100 m vertically below the top of the mountain. What is 
the minimum distance she has traveled from her starting point? (c) Checking her 
handheld GPS (global positioning system) receiver, she finds she has actually traveled a 
distance 2.5 times larger than the answer to part (b). How is this possible?
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Figure 1.17: Overhead views of a 3 block 
by 4 block region in two different cities, 
for Exercises 41 and 42.



44. In Figure 1.18, four successive moves are shown near the 
end of a chess match. First, Black moves his Pawn (P); 
then, White moves her Queen (Q); then Black moves his 
Knight (K); and White moves her Rook (R). Using a 
traditional x-y coordinate system with positive x to the right 
and positive y up, we can express the movement of the 
Queen as +4 units in the x-direction and -4 units in the y-
direction. Using similar notation, express the movement of 
the (a) Pawn; (b) Knight; and (c) Rook. 

45. Solve for x in the following expressions:

  (a) .     (b) 3 = .

46. Often, when we solve a one-dimensional motion problem, 
which we will spend some time doing in the next chapter, we 
need to solve a quadratic equation to find the time when some 
event happens. For instance, solving for the time it takes a police officer to catch a 
speeding motorist could involve solving an equation of the form:  
2 m/s2( )t 2 − 10 m/s( )t −100 m = 0,

where the m stands for meters and s stands for seconds. (a) What are the two possible 
solutions for t, the time when the police officer catches up to the motorist? (b) Which 
solution is the one we want to keep as the solution to the problem?

47. In the optics section of this book, we will use an equation to relate the position of an 
image formed by a lens (known as the image distance, di) to the position of the object 
with respect to the lens (the object distance, do) and the focal length, f, of the lens. (a) Use 
dimensional analysis to determine which of the following three equations could correctly 
relate those three lengths. 

Equation 1: ; Equation 2: ; Equation 3: . 

If you think any of the above are dimensionally incorrect, explain why. (b) If you found 
one or more of the three equations to be dimensionally correct, does this guarantee that 
the equation is the correct way to relate these three lengths? Explain.

48. Three students are having a conversation. Comment on each of their statements.

Ruben: The question says, what’s the magnitude of the resultant vector obtained by adding a 
vector of length 3 units to a vector of length 4 units. That’s just 7 units, right?

Marta: I think it is 5 units, because you can make a 3-4-5 triangle.

Kaitlyn: It depends on what direction the vectors are in. If the 3 and the 4 are in the 
same direction, you get 7 when you add them. If you have the 3 and the 4 perpendicular 
to one another, you get the 3-4-5 triangle. I think you can get a resultant of anything 
between 5 units and 7 units, depending on the angle between the 3 and the 4.
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Figure 1.18: Four successive 
moves in a chess match.


