2016 Z+jets Differential Cross Section Measurement

D. Arcaro, Semiray Girgis Chyla, Larence R. Sulak

Boston University

October 21, 2019

- Z+jets provides a sensitive evaluation of the accuracy of QCD modeling
- Clean event selection with percent level background and well understood recoil object with the Z boson
- Concentrating on the muon channel in this talk

Documentation: muon: http://cms.cern.ch/iCMS/user/noteinfo?cmsnoteid=CMS%20AN-2018/005 electron: http://cms.cern.ch/iCMS/user/noteinfo?cmsnoteid=CMS%20AN-2018/310 CADI: SMP-19-009 twiki: https://twiki.cern.ch/twiki/bin/viewauth/CMS/ZJets2016CombinationChannelReview

Z kinematics:

- Single and double diff. of Z + 1 jet p_T and |y|
- Angular variables between Z and leading jets

Jets:

- Single and double diff. of leading jet p_T and |y|
- Single diff. measurements up to 5th jet (p_T ordered)
- Jet multiplicity up to 8 jets
- Angular variables between jets (first, second, and third)
- Di-jet mass

Data:

- 2016 legacy re-reco (17Jul2018 94X)
- Single muon

- HLT_lsoMu24 || HLT_lsoTkMu24
- HLT_Ele25_eta2p1_WPTight_Gsf || HLT_Ele27_WPTight_Gsf

Background MC:

- Di-boson Madgraph5_aMC@NLO and powheg
- Tri-boston Madgraph5_aMC@NLO
- Corrections and scale factors
 - Pile-up
 - L1 Prefire
 - Scale Factors (MuonPOG and EGammaPOG)

Signal MC:

- Madgraph5 NLO (Labeled NLO MG5_aMC)
- Madgraph5 LO (Labeled LO MG5_aMC)
- GENEVA MC framework (NNLO + NNLL resummation)

Reco Level

- Opposite sign muons with $|m_{II}-m_Z| < 20 \, GeV$, $p_T > 30/20 \, GeV$, $|\eta| < 2.4$
- $\bullet\,$ Muons pass Medium ID + 0.15 Isolation
- AK4PF chs jets with $p_T > 30 \, GeV$, $|\eta| < 2.4$
- Jets pass Loose ID and Loose WP for PU MVA
- $\Delta R(\mu, jets) < 0.4$

Gen Level

- Opposite sign, same flavor $|m_{II}-m_Z| < 20 \, GeV$, $p_T > 30/20 \, GeV$, $|\eta| < 2.4$
- AK4PF chs jets with $p_T > 30 \, GeV$, $|\eta| < 2.4$
- Muons dressed with photons (R=0.1)
- $\Delta R(\mu, jets) < 0.4$

Background Estimation

- Resonant background estimated from MC
- Non-resonant background (tt, WW, etc) estimated from opposite sign $e\mu$ data:
 - Comparison with MC samples shown in AN

$$egin{aligned} & \mathcal{N}_{\mu\mu} = rac{1}{2}\,x\,k_{e\mu}\,x\,\mathcal{N}_{e\mu} \ & with \ k_{e\mu} = rac{\epsilon_{m\mu}}{\epsilon_e} \ (\sim 1.3) \end{aligned}$$

Table : Total Yields

Final State	Data	Signal MC	Non-resonant Bkg	Resonant Bkg
$\mu\mu$	20.9×10^{6}	20.6×10^{6}	56×10^3	34×10^3
ee	12.1×10^{6}	11.9×10^{6}	32×10^3	21×10^3

- Very good agreement in inclusive Z mass
- Jet multiplicity is modeled well until parton shower region > 3 jets
- More control plots in backup

ee Data

 $\overline{Z/\gamma} \rightarrow ee$

Z/y -> **

µµ Date

Z/γ¹ → μι

Z/y > TT

VV NRB

VV

NRB

• Very good agreement in inclusive Z mass

D. Arcaro, Semiray Girgis Chyla, Larence R. Sulak (BU)

2.2

ee Data

 $\overline{Z/\gamma} \rightarrow ee$

35.9 fb⁻¹(13 TeV

uu Data

Z/γ → μμ

vv

NIDE

1.6 1.8

35.9 fb⁻¹ (13 TeV

 $Z/\gamma' \rightarrow ee$

VV

++++++

NRB

 $Z/\gamma' \rightarrow \tau \tau$

P,(j,)[GeV]

35.9 fb⁻¹ (13 TeV

μμ Data

Z/y → µµ,

p₁₀3 p₁(j₂) [GeV]

vv 📕

NRB Z/y → ti

October 21, 2019 10 / 1

TUnfold package using Tikhonov regularization

- Response matrix filled by p_T ordered matches non-reconstructed events entered into Gen underflow bins (efficiency)
- Fakes estimated from response matrix and Reco underflow bins
- Background and fakes subtracted from data bin by bin

Binning:

• 68% on response matrix diagonal - Reco bins then split in half so nReco >nGen

Regularization:

- Curvature mode + area contrained
- τ chosen from L-curve method

Validation:

- Matrix condition and bottom line test
- Closure tests using NLO and LO madgraph response matrix

Unfolding Strategy

aMC@NLO+Pythia8 Resp. Matrix for 1st jet p_{τ} (N_{inter} \geq 1)

- Regularization needed for p_T due to migrations
- Angular + rapidity variables have low migration and do not need regularization

- Sources calculated: JES, JER, PU, Lumi, XSec, LES, LER, Data+MC Stat, SFStat(Eff), SFSyst(Eff), Unf.
- All sources are assumed to be independent

Table : Differential cross section in Inclusive jet multiplicity and break down of the systematic uncertainties for the muon decay channel.

$N_{\rm jets}$	$\frac{d\sigma}{dN_{\text{jets}}}$ [pb]	Tot. Unc [%]	stat [%]	JES [%]	JER [%]	Eff [%]	Lumi [%]	XSec [%]	PU [%]	LES+LER [%]	Unf [%]
≥ 1	118.	5.8	0.13	4.6	0.37	0.19	2.5	0.038	0.95	1.3	0.062

Z p_T 1 jet inclusive

- $Z p_T$ dominated by jet uncertainty below jet p_T cut
- Large discrepencies at low p_T where soft QCD radiation becomes important

- GENEVA fails to predict multiplicity above the included MEs
- Both madgraph samples predict jet multiplicity within uncertainty even at 8 jets

- $\bullet\,$ JES uncertainty on par with lumi at $\sim 3\%$
- Total data uncertainty is lower than NLO uncertainty up to 500GeV

Double Differential Results

- Double differential in leading jet |y| and Z |y|
- Measurements tend to be better predicted when Z has smaller longitudinal boost

D. Arcaro, Semiray Girgis Chyla, Larence R. Sulak (BU)

Double Differential Results

- Large deviations at very low p_T for both madgraph predictions
- GENEVA has better prediction at low p_T but

Best Linear Unbiased Estimator (BLUE)

- Fully correlated systematics between channels: JES, JER, PU, Lumi, XSec
- Uncorrelated uncertainties: LES, LER, Data+MC Stat, SFStat, SFSyst
- $\bullet\,$ Showing both channels before + combined results in this talk

- \bullet We have measured a wide range of Z+jets variables and extented 2015 results well into the TeV range
- Seeking endorsement to include muon channel analysis in dissertation
- Thanks to the many collaborators on this project: ULB, CEA Saclay, SMP+SMP-VJ and BU
- Finalizing last prediction (NNLO fixed order

muon: http://cms.cern.ch/iCMS/user/noteinfo?cmsnoteid=CMS%20AN-2018/005
electron: http://cms.cern.ch/iCMS/user/noteinfo?cmsnoteid=CMS%20AN-2018/310
CADI: SMP-19-009
twiki: https://twiki.cern.ch/twiki/bin/viewauth/CMS/ZJets2016CombinationChannelReview

BACKUP

Sample /SingleMuon/Run2016B-17Jul2018_ver2-v1/MINIAOD /SingleMuon/Run2016C-17Jul2018-v1/MINIAOD /SingleMuon/Run2016D-17Jul2018-v1/MINIAOD /SingleMuon/Run2016E-17Jul2018-v1/MINIAOD /SingleMuon/Run2016F-17Jul2018-v1/MINIAOD /SingleMuon/Run2016H-17Jul2018-v1/MINIAOD /SingleMuon/Run2016H-17Jul2018-v1/MINIAOD

MC	Events	Eff. Events	XSec (pb)
DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8	122055388	81781064	5931.9
DYToLL_0J_13TeV-amcatnloFXFX-pythia8	93832853	76690000	4620.52
DYToLL_1J_13TeV-amcatnloFXFX-pythia8	91500283	41572416	859.59
DYToLL_2J_13TeV-amcatnloFXFX-pythia8	90299356	26282782	338.26

- Shift in values caused by DY xsec value changing from 5932 to 5818 (sum of npNLO xsec values)
- Improvement is coming from changing weights (applied to inclusive sample as well):
 - npNLO = 0: 1.00 to 1.15
 - npNLO = 1: 0.24 to 0.57
 - npNLO = 2: 0.17 to 0.38

MC	Events	XSec (pb)
$ZZTo2L2Nu_{1}3TeV_{powheg_pythia8}$		
ZZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8		
$ZZTo4L_{1}3TeV_{powheg_pythia8}$		
WZTo2L2Q_13TeV_amcatnloFXFX_madspin_pythia8		
WZTo3LNu_TuneCUETP8M1_13TeV-powheg-pythia8		
WWZ_TuneCUETP8M1_13TeV-amcatnlo-pythia8		
WZZ_TuneCUETP8M1_13TeV-amcatnlo-pythia8		
ZZZ_TuneCUETP8M1_13TeV-amcatnlo-pythia8		

Event Selections

Reco Level

- HLT_IsoMu24 and HLT_Ele25_eta2p1_WPTight_Gsf
- Opposite sign, same flavor leptons with $|m_{II}-m_Z| < 20 \, GeV$, $p_T > 30/20 \, GeV$, $|\eta| < 2.4$
- $\bullet\,$ Muons pass Medium ID + 0.15 Isolation
- Electrons pass Medium ID
- AK4PF chs jets with $p_T > 30 \, GeV$, $|\eta| < 2.4$
- Jets pass Loose ID and Loose WP for PU MVA
- $\Delta R(\mu, jets) < 0.4$

Gen Level

- \bullet Opposite sign, same flavor $|m_{II}-m_Z| < 20 \, GeV$, $p_T > 30/20 \, GeV$, $|\eta| < 2.4$
- AK4PF chs jets with $p_T > 30 \, GeV$, $|\eta| < 2.4$
- Leptons dressed with photons (R=0.1)
- $\Delta R(\mu, jets) < 0.4$

Madgraph5 aMC@NLO

- LO MEs for five processes: pp ightarrow Z+ Njets with N=0...4
- NLO ME calculations for pp ightarrow Z+ Njets with $\mathit{N}=0...2$

GENEVA MC framework

• NNLO DY + NNLL resummation

- Electron channel shown in upper plots, muon on lower
- Statistical uncertainty only on control plots

• Very good agreement in inclusive Z mass

٩

D. Arcaro, Semiray Girgis Chyla, Larence R. Sulak (BU)

2.2

ee Data

 $\overline{Z/\gamma} \rightarrow ee$

35.9 fb⁻¹(13 TeV

uu Data

Z/γ → μμ

vv

NIDE

1.6 1.8

D. Arcaro, Semiray Girgis Chyla, Larence R. Sulak (BU)

October 21, 2019 30 / 1

aMC@NLO+Pythia8 Resp. Matrix for 1st jet $p_{T} (N_{intra} \ge 1)$

Inclusive Jet Multiplicity

- Only stat uncertainty shown for LO and GENEVA
- GENEVA fails to predict data past 1 jet PS region

Leading Jet p_T

- All models predict jet kinematics within uncertainties
- Jet p_T also broken into 6 rapidity bins (included in paper)

Z p_T 1 Jet Inclusive

ee

 $\mu\mu$

 $\ell\ell$

- NLO and LO MG5 predict the data better at and above the jet p_T cut (30GeV)
- Large fluctuations in GENEVA around the jet p_T cut

Double Differential Results

- Double differential in leading jet |y| and Z |y|
- Measurements tend to be better predicted in the barrel

D. Arcaro, Semiray Girgis Chyla, Larence R. Sulak (BU)

Double Differential Results

- LO and NLO MG5 predict data in full y range
- Fluctuations in GENEVA do not resolve at higher y

BOSTON

UNIVERSITY

CMS

- Z p_T dominated by jet uncertainty below jet p_T cut
- 100GeV region is now dominated by lumi instead of SF uncertainty with legacy SFs

D. Arcaro, Semiray Girgis Chyla, Larence R. Sulak (BU)

- Good shape agreement in rapidity observables for both jets and Z
- Electron SF uncertainty on average same level as the lumi uncertainty

D. Arcaro, Semiray Girgis Chyla, Larence R. Sulak (BU)

ą

10

Date

Prediction Prediction Data Data

Э

10

Data

Prediction Prediction Data Data

Good shape agreement in rapidity

CMS

BOSTON

UNIVERSITY

- observables for both jets and Z
- Electron SF uncertainty on average same level as the lumi uncertainty

Vdd] (j),qt

10

10

Date

Data

Prediction

da] (j),q

Data

Prediction Prediction Data Data 10

10

Measurements not shown:

- dPhi with all permutations of Z, 1st, 2nd, and 3rd jet
- Sum and diff of Y between Z and jets
- Dijet mass
- Double Differentials:
 - 1st jet pt, Y
 - 1st jet Y, Z Y
 - 1st jet pt, Z Y