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e B. Gutenberg and C.F. Richter, Seismicity of the Earth and Associated
Phenomena, 2nd ed. (Princeton, N.J.: Princeton University Press, 1954), p. 17

N(M=m)~exp|—bm| b=1

o G. Ekstrom and A. M. Dziewonski, Nature 332, 319 (1988)
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Power-law Distribution
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Power-law Distribution

What is the
essential physics

behind this

distribution?
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Prevention & Forecasting

e “More than 999%p probability in the
next 30 years for one or more 6.7
M earthquakes”

[Uniform California Earthquake Rupture Forecast
(http://www.scec.org/ucerf/) SoCal Ethgk. Cntr.
funded by NSF and USGS]

- 99% can’t do much better
- 30years can do better

- 6.7 M compare w/ Haiti 7, so
about 64% as destructive.

e Black Magic / Data Massaging

What is essential? What is detail?

BOSTON
C. A. Serino 6

Friday, September 10, 2010


http://www.scec.org/ucerf/
http://www.scec.org/ucerf/

Outline

e Observations, Empirical 2
Scaling & Motivation »

e Early Models
e Model “Fault System”

e Simulations & Numerical Data

e Theoretical Description

-

, -
' » - '
B 2 /

e Future Work & Similar NATIONAL T
. | GEOGRAPHIC™ S
Physical Systems £ BN

’ :
~ L
B AT
Ve g g g "
. » . . |
'§' . \ -
. .
-

BOSTON
C. A. Serino 7

Friday, September 10, 2010



Model and Theoretical Seismicity

R Burridge and L. Knopoft
Bulletin of the Seismological Society of America 57, 341 (1967)

e Introduce four models T {
. ) | 2 ~
e [.inear elastic media on
rough, moving surfaces | ... . .L.. Rover .
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Model and Theoretical Seismicity

R Burridge and L. Knopoft
Bulletin of the Seismological Society of America 57, 341 (1967)

e Introduce four models e Rough surface

e Linear elastic media on e Linear (Hooke’s Law) springs
rough, moving surfaces

e Linear “Leat” Springs

o Ultimately; it is the 4t that
bears their names
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Continuum Model to Cellular Automata

e The continuum model is computationally expensive

e The dissipation of energy associated with the frictional forces makes
theoretical analysis difficult
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Continuum Model to Cellular Automata

e The continuum model is computationally expensive

e The dissipation of energy associated with the frictional forces makes
theoretical analysis difficult

e Introduce two simplifications on Burridge-Knopoft model:
{J. B. Rundle and D. D. Jackson Bull. Seis. Soc. Am. 67, 1363 (1977) &

Z. Olami, H. J. S. Feder and K. Christensen Phys. Rev. Lett. 68, 1244 (1988)}
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Continuum Model to Cellular Automata

e The continuum model is computationally expensive

e The dissipation of energy associated with the frictional forces makes
theoretical analysis difficult

e Introduce two simplifications on Burridge-Knopoft model:
{J. B. Rundle and D. D. Jackson Bull. Seis. Soc. Am. 67, 1363 (1977) &

Z. Olami, H. J. S. Feder and K. Christensen Phys. Rev. Lett. 68, 1244 (1988)}

1. When a block slips, it moves to its equilibrium position before
any other blocks can slip (massless limit)

2. Loader plate always moves the same amount each time step

* Rather than solving Newton’s Equations for the 2dN phase-space
variables, we can track N variables with simple update rules
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What is a cellular automata’

, BOSTON
C. A. Serino I1 UNIVERSITY
riday, September 10, 20




What is a cellular automata’

e A lattice model in which each
vertex is assigned a value at
time 7.

e The value at each vertex at
time 7+/ is determined by the

configuration at previous
times.
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o A lattice model in which each
vertex is assigned a value at
time 7.

e The value at each vertex at
time 7+/ is determined by the

configuration at previous
times.

e Example: Conway’s Game of
Life
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What is a cellular automata’

o A lattice model in which each
vertex is assigned a value at
time 7.

e The value at each vertex at
time 7+/ is determined by the

configuration at previous
times.

e Example: Conway’s Game of
Life [Gardner, M. Scientific American. (Oct. 1970)]

1. Cell with fewer than 2 neighbors 3. A cell with 2 or 3 neighbors lives.
dies.

4. An empty cell with 3 neighbors
2. Cell with more than 3 neighbors becomes live.

dies.
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What is a cellular automata’

e A lattice model in which each “Gosper’s Glider Gun”
vertex is assigned a value at

tiume 7. u |:::. : . -
1,

e The value at each vertex at
time 7+ is determined by the .
configuration at previous
times. "o

® Example: COHW&Y,S (GGame of http://en.wikipedia.org/wiki/File:Gospers_glider_gun.gif b
Life [Gardner, M. Scientific American. (Oct. 1970)]

1. Cell with fewer than 2 neighbors 3. A cell with 2 or 3 neighbors lives.
dies.

4. An empty cell with 3 neighbors
2. Cell with more than 3 neighbors becomes live.
dies.
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RJB & OFC Model

* J. B. Rundle and D. D. Jackson Bull. Seis. Soc. Am. 67, 1363
(1977)

¢ Z. Olami, H. J. S. Feder and K. Christensen Phys. Rev.
Lett. 68, 1244 (1988)
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RJB & OFC Model

* J. B. Rundle and D. D. Jackson Bull. Seis. Soc. Am. 67, 1363
(1977)

¢ Z. Olami, H. J. S. Feder and K. Christensen Phys. Rev.
Lett. 68, 1244 (1988)
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RJB & OFC Model

* J. B. Rundle and D. D. Jackson Bull. Seis. Soc. Am. 67, 1363

(1977)
¢ Z. Olami, H. J. S. Feder and K. Christensen Phys. Rev.
Lett. 68, 1244 (1988) R
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RJB & OFC Model

* J. B. Rundle and D. D. Jackson Bull. Seis. Soc. Am. 67, 1363
(1977)

¢ Z. Olami, H. J. S. Feder and K. Christensen Phys. Rev.

Lett. 68, 1244 (1988) R
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RJB & OFC Model

* J. B. Rundle and D. D. Jackson Bull. Seis. Soc. Am. 67, 1363
(1977)

¢ Z. Olami, H. J. S. Feder and K. Christensen Phys. Rev.
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Limitations of the Early Models

e These models must run near
a critical point to generate
scaling.
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scaling.

e The models are homogenous
but faults vary drastically in
size and composition
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Improvements on the Early Models

e These models must run near
a critical point to generate
scaling.

e The models are homogenous
but faults vary drastically in
size and composition
throughout systems.

e The models are best
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individual faults.
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Improvements on the Early Models

e These models must run near
a critical point to generate
scaling.

Introduce defects into the
e The models are homogenous lattice

but faults vary drastically in
size and composition
throughout systems.

e The models are best
described as individual faults .

e Scaling is rarely observed in
individual faults.
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Improvements on the Early Models

e These models must run near
a critical point to generate
scaling.

Introduce defects into the
e The models are homogenous lattice

but faults vary drastically in
size and composition
throughout systems.

e The models are best

described as individual faults . “Sew” together these

damaged or defected lattices
(model faults) to create a

* Scaling is rarely observed in fault system

individual faults.
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Damage Properties

e The damaged sites e They are distributed e The defects are

are dissipative in uniformly with quenched and are
nature. concentration / - p. not to be treated as
statistical variables.
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Fault System
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“Fault System”
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“Fault System”

e To simulate a fault system,
we include many taults.

e This is not computationally

feasible.

e Instead we work in the limit
where the linear size of the
fault diverges and, thus,
fault-fault interactions can
be neglected.

e We can now simulate a
single fault and average the
data post-simulation.
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Parameter Values
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Scaling on Damaged Faults
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Damaged Lattlce
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Reduced Size # Damaged Lattice
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Effectively Larger a

e In the damaged model, when a site fails and passes its stress to its
neighbors, additional stress is dissipated by the dead sites.

e On average (or exactly in the meanfield limit) the extra fraction of
dissipated stress is simply the density of damaged sites, 1 - p.

e This suggests a model with damage p and dissipation a will produce
the same frequency-size statistics as an undamaged model running
with dissipation @’ = 1 — p(1 — ).
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e Data is collected across fault. v VR
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Returning to the Continuum:

A Meanfield Theoretic Description

 Klein ez @/ “Statistical Analysis of A Model for Earthquake Faults with
Long-Range Stress Transfer.” in GeoComplexity and the Physics of
Earthquakes (2000) pp. 43 derive a Langevin equation for this model
by coarse graining the equation of motion for the RJB formulation of
the automata.
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Long-Range Stress Transfer.” in GeoComplexity and the Physics of
Earthquakes (2000) pp. 43 derive a Langevin equation for this model
by coarse graining the equation of motion for the RJB formulation of
the automata.

il (JF i UR> (qzifq; fL) (erf |[—v/Blo™ = 5(x,7))| = ext [~ /B0 — 7(x,7)| ) -

F

_WQ(UI?Q_UR) /U: do log <U—JR)eXp [—B(0 —a(x,7))?] —

GH L o
1 3= LG
LY B(cF — oR) log (ZE}*X,_T;(X;)> + kL V +n(x,7)
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Returning to the Continuum:
A Meanfield Theoretic Description

* Klein et a/. “Statistical Analysis of A Model for Earthquake Faults with
Long-Range Stress Transfer.” in GeoComplexity and the Physics of
Earthquakes (2000) pp. 43 derive a Langevin equation for this model

by coarse graining the equation of motion for the RJB formulation of
the automata.

il (JF i 03) (qlzvjq—k fL) (erf |[—v/Blo™ = 5(x,7))| = ext [~ /B0 — 7(x,7)| ) -

F

_WQ(UI?Q_UR) /U: do log <U—JR)eXp [—B(0 —a(x,7))?] —

1 | o(x,7) — ot
~ g % (s

> X kLV it ﬁ(Xa 7-)

* By considering numerical solutions to the steady-state, spacially
uniform equation, Klein ez «/. show there is a spinodal critical point in

the meanfield limit of the RJB model.
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coexistence spinodal

*Klein ez /. identify the events (earthquakes) with arrested
nucleation droplets (Ising <= RJB,h < kL V, m < 0).
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Returning to the Continuum:

A Meanfield Theoretic Description

coexistence spinodal

*Klein ez /. identify the events (earthquakes) with arrested
nucleation droplets (Ising <= RJB,h < kL V, m < 0).

*Using the technology developed for spinodal nucleation,
Klein ez @/. argue that the number of events, 7, of size s
scales as ng ~ 5_3/2, thatis 7 = 3/2.
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Event Frequency and Damage

‘" spinodal

e Frequency-size statics obey
exp|—Ah s|

S’T
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e Frequency-size statics obey
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e Since we collect data over all values of p, the new
distribution, 71 4, is generated by summing , 705 , over all p.
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Event Frequency and Damage

coexistence ‘" spinodal

e Frequency-size statics obey
exp|—Ah s|

S’T

Ng N

e Since we collect data over all values of p, the new
distribution, 71 4, is generated by summing , 705 , over all p.

* This requires relating p to Ab.

) A
(i (1 — p) ng ~p
{CAS et al. in preparation}
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Calculating the
New Scaling Relations

1 1 P
il 1 exp|—(1 —p)°s] s>1 1
7 /O p ns(p) /O il i iiniierys

e [wo predictions

i. The new distribution scales as a power-law with
exponent T = 7+1/2 = 2
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Calculating the
New Scaling Relations

1 1 2
il 1 exp|—(1 —p)°s] s>1 1
| dp ns(p N/ dp e

/o 2 0 p s’ St/ 8

 [wo predictions

i. The new distribution scales as a power-law with
exponent T = 7+1/2 = 2

ii. There exists a scaling variable z = (1 — p)“s such

that plots of p/(1 — p)* n(z) vs z will collapse to a
single curve for all values of p.
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Prediction 11: Data Collapse
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e How sensitive is the power-law (GR) distribution to the
weights of the p’s in the combined data set?
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More with this Model

e How sensitive is the power-law (GR) distribution to the
weights of the p’s in the combined data set?

e [s there a (non-spinodal) critical point in this model?
e Must a = 0 in for this model to be critical?

e Does this model contain enough of the “correct physics” so
that we can use event “run-up” to forecast devastating events?

e How about quiescence?

o After big events, are there aftershocks consistent with
Omori’s Law?
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Other Systems

e Systems Under Stress

1. Martensitic Transition of Cure64Zn1771AL1565

10°
10°F - cooling (4893)
| heating (17936)
10° g g£=2.15
" ‘ £=205
210 b
c L
o .
8 il —i oy |
RN T
100 ! WFUILU-JL\; |
107 TH
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10 10° 10* 10°
Energy (aJ)
[{Gallardo et /. Phys. Rev. B. 81, 174102 (2010)}
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Other Systems

e Systems Under Stress

i. Martensitic Transition of CurseaZni771Ali5 65

ii. Tensile Strain in Paper Sheets

5
10 Ty
4 B 10* 4
10 cooling (4893) .
heating (17936) 10 3
103 — e=215
- -3 e=2.05 1
0n10° : ] (i 9 |
3101 ; ALL__ ) L . El[)") X !.
| s o i
100 _11\ rl 10 1 4 Al c\c.nl\ 10 seconds before 1 A ' ® a
A 1.0 scconds betore L o
) lJ o fl.l _\L_.f‘md\ h:l:-.rc l_ - =} ° 3
10 10 m  all events 0.1 seconds after t
| @ !Daftert ‘ !
10-2 " PP EPre | ")”—‘ - rTTe | i | T st
10° 10° 10° 10° 10° 10° 10° 10"
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[Gallardo ez a/. Phys. Rev. B. 81, 174102 (2010)} [J Rostietal T Stat. Mech. (2010) Po2016]
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Other Systems

e Systems Under Stress
i. Martensitic Transition of Cu7e.64Zn1771Al1565
ii. Tensile Strain in Paper Sheets

iii. Martensitic Transition in Co system (C. Sanborn et a/.)

10° bl
- 10* 4
10° F :
! cooling (4893) ] 1
| heating (17936) ] 10 ]
10° F : e=215 :
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) 102 2
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Other Systems (cont.)

e Magnetic Systems - Quenched Dilute Ising Model (K. Liu ez /)

i. Can we locate the nucleating droplet?
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Other Systems (cont.)

e Magnetic Systems - Quenched Dilute Ising Model (K. Liu ez /)
i. Can we locate the nucleating droplet?

ii. If so, how does the dilution (damage or defect) affect the
nucleating droplet?
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Other Systems (cont.)

e Magnetic Systems - Quenched Dilute Ising Model (K. Liu ez /)

i. Can we locate the nucleating droplet?

fect the

ii. If so, how does the dilution (damage or defect) a:
nucleating droplet?

a. It’s shape?
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Other Systems (cont.)

* Magnetic Systems - Quenched Dilute Ising Model (K. Liu ez /)
1. Can we locate the nucleating droplet?

ii. If so, how does the dilution (damage or defect) affect the
nucleating droplet?

a. It’s shape?

b.It’s location?
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Other Systems (cont.)

e Magnetic Systems - Quenched Dilute Ising Model (K. Liu ez /)

i. Can we locate the nucleating droplet?

fect the

ii. If so, how does the dilution (damage or defect) a
nucleating droplet?

a. It’s shape?
b.It’s location?

c. It’s growth dynamics?
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Other Systems (cont.)

* Magnetic Systems - Quenched Dilute Ising Model (K. Liu ez /)
1. Can we locate the nucleating droplet?

ii. If so, how does the dilution (damage or defect) affect the
nucleating droplet?

a. It’s shape?
b.It’s location?
c. It’s growth dynamics?

iii. Can we make any theoretical progress with this model?
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Moral of the Story

e Conventional thinking was / is that earthquake fault systems
produce frequency-size statics that scale (Gutenberg—Richter)
because:

i. The system is critical (i.e. very near a critical point)

ii. Inhomogeneities occur on length scales small compared to the
interaction range and are thus negligible
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Moral of the Story

e Conventional thinking was / is that earthquake fault systems
produce frequency-size statics that scale (Gutenberg—Richter)
because:

i. The system is critical (i.e. very near a critical point)

ii. Inhomogeneities occur on length scales small compared to the
interaction range and are thus negligible

e Our work shows:
1. Fault systems need not be critical to generate GR statistics

ii. Inhomogeneities are crucial in obtaining power-law distributed
frequency-size statistics.
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