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Gutenberg–Richter Distribution

• B. Gutenberg and C.F. Richter, Seismicity of the Earth and Associated 
Phenomena, 2nd ed. (Princeton, N.J.: Princeton University Press, 1954), p. 17 

E(m) ∼ exp [d m]

N (M ≥ m) ∼ exp [−b m]
• G. Ekström and A. M. Dziewonski, Nature 332, 319 (1988)

b ≈ 1

d ≈ 3/2

,

,
4
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N(E0 > E) ∼ E−b/d ≈ E−2/3

Power–law Distribution
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N(E0 > E) ∼ E−b/d ≈ E−2/3

Power–law Distribution

SO WHAT?
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N(E0 > E) ∼ E−b/d ≈ E−2/3

Power–law Distribution

What is the 
essential physics 
behind this 
distribution?
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Prevention & Forecasting
• “More than 99% probability in the 

next 30 years for one or more 6.7 
M earthquakes”

- 99%  can’t do much better

- 30 years  can do better

- 6.7 M   compare w/  Haiti 7, so 
about 64% as destructive.

• Black Magic / Data Massaging

What is essential? What is detail?

6

[Uniform California Earthquake Rupture Forecast 
(http://www.scec.org/ucerf/) SoCal Ethqk. Cntr. 
funded by NSF and USGS]
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Model and Theoretical Seismicity

• Introduce four models

• Linear elastic media on 
rough, moving surfaces

R Burridge and L. Knopoff
 Bu"etin of the Seismological Society of America 57, 341 (1967)
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Model and Theoretical Seismicity

• Introduce four models

• Linear elastic media on 
rough, moving surfaces

• Ultimately, it is the 4th that 
bears their names 

R Burridge and L. Knopoff
 Bu"etin of the Seismological Society of America 57, 341 (1967)

• Rough surface

• Linear (Hooke’s Law) springs

• Linear “Leaf” Springs

• Moving Plate 
v
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Continuum Model to Cellular Automata
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• The continuum model is computationally expensive

• The dissipation of energy associated with the frictional forces makes 
theoretical analysis difficult
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[J. B. Rundle and D. D. Jackson  Bull. Seis. Soc. Am. 67, 1363 (1977)  & 

Z. Olami, H. J. S. Feder and K. Christensen Phys. Rev. Lett. 68, 1244 (1988)]
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Continuum Model to Cellular Automata
• The continuum model is computationally expensive

• The dissipation of energy associated with the frictional forces makes 
theoretical analysis difficult

• Introduce two simplifications on Burridge-Knopoff model:

1. When a block slips, it moves to its equilibrium position before 
any other blocks can slip (massless limit)

2. Loader plate always moves the same amount each time step

• Rather than solving Newton’s Equations for the 2dN phase-space 
variables, we can track N variables with simple update rules

10

[J. B. Rundle and D. D. Jackson  Bull. Seis. Soc. Am. 67, 1363 (1977)  & 

Z. Olami, H. J. S. Feder and K. Christensen Phys. Rev. Lett. 68, 1244 (1988)]
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What is a cellular automata?
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What is a cellular automata?
• A lattice model in which each 
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time t.

• The value at each vertex at 
time t+1 is determined by the 
configuration at previous 
times.
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What is a cellular automata?
• A lattice model in which each 

vertex is assigned a value at 
time t.

• The value at each vertex at 
time t+1 is determined by the 
configuration at previous 
times.

• Example: Conway’s Game of 
Life 
1. Cell with fewer than 2 neighbors 

dies.

2. Cell with more than 3 neighbors 
dies.

3. A cell with 2 or 3 neighbors lives.

4. An empty cell with 3 neighbors 
becomes live.

[Gardner, M. Scientific American (Oct. 1970)]
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What is a cellular automata?
• A lattice model in which each 

vertex is assigned a value at 
time t.

• The value at each vertex at 
time t+1 is determined by the 
configuration at previous 
times.

• Example: Conway’s Game of 
Life 
1. Cell with fewer than 2 neighbors 

dies.

2. Cell with more than 3 neighbors 
dies.

3. A cell with 2 or 3 neighbors lives.

4. An empty cell with 3 neighbors 
becomes live.

[Gardner, M. Scientific American (Oct. 1970)]
http://en.wikipedia.org/wiki/File:Gospers_glider_gun.gif
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“Gosper’s Glider Gun”
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R J B  &  O F C  M o d e l
• J. B. Rundle and D. D. Jackson  Bu". Seis. Soc. Am. 67, 1363 
(1977)

• Z. Olami, H. J. S. Feder and K. Christensen Phys. Rev. 
Lett. 68, 1244 (1988) 
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• These models must run near 
a critical point to generate 
scaling.

• The models are homogenous 
but faults vary drastically in 
size and composition 
throughout systems.

• The models are best 
described as individual faults .

•  Scaling is rarely observed in 
individual faults.

Introduce defects into the 
lattice

Improvements on the Early Models

}
} “Sew” together these 

damaged or defected lattices 
(model faults) to create a 
fault system
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Damage Properties
• The damaged sites 

are dissipative in 
nature.

• The defects are 
quenched and are 
not to be treated as 
statistical variables.

15

• They are distributed 
uniformly with 
concentration 1 - p.
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Fault System

• Different elevation

• Different soils types

• Different geometries

• Irregular spacing

• In general, complicated
See, for example, Tiampo et. al. 
Euro. Phys. Lett. 60, 481 (2002) & 
Tiampo et. al. Phys. Rev. E 75, 
066107 (2007) [A. Billi et al. Geosphere 3, 1 (2007)] 
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“Fault System”
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“Fault System”

• To simulate a fault system, 
we include many faults. 

• This is not computationally 
feasible.

• Instead we work in the limit 
where the linear size of the 
fault diverges and, thus, 
fault-fault interactions can 
be neglected.

• We can now simulate a 
single fault and average the 
data post-simulation.

17
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Parameter Values

19

σF = 2 σR = 1 R = 20

α = 0.025 d = 2 L = 512

ρ(η) =
1

0.2
Θ(1.1− η)Θ(η − 0.9)ρ(η) =

1
0.2

Θ(1.1− η)Θ(η − 0.9)ρ(η) =
1

0.2
Θ(1.1− η)Θ(η − 0.9)

(flat random on [0.9 , 1.1])

L

Friday, September 10, 2010



C. A. Serino 100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

100 101 102 103
100

101

102

103

104

105

100 101 102 103
100

101

102

103

104

105

N
(s

)

s

Scaling on Damaged Faults

p = 1/2

p = 9/10

p = 4/5

p = 1

20
Friday, September 10, 2010



C. A. Serino 100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

100 101 102 103
100

101

102

103

104

105

100 101 102 103
100

101

102

103

104

105

N
(s

)

s

s = L

Scaling on Damaged Faults

p = 1/2

p = 9/10

p = 4/5

p = 1

20
Friday, September 10, 2010



C. A. Serino 100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

N
(s

)

s

Scaling on Damaged Faults

p = 1/2

p = 9/10

p = 4/5

20
Friday, September 10, 2010



C. A. Serino 100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

100 101 102
100

101

102

103

104

105

N
(s

)

s

?

L

Reduced Size      Damaged Lattice?=

p = 1/2

p = 9/10

p = 4/5

20

L
�

1− p

Friday, September 10, 2010



C. A. Serino 100 101 102 103
100

101

102

103

104

105

100 101 102 103
100

101

102

103

104

105

100 101 102 103
100

101

102

103

104

105

100 101 102 103
100

101

102

103

104

105

100 101 102 103
100

101

102

103

104

105

100 101 102 103
100

101

102

103

104

105

N
(s

)

s

?

L

�=Reduced Size      Damaged Lattice

p = 1/2

p = 9/10

p = 4/5

20

L
�

1− p

Friday, September 10, 2010



C. A. Serino

Effectively Larger α
• In the damaged model, when a site fails and passes its stress to its 

neighbors, additional stress is dissipated by the dead sites. 

• On average (or exactly in the meanfield limit) the extra fraction of 
dissipated stress is simply the density of damaged sites, 1 - p.

• This suggests a model with damage p and dissipation a will produce 
the same frequency-size statistics as an undamaged model running 
with dissipation α� = 1− p(1− α).
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Seismologists, Geologists, 
and the Data they Collect

• Data is collected across fault 
systems, not just individual faults 
and thus, data is collected over 
regions with many 
inhomogeneities.

[E. R. Dominguez et. al. in preparation]

22

[A. Billi et al. Geosphere 3, 1 (2007)] 
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Scaling in the Fault System
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Returning to the Continuum:
A Meanfield Theoretic Description
•Klein et al. “Statistical Analysis of A Model for Earthquake Faults with 

Long-Range Stress Transfer.” in GeoComplexity and the Physics of 
Earthquakes (2000) pp. 43 derive a Langevin equation for this model 
by coarse graining the equation of motion for the RJB formulation of 
the automata.

26
Friday, September 10, 2010



C. A. Serino

Returning to the Continuum:
A Meanfield Theoretic Description
•Klein et al. “Statistical Analysis of A Model for Earthquake Faults with 

Long-Range Stress Transfer.” in GeoComplexity and the Physics of 
Earthquakes (2000) pp. 43 derive a Langevin equation for this model 
by coarse graining the equation of motion for the RJB formulation of 
the automata.

26

∂σ(x, τ)
∂τ

=
�

σF − σR

2

� �
qkC∇2 − kL

kL + qkC

� �
erf

�
−

�
β(σF − σ(x, τ))

�
− erf

�
−

�
β(σ0 − σ(x, τ)

��
−

− β2

π2(σF − σR)

� σF

σR

dσ log
�

σ − σR

σF − σ

�
exp

�
−β(σ − σ(x, τ))2

�
−

− 1
β(σF − σR)

log
�

σ(x, τ)− σR

σF − σ(x, τ)

�
+ kLV + η(x, τ)

•  
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•Klein et al. “Statistical Analysis of A Model for Earthquake Faults with 

Long-Range Stress Transfer.” in GeoComplexity and the Physics of 
Earthquakes (2000) pp. 43 derive a Langevin equation for this model 
by coarse graining the equation of motion for the RJB formulation of 
the automata.

26

∂σ(x, τ)
∂τ

=
�

σF − σR

2

� �
qkC∇2 − kL

kL + qkC

� �
erf

�
−

�
β(σF − σ(x, τ))

�
− erf

�
−

�
β(σ0 − σ(x, τ)

��
−

− β2

π2(σF − σR)

� σF

σR

dσ log
�

σ − σR

σF − σ

�
exp

�
−β(σ − σ(x, τ))2

�
−

− 1
β(σF − σR)

log
�

σ(x, τ)− σR

σF − σ(x, τ)

�
+ kLV + η(x, τ)

•  

•By considering numerical solutions to the steady-state, spacially 
uniform equation, Klein et al. show there is a spinodal critical point in 
the meanfield limit of the RJB model.
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Returning to the Continuum:
A Meanfield Theoretic Description

•Klein et al. identify the events (earthquakes) with arrested 
nucleation droplets (Ising ↔ RJB,                ,                ). 

27

coexistence spinodal

h↔ kLV m↔ σ
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Returning to the Continuum:
A Meanfield Theoretic Description

•Klein et al. identify the events (earthquakes) with arrested 
nucleation droplets (Ising ↔ RJB,                ,                ). 

•Using the technology developed for spinodal nucleation, 
Klein et al. argue that the number of events, ns, of size s 
scales as                    , that is                 .

27

ns ∼ s−3/2 τ = 3/2

coexistence spinodal

h↔ kLV m↔ σ
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Event Frequency and Damage

• Frequency-size statics obey

ns ∼
exp[−∆h s]

sτ

28
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Event Frequency and Damage

• Frequency-size statics obey

ns ∼
exp[−∆h s]

sτ

• Since we collect data over all values of p, the new 
distribution,      , is generated by summing ,       , over all p.nsñs

• This requires relating p to Δh.

∆h ∼ (1− p)2 n0 ∼ p−1

[CAS et al. in preparation]

28

coexistence spinodal
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Calculating the 
New Scaling Relations

ñs =
� 1

0
dp ns(p) ∼

� 1

0
dp

1
p

exp[−(1− p)2s]
sτ

−→ 1
sτ+1/2

s� 1
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• Two predictions

i. The new distribution scales as a power-law with 
exponent τ = τ+1/2 = 2 
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Calculating the 
New Scaling Relations

ñs =
� 1

0
dp ns(p) ∼

� 1

0
dp

1
p

exp[−(1− p)2s]
sτ

−→ 1
sτ+1/2

s� 1

• Two predictions

i. The new distribution scales as a power-law with 
exponent τ = τ+1/2 = 2 

ii.There exists a scaling variable                        such 
that plots of                              vs z  will collapse to a 
single curve for all values of p.

z ≡ (1− p)2s
p/(1− p)2τn(z)

29

~
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Prediction 1: New Exponent
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100

s

ñ
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100
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s/L
ñ

s
/s

−
τ̃

τ̃ = 2
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Prediction 11: Data Collapse
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10 1

100

101

102

103

(1 − p)2 s

p
(1

−
p
)3

n
s

 

 

p = 0.30
p = 0.38
p = 0.48
p = 0.57
p = 0.66
p = 0.75
p = 0.83
p = 0.91
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Outline
• Observations, Empirical 

Scaling & Motivation

• Early Models

• Model “Fault System”

• Simulations & Numerical Data

• Theoretical Description

•Future Work & Similar 
Physical Systems
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More with this Model

33
Friday, September 10, 2010



C. A. Serino

More with this Model

33

• How sensitive is the power-law (GR) distribution to the 
weights of the p’s in the combined data set?
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More with this Model

33

• How sensitive is the power-law (GR) distribution to the 
weights of the p’s in the combined data set?

• Is there a (non-spinodal) critical point in this model?

• Must α = 0 in for this model to be critical?

• Does this model contain enough of the “correct physics” so 
that we can use event “run-up” to forecast devastating events?

• How about quiescence?

• After big events, are there aftershocks consistent with 
Omori’s Law?
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Other Systems
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Other Systems

34

• Systems Under Stress

i. Martensitic Transition of Cu76.64Zn17.71Al15.65

[Gallardo et al. Phys. Rev. B. 81, 174102 (2010)]
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Other Systems

34

• Systems Under Stress

i. Martensitic Transition of Cu76.64Zn17.71Al15.65

ii.Tensile Strain in Paper Sheets

[J Rosti et al. J. Stat. Mech. (2010) P02016][Gallardo et al. Phys. Rev. B. 81, 174102 (2010)]
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Other Systems

34

• Systems Under Stress

i. Martensitic Transition of Cu76.64Zn17.71Al15.65

ii.Tensile Strain in Paper Sheets

iii.Martensitic Transition in Co system (C. Sanborn et al.)

[J Rosti et al. J. Stat. Mech. (2010) P02016][Gallardo et al. Phys. Rev. B. 81, 174102 (2010)]
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• Magnetic Systems - Quenched Dilute Ising Model (K. Liu et al.)

i. Can we locate the nucleating droplet?
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• Magnetic Systems - Quenched Dilute Ising Model (K. Liu et al.)

i. Can we locate the nucleating droplet?

ii.If so, how does the dilution (damage or defect) affect the 
nucleating droplet?
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Other Systems (cont.)

35

• Magnetic Systems - Quenched Dilute Ising Model (K. Liu et al.)

i. Can we locate the nucleating droplet?

ii.If so, how does the dilution (damage or defect) affect the 
nucleating droplet?

a. It’s shape?
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Other Systems (cont.)

35

• Magnetic Systems - Quenched Dilute Ising Model (K. Liu et al.)

i. Can we locate the nucleating droplet?

ii.If so, how does the dilution (damage or defect) affect the 
nucleating droplet?

a. It’s shape?

b.It’s location?
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Other Systems (cont.)

35

• Magnetic Systems - Quenched Dilute Ising Model (K. Liu et al.)

i. Can we locate the nucleating droplet?

ii.If so, how does the dilution (damage or defect) affect the 
nucleating droplet?

a. It’s shape?

b.It’s location?

c. It’s growth dynamics?
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Other Systems (cont.)

35

• Magnetic Systems - Quenched Dilute Ising Model (K. Liu et al.)

i. Can we locate the nucleating droplet?

ii.If so, how does the dilution (damage or defect) affect the 
nucleating droplet?

a. It’s shape?

b.It’s location?

c. It’s growth dynamics?

iii.Can we make any theoretical progress with this model?
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ñ
s 10 2 100 102

100

101

s/L

ñ
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Moral of the Story
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• Conventional thinking was / is that earthquake fault systems 
produce frequency-size statics that scale (Gutenberg–Richter) 
because:

i. The system is critical (i.e. very near a critical point)

ii.Inhomogeneities occur on length scales small compared to the 
interaction range and are thus negligible

Moral of the Story
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• Conventional thinking was / is that earthquake fault systems 
produce frequency-size statics that scale (Gutenberg–Richter) 
because:

i. The system is critical (i.e. very near a critical point)

ii.Inhomogeneities occur on length scales small compared to the 
interaction range and are thus negligible

• Our work shows:

i. Fault systems need not be critical to generate GR statistics

ii.Inhomogeneities are crucial in obtaining power-law distributed 
frequency-size statistics.

Moral of the Story
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Thank You

38

EXIT

Questions?
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