Statistical Mechanics of Damage

Christopher A. Serino and William Klein

Greater Boston Area Statistical Mechanics Meeting

18 October 2008

Motivation

In order to understand, and ultimately help prevent, catastrophic failure in materials we must understand the failure mode of the material.

The Model

- We base our model on the Olami-Feder-Christensen (OFC) model, a cellular automaton model for earthquake faults. [PRL 68, 8, 1244-1248, 1992]
- (1) $\sigma_i \rightarrow \sigma_i + \delta \quad \forall \quad i$ (2) If $\sigma_i > \sigma^c$ (a) $\sigma_i \rightarrow \sigma^r$ (b) $\sigma_{<j>} \rightarrow (1-\alpha) \left(\frac{\sigma^c \sigma^r}{q}\right)$ (c) Return to (1) (c) $\sigma_{<j>} = (1-\alpha) \left(\frac{\sigma^c \sigma^r}{q}\right)$ (c) $\sigma_{<j>} = (1-\alpha) \left(\frac{$

Modifications

- Once a site fails F times, the site is considered dead and no longer receives stress.
- Sites interact equally with all other sites within a given radius, *R*.
- Catastrophic failure is defined as a percolating cluster of dead sites.

Short Range vs Long Range

- For long range interactions, we observe a nucleation-like event which results in catastrophic failure.
- For nearest-neighbor interactions, we observe a percolating cluster, prior to any nucleation-like event, which results in catastrophic failure.

Movie Parameters

• $N = L \times L = (512)^2$, (periodic BC) • $V(r) = \theta(R - r)$ Long Range: R = 50 Short Range: R = 1 • $\sigma^c = 4$, $\sigma^r = 2$ • α = 0.1 • F = 5

R = 1 🖗

پ م

-

.