A Guide to Differential Length, Area, and Volume
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If I want to form a differential area dA I just multiply the two differential lengths that
from the area together. For example, if [ wanted to from some differential area by
sweeping out two angles 0 and ¢ in spherical coordinates, my dA would be given by:

dA=r’sing-do-dg

Last let me consider the volume integral of some function f that is just a function of the

radius (i.e. f = f(r)).
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Hence, I have converted by volume integral into a regular old one-dimensional integral!
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The 4 that came from the f d¢ f sinf- dO is often referred to as the “solid angle”.
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Since these two terms are cumbersome to write, that is, just too much to write for lazy
physicists, the following short hand is often used:
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where the limits of integration are understood. This d€2, or rather, the integral over it, is
the mystifying solid angle, which, when explained, is (hopefully) not so mystifying!



