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• 1.1)
A string of total mass, M , and length, ℓ, is situated on a table such that,
initially, a small amount, δ, hangs over the edge as shown in Figure 1. At
what time, t, does the string slide all the way off of the table? Assume that
the table is high enough off the ground such that the string does not come
into contact with the ground before sliding off the table. Further assume that
the mass of the string is uniformly distributed (i.e. we may write λ = M

ℓ
).

(Hint: Use Newton’s Second Law and note that the mass of the left-hand
side of the equation does not equal the mass on the right-hand side of the
equation.)
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We begin with Newton’s Second Law.

F = Ma (1)

F (x) = M
(y

ℓ

)

g (2)

a =
d2y

dt2
(3)

d2y

dt2
= y

g

ℓ
(4)

This equation tells us that the second derivative of some function is propor-
tional to itself. We know two functions like that: ex and e−x. So, let’s try
the following:

y(t) = Ae
√

g

ℓ
t + Be−

√
g

ℓ
t (5)

A and B are unknown constansts that we can determine by demanding that
y(t = 0) = δ and v(t = 0) = 0.

y(t = 0) = δ (6)

δ = A + B (7)

v(t = 0) = 0 (8)

0 = A − B (9)

A = B (10)

2A = δ (11)

(12)

Thus, we know:

A = B =
delta

2
(13)

and therefor:

y(t) =
δ

2

(

e
√

g

ℓ
t + e−

√
g

ℓ
t
)

(14)

cosh(x) =
ex + e−x

2
(15)

y(t) = δcosh

(
√

g

ℓ
t

)

(16)
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Finally, if we want to determine how long it takes for the string to fall off
the table, we set y = ℓ and solve for t.

ℓ = δcosh

(
√

g

ℓ
t

)

(17)

ℓ

δ
= cosh

(
√

g

ℓ
t

)

(18)

cosh−1

(

ℓ

δ

)

=

√

g

ℓ
t (19)

t =

√

g

ℓ
cosh−1

(

ℓ

δ

)

(20)

The arc-hyperbolic cosine (Figure 2) is a trnasendental function (like arc-
cosine) and so we cannot simplify our result any further. Suppose, however,
that δ = 1cm and ℓ = 1m then t = 16.6s.

Figure 2: y(x) = cosh−1 (x)

• 1.2)
A particle slides along a one dimensional surface given by the equation y(x) =
x2. Assume the surface is frictionless.
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(i) Show that the force, F , on a particle of mass m can be expressed as
F = mv dv

dx
. (Hint: This is a one-liner)

(ii) Find the force on the particle as a function of x (Hint: All forces in this
problem are conservative).

(iii) If x(t = 0) = −d, determine the time, t, at which the particle arrives
at the origin (x = 0).

(iv) If y(x) → x2n where n is an integer greater than one, qualitatively, how
do you expect t to change? Why?

Please note that the equation y(x) = x2 does not make sense dimensionally.
That’s my error, designing a poorly stated problem. So, just imagine there is
a constant in front of x (i.e. y(x) = ax2) where a has units of inverse length.
(i)

F = mv
dv

dx
(21)

= m

(

dx

dt

)(

dv

dx

)

(22)

= m
dv

dt
(23)

= ma (24)

Admittedly, this requires some “sloppy” treatment of differentials that
would drive a mathematician mad ; however, we are not mathematicians,
and so, we can get away with it! A more careful analysis would reveal what
we did is OK, provided both dv

dt
and dv

dx
are well enough behaved, where we

use “well enough behaved” in the mathematical sense. (OK, so it was a
four-liner!)
(ii)
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First, let’s use conservation of energy.

1

2
mv2 = mg (yi − yf) (25)

1

2
mv2 = mg(xi)

2 − mgx2 (26)

v =
√

2g(x2

i − x2) (27)

Now, let’s find dv
dx

.

dv

dx
=

d

dx

(

√

2g(x2

i − x2)

)

(28)

dv

dx
=

1

2

(

2g(x2

i − x2)
)

−
1

2 (−4gx) (29)

dv

dx
=

−2gx
√

2g(x2

i − x2)
(30)

Therefor:

F (x) = mv
dv

dx
(31)

F (x) = m

(

√

2g(x2

i − x2)

)

(

−2gx
√

2g(x2

i − x2)

)

(32)

F (x) = −2mgx (33)

(iii)

Using Newton’s Second Law, let’s find the time, t.

F = m
d2x

dt2
(34)

= −2mgx (35)

m
d2x

dt2
= −2mgx (36)

We see that the second derivative of some function is proportional to minus
itself. We know two functions like that, cosine and sine! So, let’s try the
following.

x(t) = Asin
(

√

2gt
)

+ Bcos
(

√

2gt
)

(37)
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A and B are unknown constants that we can determine by demanding that
at t = 0, x = −d and v = 0.

x(t = 0) = −d (38)

−d = B (39)

v(t = 0) =
dv(t = 0)

dt
(40)

v(t = 0) = 0 (41)

0 = A (42)

So, we now know x(t).

x(t) = −dcos
(

√

2gt
)

(43)

So, now let’s set x = 0 and solve for the time, t!

0 = −dcos
(

√

2gt
)

(44)

π

2
=

√

2gt (45)

t =
π

2
√

2g
(46)

t =
π

√
8g

(47)

It is iteresting to note that the solution is independent of d.

(iv)

If the mass were traveling along a curve y = x, I know it would take

a time, t =
√

2d
gsinθ

to traverse the distance. If I take sinθ = 1 (which,

physically, is nonsense!) then my time is t =
√

2d
g

which is actually faster

than the time given in Equation 47. However, if sinθ is smaller, than the
time given in Equation 47 can be made the lesser of the two times. Thus,
while my first instinct may be to think larger n’s correspond to shorter times,
I think I more clever analysis is needed to say anything for sure. The shape
that minimizes the time is the solution to the brachistochrone problem, a
very famous problem. If you are unfamiliar with it, I would recommend
googleing it, as it is a very interesting and rich problem.
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• 1.3)
A box of mass m is situated on top of a sphere of radius R as shown in
Figure 3. At what angle, θ, does the box lose contact with the sphere?
Assume the box is given a small nudge to get it moving, but that this nudge
provides negligible kinetic energy. Further assume that there is not friction
between the box and the sphere and that the sphere is held in place during
the whole process. Qualitatively, how would the angle change if there were
friction in the system?

g

m

R

θ

Figure 3:

Let’s take the positive y-axis to point from the initial location of the mass
through the center of the sphere. Then:

1

2
mv2 = mgy (48)

We know that the mass will lose contact with the sphere when:

v2

R
> FN (49)

Thus:

v2

R
= Fn (50)

Fn = mgcosθv2 = 2gy (51)
2gy

R
= mgcosθ (52)
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From trigonometry, we know:

cosθ =
R − y

R
(53)

y = R(1 − cosθ) (54)

Using this new expression for y:

2g(1 − cosθ) = mgcosθ (55)

1 − cosθ =
1

2
cosθ (56)

3

2
cosθ = 1 (57)

cosθ =
2

3
(58)

θ ≈ 48◦ (59)

The amazing thing about this result is that it is independent of the mass
of the object, the gravitational constant (g), and the radius of the sphere!
Therefore, if I conduct the experiment on Earth with a ball of radius one
meter and I repeat the experiment on the moon with a ball of radius 1
kilometer, I will measure the same angle!
If there is friction in the system, it will take a longer time to gain the necessary
velocity to fall of the ball, and therefore, a larger angle is expected!
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