A Heuristic Derivation of the Ideal Gas Law

C. A. Serino

May 3, 2007

Pressure, P, is defined as:

$$
\begin{equation*}
P=\frac{F}{A} \tag{1}
\end{equation*}
$$

where F is the force exerted on the material and A is the cross-sectional area of that material. Thus the average pressure \bar{P} is given by:

$$
\begin{equation*}
\bar{P}=\frac{\bar{F}}{A} \tag{2}
\end{equation*}
$$

The average force is given by:

$$
\begin{equation*}
\bar{F}=\frac{1}{\Delta t} \int_{t}^{t+\Delta t} F\left(t^{\prime}\right) d t^{\prime}=\frac{I}{\Delta t} \tag{3}
\end{equation*}
$$

where I is the impulse. From the impulse-momentum theorem we know:

$$
\begin{equation*}
I=\Delta p \tag{4}
\end{equation*}
$$

and so:

$$
\begin{equation*}
\bar{F}=\frac{m v^{2}}{\ell} \tag{5}
\end{equation*}
$$

Figure 1: A particle of mass m and velocity v, traveling in a "box" of length ℓ.
where we used:

$$
\begin{equation*}
\Delta p=2 m v \tag{6}
\end{equation*}
$$

From dimensional analysis, or, if you like, the kinetic theory of gasses we know:

$$
\begin{equation*}
v^{2}=k_{B} T \tag{7}
\end{equation*}
$$

where T is the temperature and k_{B} is Boltzmann's constant. Putting it all together we have:

$$
\begin{align*}
P V & =F \ell \tag{8}\\
& =m v^{2} \tag{9}\\
& =k_{B} T \tag{10}
\end{align*}
$$

Finally, if we have N particles rather than just the one, and if we write N in terms of Avogadro's Number and the number of moles (n) we find:

$$
\begin{equation*}
P V=n R T \tag{11}
\end{equation*}
$$

where R is the so-called universal gas constant.

