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Classical glassiness
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Classical glassiness
viscosity

Source: JOM, 52 (7) (2000)



Glassy H2O

Source: O. Mishima and H. E. Stanley’s groups; Nature (1998)



Physical aging

Source: L.C.E. Struik, Physical aging in amorphous polymers and other materials, Elsevier, Amsterdam (1978)



Physical aging II
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Orlyanchik & Ovadyahu,  PRL (2004)

2D electron glass

2D thin films of crystalline In2O3-x

Source: Orlyanchik & Ovadyahu,  PRL (2004)



Quantum glassy systems

disordered systems
eg. quantum spin glasses

frustrated systems
eg. 1 frustrated Josephson junctions 
with long-range interactions

eg. II self-generated mean-field glasses 

Kagan, Feigel'man, and Ioffe, ZETF/JETP (1999)

Westfahl, Schmalian, and Wolynes, PRB (2003)

Bray & Moore, J. Phys. C (1980)
Read, Sachdev,  and Ye, PRB (1995)
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Pure breed quantum glasses
strongly correlated systems with

topological order and fractionalization

eg. fractional quantum Hall effect

ν = 1/3 ⇒ NGS = 3
g

NGS = 3
1

NGS = 3
2

NGS = 3
3

Interestingly enough, strong correlations that can lead to these exotic quantum spectral properties can 
in some instances also impose kinetic constraints, similar to those studied in the context of classical 
glass formers.

Wen, Int. J. Mod. Phys. B (1991), Adv. Phys. (1995)What is topological order?



Why solvable examples are useful?

Classical glasses can be efficiently simulated in a computer; but real 
time simulation of a quantum system is doomed by oscillating phases 
(as bad as, if not worse, than the fermion sign problem)!

Even a quantum computer does not help; quantum computers are 
good for unitary evolution. One needs a “quantum supercomputer”, 
with many qubits dedicated to simulate the bath.

Solvable toy model can show unambiguously and without arbitrary 
or questionable approximations that there are quantum many body 
systems without disorder and with only local interactions that are 
incapable of reaching their quantum ground states.



2D example
(not glassy yet)

Kitaev,  Ann. Phys. (2003) - quant-phys/97
Wen, PRL (2003)topological order for quantum computing
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[P̂I , P̂I′ ] = 0
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I = 1 ⇒ eigenvalues PI = ±1

Same spectrum as free spins in a magnetic field

However, 〈σx
I 〉 = 〈σy

I 〉 = 〈σz
I 〉 = 0

Plaquettes with               :PI = −1 defects



Ground state degeneracy

on a torus:

N spins ⇒ 2N states

N plaquettes ⇒ 2N states?

ground state: PI = +1 for all I

NO

∏

I∈A

P̂I =

∏

I∈B

P̂I = 1

two constraints:

N plaquettes ⇒ 2N−2 × 22 states

T̂x =

∏

I∈Lx

σ
y
I

T̂y =

∏

I∈Ly

σ
x
I4 ground states

Tx = ±1, Ty = ±1



Is the ground state reached?

bath of quantum oscillators;
acts on physical degrees of freedom
Caldeira & Leggett,  Ann. Phys. (1983)
Feynman & Vernon, Ann. Phys. (1963)

Ĥ = Ĥ + Ĥbath + Ĥspin/bath

Ĥspin/bath =
∑
I,α

gα σα
I

∑
λ

(
aα

λ,I + aα
λ,I

†
)

defects cannot simply be annihilated; plaquettes are flipped in multiplets

|Ψ(t)〉 =
∑

{Ta,OI=±1}

Γ{Ta,OI}(t) |{Ta, OI}〉 ⊗ |Υ{Ta,OI}(t)〉



Is the ground state reached?

defects must go away
equilibrium concentration: c ≈ e

−h/T

defects cannot be annihilated; 
must be recombined

σ
x,y
I ⇒ simple defect diffusion (escapes glassiness)

σ
z
I ⇒ activated diffusion

Garrahan & Chandler, PNAS (2003)
Buhot & Garrahan, PRL (2002) 

tseq.

∼ τ0 exp(2h/T )

equivalent to classical glass model by

(Arrhenius law)



3D strong glass model
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3D strong glass model

always flip 4 octahedra: never simple defect diffusion

x, y

y, z
z, x

x, y

y, z
z, x

Ĥspin/bath =
∑
I,α

gα σα
I

∑
λ

(
aα

λ,I + aα
λ,I

†
)

tseq.

∼ τ0 exp(2h/T ) (Arrhenius law)



What about quantum tunneling?

defect separation: ξ ≈ c−1/3
≈ eh/3T

virtual process: O[(g/h)ξ]

ttun. ∼ τ0 exp
[
ln(h/g) eh/3T

]

topological quantum protection quantum  OVER protection

ξ ≈ eh/3T



From another angle... fractionalization

octahedra flipped not in pairs but in quadruplets

rigidity and no winding

2D cut:

defects have 
fractional statistics

3D:

no fractional statistics

θ = π/2



Beyond the toy model...

ice rules mod 4
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Hard constrained systems are good candidates for glasses



Source: Snyder et al, Nature (2001)

Dy2Ti2O7  (Ho2Ti2O7)Spin Ice
Snyder et al, Nature (2001)



Josephson junction arrays
of T-breaking superconductors 

Moore & Lee, cond-mat/0309717
Castelnovo, Pujol, and Chamon, PRB (2004)

px ± ipySr2RuO4 



Presented solvable examples of quantum many-body Hamiltonians of 
systems with exotic spectral properties (topological order and 
fractionalization) that are unable to reach their ground states as the 
environment temperature is lowered to absolute zero - systems remain in a 
mixed state down to T=0.

Conclusion

New constraint for topological quantum computing: that the ground state 
degeneracy is protected while the system is still able to reach the ground 
states.

Out-of-equilibrium strongly correlated quantum systems is an open frontier!


