
QDP++ Data Parallel Interface for QCD
Version 1.0.0

SciDAC Software Coordinating Committee

February 16, 2003

1 Introduction

This is a user’s guide for the C++ binding for the QDP Data Parallel Applications
Programmer Interface developed under the auspices of the U.S. Department of Energy
Scientific Discovery through Advanced Computing (SciDAC) program.

The QDP Level 2 API has the following features:

• Provides data parallel operations (logically SIMD) on all sites across the lattice
or subsets of these sites.

• Operates on lattice objects, which have an implementation-dependent data lay-
out that is not visible above this API.

• Hides details of how the implementation maps onto a given architecture, namely
how the logical problem grid (i.e. lattice) is mapped onto the machine archi-
tecture.

• Allows asynchronous (non-blocking) shifts of lattice level objects over any per-
mutation map of sites onto sites. However, from the user’s view these instruc-
tions appear blocking and in fact may be so in some implementation.

• Provides broadcast operations (filling a lattice quantity from a scalar value(s)),
global reduction operations, and lattice-wide operations on various data-type
primitives, such as matrices, vectors, and tensor products of matrices (propa-
gators).

• Operator syntax that support complex expression constructions.

2 Datatypes

The Nd dimensional lattice consists of all the space-time sites in the problem space.
Lattice data are fields on these sites. A data primitive describes data on a single
site. The lattice fields consist of the primitives over all sites. We do not define data

1

types restricted to a subset of the lattice — rather, lattice fields occupy the entire
lattice. The primitive types at each site are represented as the (tensor) product space
of, for example, a vector space over color components with a vector space over spin
components and complex valued elements.

2.1 Type Structure

Generically objects transform under different spaces with a tensor product structure
as shown below:

Lattice Color Spin Complexity
Gauge fields : Lattice ⊗ Matrix(Nc) ⊗ Scalar ⊗ Complex

Fermions : Lattice ⊗ Vector(Nc) ⊗ Vector(Ns) ⊗ Complex

Scalars : Scalar ⊗ Scalar ⊗ Scalar ⊗ Scalar

Propagators : Lattice ⊗ Matrix(Nc) ⊗ Matrix(Ns) ⊗ Complex

Gamma : Scalar ⊗ Scalar ⊗ Matrix(Ns) ⊗ Complex

Nd is the number of space-time dimensions
Nc is the dimension of the color vector space
Ns is the dimension of the spin vector space

Gauge fields can left-multiply fermions via color matrix times color vector but is
diagonal in spin space (spin scalar times spin vector). A gamma matrix can right-
multiply a propagator (spin matrix times spin matrix) but is diagonal in color space
(color matrix times color scalar).

Types in the QDP interface are parameterized by a variety of types including:

• Word type: int, float, double, bool. Basic machine types.

• Reality type: complex or scalar. This is where the idea of a complex number
lives.

• Primitive type: scalar, vector, matrix, etc. This is where the concept of a gauge
or spin field lives. There can be many more types here.

• Inner grid type: scalar or lattice. Supports vector style architectures.

• Outer grid type: scalar or lattice. Supports super-scalar style architectures.
In combination with Inner grid can support a mixed mode like a super-scalar
architecture with short length vector instructions.

There are template classes for each of the type variants listed above. The interface
relies heavily on templates for composition - there is very little inheritance. The basic
objects are constructed (at the users choice) by compositions like the following:

typedef OLattice<PScalar<PColorMatrix<RComplex<float>, Nc> > > LatticeColorMatrix
typedef OLattice<PSpinVector<PColorVector<RComplex<float>, Nc>, Ns> > LatticeFermion

2

The classes PScalar, PSpinVector, PColorMatrix, PColorVector are all subtypes of a
primitive type. The relative ordering of the classes is important. It is simply a user
convention that spin is used as the second index (second level of type composition)
and color is the third. The ordering of types can be changed. From looking at the
types one can immediately decide what operations among objects makes sense.

2.2 Generic Names

The linear algebra portion of the QDP API is designed to resemble the functionality
that is available in the Level 1 QLA API and the C Level QDP API. Thus the
datatypes and function naming conventions are similar. Predefined names for some
generic lattice field datatypes are listed in the table below. Because the API is based
heavily on templates, the possible types allowed is much larger than listed below.

name description
LatticeReal real
LatticeComplex complex
LatticeInt integer
LatticeColorMatrix Nc ×Nc complex matrix
LatticeHalfFermion two-spin, Nc color spinor
LatticeDiracFermion four-spin, Nc color spinor
LatticeStaggeredFermion one-spin, Nc color spinor
LatticeDiracPropagator 4Nc × 4Nc complex matrix
LatticeStaggeredPropagator Nc ×Nc complex matrix
LatticeSeed implementation dependent

Single site (lattice wide constant fields) versions of types exist without the Lattice

preprended. All types and operations defined for QDP live within a C++ namespace
called QDP thus ensuring no type conflicts with other namespaces.

2.3 Specific Types for Color and Precision

According to the chosen color and precision, names for specific floating point types
are constructed from names for generic types. Thus LatticeColorMatrix becomes
LatticeColorMatrixPC, where the precision P is D or F according to the table below

abbreviation description
D double precision
F single precision

and C is 2, 3, or some arbitrary N, if color is a consideration. Note, the value of N is
an arbitrary compile time constant.

If the datatype carries no color, the color label is omitted. Also, if the number of
color components is the same as the compile time constant, then the color label can
be omitted. Integers also have no precision label. The specification of precision and
number of colors is not needed for functions because of overloading.

For example, the type

3

LatticeDiracFermionF3

describes a lattice quantity of single-precision four-spin, three-color spinor field.

2.4 Color and Precision Uniformity

The only place that the number of color or spin components occur is through instance
of the global constant variables Nc, and Ns. These are only directly used in the typedef
constructions of user defined types. Nothing restricts a user from constructing types
for other number of colors. In fact, the use of Nc in the construction of user defined
types is simply a convenience for the user, and as such a user can use any integer
that is reasonable. The API merely requires that the types used in operations are
conforming.

However, in standard coding practice it is assumed that a user keeps one of the
precision, color, and spin options in force throughout the compilation. So as a rule all
functions in the interface take operands of the same precision, color, and number of
spin components. As with data type names, function names come in generic color-,
spin- and precision-specific forms, as described in the next section. Exceptions to
this rule are functions that explicitly convert from double to single precision and vice
versa. If the user choose to adopt color and precision uniformity, then all variables
can be defined with generic types and all functions accessed through generic names.
The prevailing color is defined through the compile time constant Nc. The interface
automatically translates data type names and function names to the appropriate spe-
cific type names through typedefs. With such a scheme and careful coding, changing
only the compile time Nc and the QDP library converts code from one color and
precision choice to another.

2.5 Breaking Color and Precision Uniformity

It is permissible for a user to mix precision and color choices. This is done by declaring
variables with specific type names, using functions with specific names, and making
appropriate precision conversions when needed.

4

3 QDP Functions

The QDP functions are grouped into the following categories:

1. Entry and exit from QDP

2. Layout utilities

3. Data parallel functions

4. Data management utilities

5. Subset definition

6. Shift creation

7. I/O utilities

8. Temporary exit and reentry

3.1 Entry and exit from QDP

QDP must be initialized before any other routine can be used. The initialization
is broken into two steps – initializing the underlying hardware and initializing the
layout.

Initialization of QDP

Prototype void QDP_initialize(int *argc, char ***argv)

Purpose Places the hardware into a known state.
Example QDP_initialize();

This routine will be responsible for initializing any hardware like the physical layer of
the message passing system. For compatibility with QMP, the addresses of the main
programs argc and argv must be passed. They may be modified.

Shutdown of QDP

Prototype void QDP_finalize()

Purpose Shutdown QDP.
Example QDP_finalize();

This call provides for an orderly shutdown of QDP. It is called by all nodes. It
concludes all communications, does housekeeping, if needed and performs a barrier
wait for all nodes. Then it returns control to the calling process.

5

Panic exit from QDP

Prototype void QDP_abort(int status)

Purpose Panic shutdown of the process.
Example QDP_abort(1);

This routine may be called by one or more nodes. It sends kill signals to all nodes
and exits with exit status status.

Entry into QDP

Prototype void Layout::create()

Purpose Starts QDP with layout parameters in Layout.
Example Layout::create();

The routine Layout::create() is called once by all nodes and starts QDP operations.
It calls the layout routine with the parameters set in the namespace Layout specifying
the layout. The layout is discussed in Section 3.2.

This step is separated from the QDP_initialize() above so layout parameters
can be read and broadcasted to the nodes. Otherwise the layout parameters have to
be set from the environment or fixed in the compilation.

Exit from QDP

Prototype void Layout::destroy()

Purpose Exits QDP.
Example Layout::destroy();

This call provides for an orderly exit from QDP. It is called by all nodes. It concludes
all communications, does housekeeping, if needed and performs a barrier wait for all
nodes. The communication layer is not finalized.

3.2 Layout utilities

Routines for constructing the layout are collected in the namespace Layout. The
setter and getter routines provide a way to set parameters like the lattice size.

The layout creation function determines which nodes get which lattice sites and
in what linear order the sites are stored. The Layout namespace has entry points
that allow a user to inquire about the lattice layout to facilitate accessing single
site data from a QDP lattice field. For code written entirely with other QDP calls,
these routines may be ignored by the user, with the exception of the useful routine
latticeCoordinate. However, if a user removes data from a QDP lattice object (see
expose or extract) and wishes to manipulate the data on a site-by-site basis, the
global entry points provided here are needed to locate the site data.

Some implementations may have a built-in tightly constrained layout. In flexible
implementations there may be several layout choices, thereby allowing the user the
freedom to select one that works best with a given application. Furthermore, such

6

implementations may allow the user to create a custom layout to replace one of the
standard layouts. As long as the custom layout procedure provides the entry points
and functionality described here, compatibility with the remainder of the QDP library
is assured.

3.2.1 QDP setup

Layout creation
The layout creation routine Layout::create() defined in Section 3.1 generates pre-
defined lattice subsets for specifying even, odd, and global subsets of the lattice:

Subset even, odd, all

It also creates the nearest-neighbor shifts for each coordinate direction.

Defining the layout
There are set/accessor functions to specify the lattice geometry used in the layout.
Generically, the accessors have the form:

Generic void Layout::set<something>(<param>)

Purpose Set one of the site data layout configurations.
Example Layout::setLattSize(size);

The type of input information needed by the layout is as follows:

1. Number of dimensions Nd. Must be the compile time dimensions.

2. Lattice size (e.g., L0, L1, ..., LNd−1)

3. SMP flag

These parameters are accessed and set with the following functions:

Generic void Layout::setLattSize(const multi1d<int>& size)

Purpose Set the lattice size for the data layout.
Default No default value. Must always be set.
Example Layout::setLattSize(size);

Generic void Layout::setSMPFlag(bool)

Purpose Turn on using multi-processor/threading
Default Default value is false - single thread of execution.
Example Layout::setSMPFlag(true);

Generic void Layout::setNumProc(int N)

Purpose In a multi-threaded implementation, use N processors.
Default Default value is 1 - single thread of execution.
Example Layout::setNumProc(2);

7

3.2.2 Generic layout information

The following global entry points are provided in the Layout namespace. They pro-
vide generic user information.

Returning the spacetime coordinates

Prototype LatticeInt Layout::latticeCoordinate(int d)

Purpose The dth spacetime coordinate.
Example LatticeInt coord = Layout::latticeCoordinate(2);

The call Layout::latticeCoordinate(d) returns an integer lattice field with a value
on each site equal to the integer value of the dth space-time coordinate on that site.

Lattice volume

Prototype int vol()

Purpose Return the total lattice volume
Example int vol = Layout::vol();

3.2.3 Entry points specific to the layout

The additional global entry points are provided in the Layout namespace. They
reveal some information specific to the implementation.

Node number of site

Prototype int Layout::nodeNumber(const multi1d<int>& x)

Purpose Returns logical node number containing site x.
Example node = Layout::nodeNumber(x);

Linear index of site

Prototype int Layout::linearIndex(const multi1d<int>& x)

Purpose Returns the linearized index for the lattice site x.
Example int k = Layout::linearIndex(x);

Map node and linear index to coordinate

Prototype multi1d<int> Layout::siteCoords(int node, int index)

Purpose Returns site coordinate x for the given node
node and linear index index.

Example multi1d<int> lc = Layout::siteCoords(n, i);

Number of sites on a node

Prototype int Layout::sitesOnNode()

Purpose Returns number of sites assigned to a node.
Example int num = Layout::sitesOnNode();

The linear index returned by Layout::linearIndex() ranges from 0 to Layout:sitesOnNode()−1.

8

3.3 Data Parallel Functions

Data parallel functions are described in detail in Sec. 6. In the C++ API, there are
overloaded functions that can be applied to site or lattice wide objects. Arbitrarily
complicated expressions can be built from these functions. The design of the API
describes that all operations are to be performed site-wise. The only connection
between sites is via a map or shift function.

The class of operations are generically described by site-wise operations (the “lin-
ear algebra” part of the API), and shift (or map) versions. The latter generically
involves communications among processors in a parallel implementation.

The operator style provided by the API thus allows operations like the following:

Lattice A, B;

LatticeColorMatrix U;

B = U * A;

From the type declarations

typedef OLattice<PScalar<PColorMatrix<RComplex<float>, Nc> > > LatticeColorMatrix
typedef OLattice<PSpinVector<PColorVector<RComplex<float>, Nc>, Ns> > LatticeFermion

one can see a OLattice multiplies a OLattice. At each site, the U field is a scalar
in spin space, thus a PScalar multiplies a PSpinVector - a vector in spin space.
For each spin component, there is a PColorMatrix multipling a PColorVector. The
multplications involve complex numbers.

Thus we see that mathematically the expression carries out the product

Bi
α(x) = Uij(x) ∗ Aj

α(x)

for all lattice coordinates x belonging to the subset all. Here A and B are objects
of lattice Dirac fermion fields and U is an onject of type lattice gauge field. The
superscripts i, j refer to the color indices and the subscript α refers to the spin index.
For each spin and color component, the multiplication is over complex types.

This tensor product factorization of types allows for potentially a huge variety
of mathematical objects. The operations between the objects is determined by their
tensor product structure.

The API allows for operations to be narrowed to a subset of sites. The infix
notation does not allow for extra arguments to be passed to an operation, so the
subset is fixed via the target. The API mandates that there is in use in even a
complex operation, namely the target specifies the subset to use. To narrow an
operation to a specific subset, one specifies the subset in the target as follows:

chi[even] = u * psi;

which will store the result of the multiplication on only the even subset.
The C++ API differs from the C API signficantly in the name of functions. In

C++, there is no need for naming conventions for the functions since one can overload
the function name on the types of its arguments. More significantly, the C API uses
a functional style where the destination of an operation is part of the arguments for
an operation, and all functions return void. The C++ API uses an operator/infix
style allowing complex expressions to be built.

9

3.3.1 Constant Arguments

In some cases it is desirable to keep an argument constant over the entire subset. For
example the function

Complex z;

LatticeFermion c, b;

c[s] = z * b;

multiplies a lattice field of color vectors by a complex constant as in

c[x] = z*b[x]

for x in subset s.

3.3.2 Functions

In the C++ API all operations are functions that act on their argument and most
functions return their results. Except for explicit shift functions and global reductions,
these functions are point-wise. The C++ API differs from the C API in that there
are no combined operations like adjoint with a multiply. Instead, one simply calls the
adjoint function. Thus

c = adj(u)*b

carries out the product

c[x] = adj(u[x])*b[x]

for all sites x in subset all.

3.3.3 Shift

A shift function is a type of map that maps sites from one lattice site to another. In
general, maps can be permutation maps but there are nearest neighbor shift functions
provided by default. See the discussion of shifts below in Section 3.8. Thus

c[s] = shift(b,sign,dir)

shifts an object along the direction specified by dir and sign for all sites x in desti-
nation subset s.

3.4 Creating and destroying lattice fields

The declaration of an object of some type say LatticeReal will call a constructor.
The implementation guarantees the object is fully created and all memory needed for
it is allocated. Thus, there is no need for the user to use new to create an object.
The use of pointers is discouraged. When an object goes out of scope, a destructor
is called which will guarantee all memory associated with the object is released.

There is no aliasing or referencing of two objects with the same internal data
storage. Each object a user can construct has its own unique storage.

10

3.5 Array container objects

For convenience, the API provides array container classes with much limited facility
compared to the Standard Template Library. In particular, one, two, three, and
four dimensional array container classes are available. The benefit of two and higher
dimension classes is that they can be allocated after they are declared. This is in
contrast to the STL technique, which builds multi-dimensional arrays out of nested
one-dimensional array, and one must allocate a nested array of array classes by looping
over the individual elements allocating each one.

An array of container classes is constructed as follows:

multi1d<LatticeComplex> r(Nd); // a 1-D array of LatticeComplex

multi2d<Real> foo(2,3); // a 2-D array of Real with first index slowest

3.6 Function objects

Function objects are used in the constructions of Sets/subsets and maps/shifts. The
objects created by maps are themselves function objects. They serve the role as
functions, but because of their class structure can also carry state.

A function object has a struct/class declaration. The key part is the function call
operator. A generic declaration is something like:

struct MyFunction

{

MyFunction(int dir) : mu(dir) {}

Real operator()(const int& x)

{* operates on x using state held in mu and returns a Real *\}

int mu;

}

A user can then use an object of type MyFunction like a function:

MyFunction foo(37); // hold 37 within foo

int x;

Real boo = foo(x); // applies foo via operator()

3.7 Subsets

It is sometimes convenient to partition the lattice into multiple disjoint subsets (e.g.
time slices or checkerboards). Such subsets are defined through a user-supplied func-
tion that returns a range of integers 0, 1, 2, . . . , n−1, so that if f(x) = i, then site x is
in partition i. A single subset may also be defined by limiting the range of return val-
ues to a single value (i.e. 0). This procedure may be called more than once, and sites
may be assigned to more than one subset. Thus, for example an even site may also
be assigned to a time slice subset and one of the subsets in a 32-level checkerboard
scheme. A subset definition remains valid until is destructor is called.

11

Defining a set Subsets are first defined through the construction of an object of
type Set using a function object. This function object is a derived type of SetFunc.
Function objects are described in Section 3.6. Subsets are defined through the data
type Subset.

Prototype Set::make(const SetFunc& func)

int SetFunc::operator()(const multi1d<int>& x)

int SetFunc::numSubsets()

Purpose Creates a Set that holds numSubsets subsets based on func.
Requirements The func is a derived type of SetFunc and maps lattice coordinates to

a partition number.
The function in func.numSubsets() returns number of partitions.

Example Set timeslice;
class timesliceFunc : public SetFunc;

timeslice.make(timesliceFunc);

Here is an explicit example for a timeslice:

struct TimeSliceFunc : public SetFunc

{

TimeSliceFunc(int dir): mu(dir) {}

// Simply return the mu’th coordinate

int operator()(const multi1d<int>& coord)

{return coord[mu];}

// The number of subsets is the length of the lattice

// in direction mu

int numSubsets() {return Layout::lattSize()[mu];}

int mu; // state

}

Set timeslice;

timeslice.make(TimeSliceFunc(3)) // makes timeslice in direction 3

It is permissible to call Set.make() with a function object having only 1 subset.
In this case the partition function must return zero if the site is in the subset and
nonzero if not. (Note, this is opposite the “true”, “false” convention in C).

Extracting a subset A subset is returned from indexing a Set object.

Prototype Subset Set::operator[](int i)

Purpose Returns the i-th subset from a Set object.
Example Set timeslice;

Subset origin = timeslice[0];

12

The Set::make() functions allocates all memory associated with a Set. A Subset

holds a reference info to the original Set. A destructor call on a Set frees all memory.

Using a subset A subset can be used in an assignment to restrict sites involved in
a computation:

LatticeComplex r, a, b;

Subset s;

r[s] = 17 * a * b;

will multiply 17 * a * b onto r only on sites in the subset s.

3.8 Maps and shifts

Shifts are general communication operations specified by any permutation of sites.
Nearest neighbor shifts are a special case. Thus, for example,

LatticeHalfFermion a, r;

r[s] = shift(a,sign,dir);

shifts the half fermion field a along direction dir, forward or backward according to
sign, placing the result in the field r. Nearest neighbor shifts are specified by values
of dir in the range [0, Nd − 1]. The sign is +1 for shifts from the positive direction,
and −1 for shifts from the negative direction. That is, for sign= +1 and dir= µ,
r(x) = a(x + µ̂). For more general permutations, dir is missing and sign specifies
the permutation or its inverse.

The subset restriction applies to the destination field r. Thus a nearest neighbor
shift operation specifying the even subset shifts odd site values from the source a and
places them on even site values on the destination field r.

Creating shifts for arbitrary permutations The user must first create a func-
tion object for use in the map creation as described in Section 3.6. Thus to use the
make a map one uses a function object in the map creation:

Prototype Map::make(const MapFunc& func)

Purpose Creates a map specified by the permutation map function
object func.

Requirements The func is a derived type of MapFunc and must have a
multi1d<int> operator()(const multi1d<int>& d)

member function that maps a source site to d.
Result Creates an object of type map which has a function call

template<class T> T Map::operator()(const T& a)

Example Map naik;

LatticeReal r,a;

r = naik(a);

13

The coordinate map function object func above that is handed to the map creation
function Map::make() maps lattice coordinates of the the destination to the source
lattice coordinates. After construction, the function object of type Map can be used
like any function via the operator(). It can be applied to all QDP objects in an
expression.

The function object has an operator that given a coordinate will return the source
site coordinates. An example is as follows:

struct naikfunc : public MapFunc

{

naik(int dir) : mu(dir) {}

multi1d<int> operator()(const multi1d<int>& x)

{* maps x to x + 3*mu where mu is direction vector *\}

int mu;

}

For convenience, there are predefined Map functions named shift that can shift
by 1 unit backwards or forwards in any lattice direction. They have the form

shift(const QDPType& source, int sign, int dir);

The construction of a Map object allocates all the necessary memory needed for a
shift. Similarly, a destructor call on a Map object frees memory.

3.9 I/O utilities

[Under development.]

3.10 Temporary entry and exit from QDP

For a variety of reasons it may be necessary to remove data from QDP structures.
Conversely, it may be necessary to reinsert data into QDP structures. For example,
a highly optimized linear solver may operate outside QDP. The operands would need
to be extracted from QDP fields and the eventual solution reinserted. It may also be
useful to suspend QDP communications temporarily to gain separate access to the
communications layer. For this purpose function calls are provided to put the QDP
implementation and/or QDP objects into a known state, extract values, and reinsert
them.

Exposing QDP data

Prototype QLA Type * QDP expose(Type& src)
Purpose Deliver data values from field src.
Type All numeric types
Example r = QDP_expose(a);

14

This function grants direct access to the data values contained in the QDP field src.
The return value is a pointer to an array of QLA data dest of type QLA Type. The
order of the data is given by Layout::linearIndex. No QDP operations except
QDP_insert are permitted on exposed data until QDP_reset is called. (See below.)

Returning control of QDP data

Prototype void QDP_reset(Type& field)
Purpose Returns control of data values to QDP.
Type All numeric types
Example QDP_reset(r);

This call signals to QDP that the user is ready to resume QDP operations with the
data in the specified field.

Extracting QDP data

Prototype void QDP_extract(multi1d<QLA Type>& dest, const Type& src,
const Subset& s)

Purpose Copy data values from field src to array dest.
Type All numeric types
Example LatticeReal a;

multi1d<Real> r(Layout::sitesOnNode());

QDP_extract(r,a,even);

The user must allocate the space of size Layout::sitesOnNode() for the destination
array before calling this function, regardless of the size of the subset.

This function copies the data values contained in the QDP field src to the desti-
nation field. Only values belonging to the specified subset are copied. Any values in
the destination array not associated with the subset are left unmodified. The order of
the data is given by Layout::linearIndex. Since a copy is made, QDP operations
involving the source field may proceed without disruption.

Inserting QDP data

Prototype void QDP_insert(Type& dest, const QLA Type& src,
const Subset& s)

Purpose Inserts data values from QLA array src.
Type All numeric types
Example multi1d<Fermion> a(Layout::sitesOnNode());

LatticeFermion r;

QDP_insert(r,a,odd);

Only data associated with the specified subset are inserted. Other values are unmodi-
fied. The data order must conform to Layout::linearIndex. This call, analogous to
a fill operation, is permitted at any time and does not interfere with QDP operations.

15

Suspending QDP communications If a user wishes to suspend QDP communi-
cations temporarily and carry on communications by other means, it is first necessary
to call QDP_suspend.

Prototype void QDP_suspend(void)

Purpose Suspends QDP communications.
Example QDP_suspend();

No QDP shifts can then be initiated until QDP_resume is called. However QDP linear
algebra operations without shifts may proceed.

Resuming QDP communications To resume QDP communications one uses

Prototype void QDP_resume(void)

Purpose Restores QDP communications.
Example QDP_resume();

16

4 Compilation with QDP

4.1 Generic header and macros

The compilation parameters:
Nd – the number of space-time dimensions
Nc – the dimension of the color vector space
Ns – the dimension of the spin vector space
are defined in qdp++/include/params.h . There are macros ND, NC, NS that are used
to set the above parameters via

const int Nd = ND;

const int Nc = NC;

const int Ns = NS;

They are set in the build directories file include/qdp config.h during configuration.

4.2 Nonuniform color and precision

Users wishing to vary color and precision within a single calculation must use specific
type names whenever these types and names differ from the prevailing precision and
color. Type declarations can be found in qdp++/include/defs.h . A convenient
definition of a LatticeColorMatrixand LatticeDiracFermionis as follows:

typedef OLattice<PScalar<ColorMatrix<Complex<float>, Nc> > > LatticeColorMatrix

typedef OLattice<SpinVector<ColorVector<Complex<float>, Nc>, Ns> > LatticeFermion

However, for the user to choose a specific number of colors:

const int NN = 17 // work in SU(17)

typedef OLattice<PScalar<ColorMatrix<Complex<float>, NN> > > LatticeColorMatrix17

5 Implementation Details

The following table lists some of the QDP headers.

name purpose
qdp.h Master header and QDP utilities
qdptype.h Main class definition
qdpexpr.h Expression class definition
primitive.h Main header for all primitive types
primscalar.h Scalar primitive class and operations
primmatrix.h Matrix primitive and operations
primvector.h Vector primitive and operations
primseed.h Seed (random number) primitive
reality.h Complex number internal class
simpleword.h Machine word-type operations

17

6 Supported Operations

This section describes in some detail the names and functionality for all functions in
the interface involving linear algebra with and without shifts.

All QDP objects are of type QDPType, and QDP functions act on objects of
this base class type. Unless otherwise indicated, operations occur on all sites in
the specified subset of the target, often an assignment statement or object definition.
The indexing of a QDPType returns an lvalue suitable for assignment (but not object
definition). It is also used to narrow the lattice sites participating in a global reduction
since the result of such a reduction is a lattice scalar, hence are independent of lattice
sites.

Supported operations are listed below. Convention: protoyypes are basically of
the form:

QDPType unary_function(const QDPType&)

QDPType binary_function(const QDPType&, const QDPType&)

6.1 Subsets and Maps

Set::make(const SetFunc&) Set construction of ordinality num subsets. func maps
coordinates to a coloring in [0,num)

Map::make(const MapFunc&) Construct a map function from source sites to the dest
site.

6.2 Infix operators

Unary infix (e.g., operator-):

- : negation
+ : unary plus
~ : bitwise not
! : boolean not

Binary infix (e.g., operator+):

+ : addition
- : subtraction
* : multiplication
/ : division
% : mod
& : bitwise and
| : bitwise or
^ : bitwise exclusive or
<< : left-shift
>> : right-shift

18

Comparisons (returning booleans, e.g., operator<):

<, <=, >, >=, ==, !=

&& : and of 2 booleans

|| : or of 2 boolean

Assignments (e.g., operator+=):

=, +=, -=, *=, /=, %=, |=, &=, ^=, <<=, >>=

Trinary:

where(bool,arg1,arg2) : the C trinary "?" operator -> (bool) ? arg1 : arg2

6.3 Functions (standard C math lib)

Unary:

cos, sin, tan, acos, asin, atan, cosh, sinh, tanh,

exp, log, log10, sqrt,

ceil, floor, fabs

Binary:

ldexp, pow, fmod, atan2

6.4 Additional functions (specific to QDP)

Unary:

adj : hermitian conjugate (adjoint)
conj : complex conjugate
transpose : matrix tranpose, on a scalar it is a nop
trace : matrix trace
real : real part
imag : imaginary part
colorTrace : trace over color indices
spinTrace : trace over spin indices
timesI : multiplies argument by imag ”i”
localNorm2 : on fibers computes trace(adj(source)*source)

Binary:

cmplx : returns complex object arg1 + i*arg2
localInnerProduct : at each site computes trace(adj(arg1)*arg2)
outerProduct : at each site constructs (arg1i ∗ arg2∗j)ij

19

6.5 In place functions

random(dest) : uniform random numbers - all components
gaussian(dest) : uniform random numbers - all components
copymask(dest,mask,src) : copy src to dest under boolean mask

6.6 Broadcasts

Broadcasts via assignments (via, operator=):

<LHS> = <constant> : globally set conforming LHS to constant
<LHS> = zero : global always set LHS to zero

6.7 Global reductions

sum(arg1) : sum over lattice indices returning object of same fiber
type

norm2(arg1) : sum(localNorm2(arg1))
innerProduct(arg1,arg2) : sum(localInnerProduct(arg1,arg2))
sumMulti(arg1,Set) : sum over each subset of Set returning #subset objects of

same fiber type

6.8 Accessors

Peeking and poking (accessors) into various component indices of objects.

peekSite(arg1,multi1d<int> coords) : return object located at lattice coords
peekColor(arg1,int row,int col) : return color matrix elem row and col
peekColor(arg1,int row) : return color vector elem row
peekSpin(arg1,int row,int col) : return spin matrix elem row and col
peekSpin(arg1,int row) : return spin vector elem row

pokeSite(dest,src,multi1d<int> coords) : insert into site given by coords
pokeColor(dest,src,int row,int col) : insert into color matrix elem row and col
pokeColor(dest,src,int row) : insert into color vector elem row
pokeSpin(dest,src,int row,int col) : insert into spin matrix elem row and col
pokeSpin(dest,src,int row) : insert into spin vector elem row

20

6.9 More exotic functions:

Applies spin projection (1 + isign ∗ γµ)*psi returning a half spin vector or matrix

spinProject(QDPType psi, int dir, int isign)

Applies spin reconstruction of (1 + isign ∗ γµ)*psi returning a full spin vector or
matrix

spinReconstruct(QDPType psi, int dir, int isign)

6.10 Operations on subtypes

Types in the QDP interface are parameterized by a variety of types, and can look
like the following:

typedef OLattice<PScalar<PColorMatrix<RComplex<float>, Nc> > > LatticeColorMatrix
typedef OLattice<PSpinVector<PColorVector<RComplex<float>, Nc>, Ns> > LatticeFermion

• Word type: int, float, double, bool. Basic machine types.

• Reality type: RComplex or RScalar.

• Primitive type: PScalar, PVector, PMatrix, PSeed.

• Inner grid type: IScalar or ILattice.

• Outer grid type: OScalar or OLattice.

Supported operations for each type level as follows:

Grid type: OScalar, OLattice, IScalar, ILattice
All operations listed in Sections 6.2–6.9

Primitive type:

PScalar: All operations listed in Sections 6.2–6.9

PMatrix<N>:

Unary: -(PMatrix), +(PMatrix)
Binary: -(PMatrix,PMatrix), +(PMatrix,PMatrix), *(PMatrix,PScalar),

*(PScalar,PMatrix), *(PMatrix,PMatrix)
Comparisons: none
Assignments: =(PMatrix), =(PScalar), -=(PMatrix), +=(PMatrix), *=(PScalar)
Trinary: where

C-lib funcs: none
QDP funcs: all
In place funcs: all
Reductions: all

21

PVector<N>:

Unary: -(PVector), +(PVector)
Binary: -(PVector,PVector), +(PVector,PVector), *(PVector,PScalar),

*(PScalar,PVector), *(PMatrix,PVector)
Comparisons: none
Assignments: =(PVector), -=(PVector), +=(PVector), *=(PScalar)
Trinary: where

C-lib funcs: none
QDP funcs: real, imag, timesI, localNorm2, cmplx, localInnerProduct,

outerProduct

In place funcs: all
Broadcasts: =(Zero)

Reductions: all

PSpinMatrix<N>: Inherits same operations as PMatrix

Unary: spinTrace

Binary: *(PSpinMatrix,Gamma), *(Gamma,PSpinMatrix)
Exotic: peekSpin, pokeSpin, spinProjection, spinReconstruction

PSpinVector<N>: Inherits same operations as PVector

Binary: *(Gamma,PSpinVector)

Exotic: peekSpin, pokeSpin, spinProjection, spinReconstruction

PColorMatrix<N>: Inherits same operations as PMatrix

Unary: colorTrace

Binary: *(PColorMatrix,Gamma), *(Gamma,PColorMatrix)
Exotic: peekColor, pokeColor

PColorVector<N>: Inherits same operations as PVector

Binary: *(Gamma,PColorVector)

Exotic: peekColor, pokeColor

Reality: RScalar, RComplex
All operations listed in Sections 6.2–6.9

Word: int, float, double, bool
All operations listed in Sections 6.2–6.9. Only boolean ops allowed on bool.

22

7 Detailed function description

The purpose of this section is to show some explicit prototypes and usages for the
functions described in Section 6. In that section, all the functions are shown with
complete information on which operations and their meaning are supported on some
combination of types. The purpose of this section is something like the inverse -
namely show all the functions and what are some (selected) usages.

7.1 Unary Operations

Elementary unary functions on reals

Syntax Type func(const Type& a)

Meaning r = func(a)
func cos, sin, tan, acos, asin, atan, sqrt, abs, exp, log, sign
Type Real, LatticeReal

Elementary unary functions on complex values

Syntax Type func(const Type& a)

Meaning r = func(a)
func exp, sqrt, log
Type Complex, LatticeComplex

Assignment operations

Syntax Type operator=(const Type& r, const Type& a)

Meaning r = a
Type All numeric types

Shifting

Syntax Type shift(const Type& a, int sign, int dir)

Meaning r = a
Type All numeric types

Hermitian conjugate

Syntax Type adj(const Type& a)

Meaning r = a†

Type Real, Complex, ColorMatrix, DiracPropagator
Also corresponding lattice variants

23

Transpose

Syntax Type transpose(const Type& a)

Meaning r = transpose(a)
Type Real, Complex, ColorMatrix, DiracPropagator

Also corresponding lattice variants

Complex conjugate

Syntax Type conj(const Type& a)

Meaning r = a∗

Type Real, Complex, ColorMatrix, DiracFermion, DiracPropagator
Also corresponding lattice variants

7.2 Type conversion

Types can be precision converted via a conversion function of the destination class.

Convert integer or float to double

Syntax Type2 Type2(const Type1& a)
Example LatticeReal a; LatticeRealD r = LatticeRealD(a)

LatticeColorMatrix a; LatticeColorMatrixD r = LatticeColorMatrixD(a)

Type1 All single precision numeric types
Type2 All conforming double precision numeric types

Convert double to float

Syntax Type2 Type2(const Type1& a)
Example LatticeRealD a; LatticeReal r = LatticeReal(a)

LatticeColorMatrixD a; LatticeColorMatrix r = LatticeColorMatrix(a)

Type1 All double precision numeric types
Type2 All conforming single precision numeric types

Integer to real

Syntax Type2 Type2(const Type1& a)
Example LatticeInt a; LatticeReal r = LatticeReal(a)

Type1 All integer precision numeric types
Type2 All conforming real precision numeric types

Real to integer

Syntax Type2 Type2(const Type1& a)
Example LatticeReal a; LatticeInt r = LatticeInt(a)

24

Real to float

Syntax float toFloat(const Real& a)

Meaning r = float(a);

Example Real a; float r = toFloat(a);

The QDP type Real is not a primitive type, so an explicit conversion is provided.

Double to double

Syntax double toDouble(const RealD& a)

Meaning r = double(a);

Example RealD a; double r = toDouble(a);

The QDP type RealD is not a primitive type, so an explicit conversion is provided.

Bool to bool

Syntax bool toBool(const Boolean& a)

Meaning r = bool(a);

Example Boolean a; bool r = toBool(a);

The QDP type Boolean is not a primitive type, so an explicit conversion is pro-
vided.

7.3 Operations on complex arguments

Convert real and imaginary to complex

Syntax Type cmplx(const Type1& a, const Type2& b)

Meaning Re r = a, Im r = b
Type1 constant, Real, Also corresponding lattice variants
Type2 constant, Real, Also corresponding lattice variants
Type Complex, Also corresponding lattice variants
Example Reala;

Complex = cmplx(a, 0);

Real part of complex

Syntax Type real(const Type& a)

Meaning r = Re a

Imaginary part of complex

Syntax Type imag(const Type& a)

Meaning r = Im a

25

7.4 Component extraction and insertion

Accessing a site object

Syntax Type peekSite(const LatticeType& a, const multi1d<int>& c)
Meaning r = a[x]

Accessing a color matrix element

Syntax LatticeComplex peekColor(const LatticeColorMatrix& a,
int i, int j)

LatticeSpinMatrix peekColor(const LatticeDiracPropagator& a,
int i, int j)

Meaning r = ai,j

Inserting a color matrix element

Syntax LatticeColorMatrix& pokeColor(LatticeColorMatrix& r,

const LatticeComplex& a, int i, int j)
Meaning ri,j = a

Accessing a color vector element

Syntax LatticeComplex peekColor(const LatticeColorVector& a,
int i)

LatticeSpinVector peekColor(const LatticeDiracFermion& a,
int i)

Meaning r = ai

This function will extract the desired color component with all the other indices
unchanged.

A lattice color vector is another name (typedef) for a LatticeStaggeredFermion.
Namely, an object that is vector in color spin and a scalar in spin space. Together
with spin accessors, one can build a LatticeDiracFermion.

Inserting a color vector element

Syntax LatticeColorVector& pokeColor(LatticeColorVector& r,
const LatticeComplex& a, int i)

Meaning ri = a

This function will extract the desired color component with all the other indices
unchanged.

A lattice color vector is another name (typedef) for a LatticeStaggeredFermion.
Namely, an object that is vector in color spin and a scalar in spin space. Together with
spin accessors, one can build a LatticeDiracFermion or a LatticeDiracPropagator.

26

Accessing a spin matrix element

Syntax LatticeComplex peekSpin(const LatticeSpinMatrix& a,
int i, int j)

LatticeColorMatrix peekSpin(const LatticeDiracPropagator& a,
int i, int j)

Meaning r = ai,j

Inserting a spin matrix element

Syntax LatticeSpinMatrix& pokeSpin(LatticeSpinMatrix& r,
const LatticeComplex& a, int i, int j)

Meaning ri,j = a

Accessing a spin vector element

Syntax LatticeComplex peekSpin(const LatticeSpinVector& a,
int i)

LatticeColorVector peekSpin(const LatticeDiracFermion& a,
int i)

Meaning r = ai

This function will extract the desired spin component with all the other indices
unchanged.

A lattice spin vector is an object that is a vector in spin space and a scalar in
color space. Together with color accessors, one can build a LatticeDiracFermion or a
LatticeDiracPropagator.

Inserting a spin vector element

Syntax LatticeSpinVector& pokeSpin(LatticeSpinVector& r,
const LatticeComplex& a, int i)

Meaning ri = a

This function will extract the desired spin component with all the other indices
unchanged.

A lattice spin vector is an object that is a vector in spin space and a scalar in
color space. Together with color accessors, one can build a LatticeDiracFermion or a
LatticeDiracPropagator.

Trace of matrix

Syntax Type2 trace(const Type1& a)
Meaning r = Tr a
Type1 ColorMatrix, DiracPropagator, Also corresponding lattice variants
Type2 Complex, Complex, Also corresponding lattice variants
Example LatticeColorMatrix a;

LatticeComplex r = trace(a);

27

Traces over all matrix indices. It is an error to trace over a vector index. It will
trivially trace a scalar variable.

Color trace of matrix

Syntax Type2 traceColor(const Type1& a)
Meaning r = Tr a
Type1 SpinMatrix, Also corresponding lattice variants
Type2 Complex, Also corresponding lattice variants

Example LatticeDiracPropagator a;

LatticeSpinMatrix r = traceColor(a);

Traces only over color matrix indices. It is an error to trace over a color vector
index. All other indices are left untouched. It will trivially trace a scalar variable.

Spin trace of matrix

Syntax Type2 traceSpin(const Type1& a)
Meaning r = Tr a
Type1 DiracPropagator, Also corresponding lattice variants
Type2 ColorMatrix, Also corresponding lattice variants

Example LatticeDiracPropagator a;

LatticeColorMatrix r = traceSpin(a);

Traces only over spin matrix indices. It is an error to trace over a spin vector
index. All other indices are left untouched. It will trivially trace a scalar variable.

Dirac spin projection

Syntax Type2 spinProject(const Type1& a, int d, int p)
Meaning r = (1 + pγd)a
Type1 DiracFermion, Also corresponding lattice variants
Type2 HalfFermion, Also corresponding lattice variants

Dirac spin reconstruction

Syntax Type2 spinReconstruct(const Type1& a, int d, int p)
Meaning r = recon (p, d, a)
Type1 HalfFermion, Also corresponding lattice variants
Type2 DiracFermion, Also corresponding lattice variants

7.5 Binary Operations with Constants

Multiplication by real constant

Syntax Type operator*(const Real& a, const Type& b)
Type operator*(const Type& b, const Real& a)

Meaning r = a ∗ b (a real, constant)
Type All floating types

28

Multiplication by complex constant

Syntax Type operator*(const Real& a, const Type& b)
Type operator*(const Type& b, const Real& a)

Meaning r = a ∗ b (a complex, constant)
Type All numeric types

Left multiplication by gamma matrix

Syntax Type operator*(const Gamma& a, const Type& b)
Meaning r = γd ∗ a
Gamma Gamma constructed from an explicit integer in [0, N2

s − 1]
Type SpinVector, SpinMatrix, HalfFermion, DiracFermion, DiracPropagator,

and similar lattice variants
Example r = Gamma(7) * b;

Right multiplication by gamma matrix

Syntax Type operator*(const Type& a, const Gamma& b)
Meaning r = a ∗ γd

Gamma Gamma constructed from an explicit integer in [0, N2
s − 1]

Type SpinMatrix, DiracPropagator, and similar lattice variants
Example r = a * Gamma(15);

7.6 Binary Operations with Fields

Division of real fields

Syntax Type operator/(const Type& a, const Type& b)

Meaning r = a/b

Addition

Syntax Type operator+(const Type& a, const Type& b)

Meaning r = a + b
Type All numeric types

Subtraction

Syntax Type operator-(const Type& a, const Type& b)

Meaning r = a− b
Type All numeric types

29

Multiplication: uniform types

Syntax Type operator*(const Type& a, const Type& b)

Meaning r = a ∗ b
Type constant, Real, Complex, Integer, ColorMatrix, SpinMatrix, DiracPropagator

ColorMatrix matrix from outer product

Syntax Type outerProduct(const Type1& a, const Type2& b)

Meaning ri,j = ai ∗ b∗j
Type1,2 ColorVector, LatticeColorVector
Type ColorMatrix, LatticeColorMatrix

Left multiplication by gauge matrix

Syntax Type operator*(const Type1& a, const Type& b)
Meaning r = a ∗ b
Type1 ColorMatrix, LatticeColorMatrix
Type constant, Complex, ColorMatrix, ColorVector,

SpinVector, DiracPropagator, and similar lattice variants

Right multiplication by gauge matrix

Syntax Type operator*(const Type& a, const Type1& b)
Meaning r = a ∗ b
Type1 ColorMatrix, LatticeColorMatrix
Type ColorMatrix, SpinMatrix, DiracPropagator, and similar lattice variants

7.7 Boolean and Bit Operations

Comparisons

Syntax Type2 op(const Type& a, const Type1& b)

Meaning r = a op b or r = op(a, b)
op <, >, !=, <=, >=, ==
Type1 Integer, Real, RealD, and similar lattice variants
Type2 Boolean or LatticeBoolean (result is lattice if any arg is lattice)

Elementary binary operations on integers

Syntax Type2 op(const Type& a, const Type1& b)

Meaning r = a op b or r = op(a, b)
op <<, >>, & (and), | (or), ^ (xor), mod, max, min

30

Elementary binary operations on reals

Syntax Type op(const Type1& a, const Type2& b)

Meaning r = a op b or r = op(a, b)
op mod, max, min

Type Real, RealD, and similar lattice variants

Boolean Operations

Syntax Type op(const Type& a, const Type& b)

Meaning r = a op b
op | (or), & (and), ^ (xor)
Type Boolean, LatticeBoolean

Syntax Type op(const Type& a)

Meaning r = not a
op ! (not)
Type Boolean, LatticeBoolean

Copymask

Syntax void copymask(const Type2& r, const Type1& a, const Type1& b)
Meaning r = b if a is true
Type All numeric types

7.8 Reductions

Global reductions sum over all lattice sites in the subset specified by the left hand
side of the assignment.

Norms

Syntax Real norm2(Type& a)
Meaning r =

∑ |a|2
Type All numeric types

Inner products

Syntax Complex innerProduct(Type& a, const Type& b)
Meaning r =

∑
a · b

Type All numeric types

Global sums

Syntax Type sum(const LatticeType& a)
Meaning r =

∑
a

Type All numeric non-lattice scalar types

31

7.9 Fills

Coordinate function fills

Syntax LatticeInt Layout::latticeCoordinate(int d)
Meaning r = f(d) for direction d.
Purpose Return the lattice coordinates in direction d

The call Layout::latticeCoordinate(d) returns an integer lattice field with a value
on each site equal to the integer value of the dth space-time coordinate on that site.

Constant fills

Syntax LatticeType operator=(LatticeType& r, const Type& a)
Meaning r = a for all sites
Type All non-lattice objects
Example Real a = 2.0;

LatticeReal r = a;

Constant (or lattice global) fills are always defined for lattice scalar objects broad-
casting to all lattice sites. These are broadcasts of a lattice scalar type to a conforming
lattice type.

NOTE, one can not fill a LatticeColorVector with a Real.

Syntax LatticeType operator=(LatticeType& r, const Type& a)
Meaning r = diag(a, a, . . .) (constant a)
Type Complex, ColorMatrix, SpinMatrix
Example Real a = 2.0;

LatticeColorMatrix r = a;

Only sets the diagonal part of a field to a constant a times the identity.
This fill can only be used on primitive types that are scalars or matrices. E.g.,

it can not be used for a vector field since there is no meaning of diagonal. NOTE,
a zero cannot be distinguished from a constant like 1. To initialize to zero the zero

argument must be used.

Zero fills

Syntax Type operator=(Type& r, const Zero& zero)
Meaning r = 0
Type All numeric types
Example LatticeDiracFermion r = zero;

This is the only way to fill a vector field with a constant (like zero).

Uniform random number fills

Syntax void random(Type& r)
Meaning r random, uniform on [0, 1]
Type All floating types

32

Gaussian random number fills

Syntax void gaussian(Type& r)
Meaning r normal Gaussian
Type All floating types

Seeding the random number generator

Syntax void RNG::setrn(const Seed& a)
Meaning Initialize the random number generator with seed state a

For details see the discussion of the corresponding scalar function random.h.

Extracting the random number generator seed

Syntax void RNG::savern(Seed& r)
Meaning Extract the random number generator into seed state r

For details see the discussion of the corresponding scalar function random.h.

33

