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I. GAUGE POTENTIALS IN CLASSICAL AND QUANTUM HAMILTONIAN SYSTEMS.

A. Classical Hamiltonian systems.

Hamiltonian systems, are generally defined by specifying a set of canonical variables pj , qj

satisfying canonical relations

{pi, qj} = δij , (1)

where {. . . } denotes the Poisson bracket:

{A(~p, ~q), B(~p, ~q)} =
∑

j

∂A

∂pj

∂B

∂qj
− ∂B

∂pj

∂A

∂qj
. (2)
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It is easy to check that any orthogonal transformation

Q = R(λ)q, P = R(λ)p (3)

preserves the Poisson bracket. A general class of transformations which preserve the Poisson

brackets are known as canonical transformations and can be expressed through the generating

functions (Landau and Lifshitz, 1982). It is easy to check that continuous canonical transformations

can be generated by gauge potentials Aλ:

qj(λ+ δλ) = qj(λ)− ∂Aλ(λ, ~p, ~q)

∂pj
δλ, (4)

pj(λ+ δλ) = pj(λ) +
∂Aλ(λ, ~p, ~q)

∂qj
δλ, (5)

where λ parametrizes the canonical transformation and the gauge potential is an arbitrary function

of canonical variables and the parameter. Then up to terms of the order of δλ2 the transformation

above preserves the Poisson brackets

{pi(λ+ δλ), qj(λ+ δλ)} = δij + δλ

(
∂2Aλ
∂pj∂qi

− ∂2Aλ
∂pj∂qi

)
+O(δλ2) = δij +O(δλ2). (6)

Exercises.

1. Show that the generator of translations ~q(X) = ~q0 − ~X is the momentum operator:

~A ~X(~q, ~p) = ~p. You need to treat ~X as a three-component parameter ~λ.

2. Show that the generator of rotations around z-axis:

qx(θ) = cos(θ)qx0 − sin(θ)qy0, qy(θ) = cos(θ)qy0 + sin(θ)qx0,

px(θ) = cos(θ)px0 − sin(θ)py0, py(θ) = cos(θ)py0 + sin(θ)px0,

is the angular momentum operator: Aθ = pxqy − pyqx.

3. Find the gauge potential Aλ corresponding to the orthogonal transformation (3).

Hamiltonian dynamics is a particular canonical transformation parametrized by time

dqj
∂t

= {H, qj} =
∂H
∂pj

,
dpj
∂t

= {H, pj} = −∂H
∂qj

(7)

Clearly these Hamiltonian equations are equivalent to Eqs. (5) with the convention At = −H. This

observation shows that the gauge potentials Aλ are generators of motion in the parameter space.
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One can extend canonical transformations to the complex variables. Instead of doing this in

full generality we will focus on particular phase space variables which are complex wave ampli-

tudes. For example let us consider a system of harmonic oscillators which can be always described

by the normal modes parameterized by k (for translationally invariant system k represents the

momentum). Each mode is an independent harmonic oscillator described by the Hamiltonian:

Hk =
p2
k

2m
+
mω2

k

2
q2
k. (8)

Let us define new linear combinations

pk = i

√
mωk

2
(a∗k − ak), qk =

√
1

2mωk
(ak + a∗k) (9)

or equivalently

a∗k =
1√
2

(
qk
√
mωk −

i√
mωk

pk

)
, ak =

1√
2

(
qk
√
mωk +

i√
mωk

pk

)
. (10)

Next we compute the Poisson brackets of the complex wave amplitudes

{ak, ak} = {a∗k, a∗k} = 0, {ak, a∗k} = i. (11)

To avoid dealing with the imaginary Poisson brackets it is convenient to introduce new coherent

state Poisson brackets

{A,B}c =
∑

k

∂A

∂ak

∂B

∂a∗k
− ∂B

∂ak

∂A

∂a∗k
. (12)

From this definition it is immediately clear that

{ak, a∗q}c = δkq. (13)

Comparing this relation with Eq. (11) we see that standard and coherent Poisson brackets differ

by the factor of i:

{. . . } = i{. . . }c. (14)

Infinitesimal canonical transformations preserving the coherent state Poisson brackets can be also

defined using the guage potentials:

i
∂ak
∂λ

= −∂Aλ
∂a∗k

, i
∂a∗k
∂λ

=
∂Aλ
∂ak

. (15)

Exercise
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• Check that any unitary transformation ãk = Uk,k′a
′
k, where U is a unitary matrix, pre-

serves the coherent state Poisson bracket, i.e. {ãk, ã∗q}c = δk,q. Verify that the Bogoliubov

transformation

γk = cosh(θk)ak + sinh(θk)a
∗
−k, γ

∗
k = cosh(θk)a

∗
k + sinh(θk)a−k, (16)

with θk = θ−k also preserves the coherent state Poisson bracket, i.e.

{γk, γ−k}c = {γk, γ∗−k}c = 0, {γk, γ∗k}c = {γ−k, γ∗−k}c = 1. (17)

Assume that θk are known functions of some parameter λ, e.g. the interaction strength.

Find the gauge potential Aλ =
∑

kAk, which generates such transformations.

We can write the Hamiltonian equations of motion for the new coherent variables. Using that

da

dt
=
∂a

∂t
− {a,H} =

∂a

∂t
− i{a,H}c (18)

and using that our variables do not explicitly depend on time (such dependence would amount to

going to a moving frame, which we will discuss later) we find

i
dak
dt

= {ak,H}c =
∂H
∂a∗k

, i
da∗k
dt

= {a∗k,H}c = − ∂H
∂ak

(19)

These equations are also known as Gross-Pitaevskii equations. Note that these equations are

arbitrary for arbitrary Hamiltonians and not restricted to harmonic systems.

And finally let us write down the Liouville equations of motion for the probability distribution

ρ(q, p, t) or ρ(a, a∗, t). The latter just express incompressibility of the probability fllow, which

directly follows conservation of the phase space volume dΓ = dqdp or dΓ = dada∗ for arbitrary

canonical transformations including time evolution and from the conservation of the total proba-

bility ρdΓ:

0 =
dρ

dt
=
∂ρ

∂t
− {ρ,H} =

∂ρ

∂t
− i{ρ,H}c, (20)

or equivalently

∂ρ

∂t
= {ρ,H}, i∂ρ

∂t
= −{ρ,H}c (21)

B. Quantum Hamiltonian systems.

An analogue of canonical transformations in classical mechanics are unitary transformations

in quantum mechanics. In classical systems these transformations reflect the freedom of choosing

canonical variables while in quantum systems they reflect the freedom of choosing basis states.
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The wave function representing some state can be always expanded in some basis:

|ψ〉 =
∑

n

ψn|n〉0, (22)

where |n〉0 is some fixed, parameter independent basis. One can always make a unitary transfor-

mation to some other basis |n(λ)〉 = Unm(λ)|n0〉 or equivalently |n0〉 = U∗nm|m(λ)〉.1 Then the

same state |ψ〉 can be written as

|ψ〉 =
∑

n

ψnU
∗
nm|m(λ)〉 =

∑

m

ψ̃m(λ)|m(λ)〉, (23)

where ψ̃m(λ) = U∗nmψn = U †ψ. We can introduce gauge potentials by analogy with the classical

systems as generators of continuous unitary transformations. Namely

i∂λψ̃(λ) = −iU †∂λUU †ψ = −iU †∂λUψ̃ = −Aλψ̃, (24)

where we introduced the guage potential

Aλ = iU †∂λU. (25)

Note that up to the sign the gauge potential plays the role similar to the Hamiltoninan, i.e.

it generates the motion in the parameter space. It is easy to check that the gauge potential is a

Hermitian operator

A†λ = i∂λU
†U = Aλ, (26)

where we used that

∂λU
† = −U † ∂λU U †. (27)

The gauge potential can be also represented through the matrix elements:

〈n0|Aλ|m0〉 = i〈n0|U †∂λU |m0〉 = i〈n(λ)|∂λ|m(λ)〉. (28)

or equivalently

Aλ = i∂λ. (29)

We work in units where ~ = 1, otherwise it is more appropriate to define Aλ = i~∂λ. The diagonal

elements of the gauge potentials in the basis of some Hamiltonian H(λ) are the Berry connections,

1 Unless otherwise specified we always imply summation over repeated indices.
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which we will discuss in detail later. So the Berry connections are direct analogues of energies

representing the expectation values of the gauge potentials. With this definition one can extend

the notion of the Berry connections to arbitrary states.

Exercises

1. Verify that the gauge potential corresponding to the translations: ψ̃(x) = ψ(λ + x) is the

momentum operator. Similarly verify that the gauge potential for rotations is the angular

momentum operator.

2. Consider the quantum version of the Bogoliubov transformations discussed in the previous

section (Eq. (16)). Show that the quantum and classical gauge potentials coincide if we iden-

tify complex amplitudes ak and a∗k with the annihilation and creation operators respectively.

C. Hamiltonian dynamics in the moving frame. Galilean transformation.

Gauge potentials are closely integrated into the Hamiltonian dynamics. In particular, they

naturally appear in gauge theories like electromagnetism to enforce the gauge invariance. We will

come to this issue later. For now we simply note that the equations of motion should be invariant

under the gauge transformations. Indeed we can describe the same system using an arbitrary set

of canonical variables in the classical language or an arbitrary basis in the quantum language.

Let us consider now the classical equations of motion of some system described by the Hamilto-

nian, possibly time and parameter dependent (the system can be either single- or many- particle).

For the parameter-independent canonical variables the equations of motion are

dq

dt
= {H, q}, dp

dt
= {H, p} (30)

Now let us go to the moving frame, i.e. let us find the analogous equations of motion in terms of

canonical variables q(λ, t), p(λ, t). Then obviously

dq

dt
=
∂q

∂t
+ λ̇

∂q

∂λ
. (31)

Note that dtq is the full derivative in the moving frame, while ∂tq is the derivative in the lab frame

where the definition of q does not depend on λ and thus it is described by Eqs. (30). Using the

definition of the gauge potential we find

dq

dt
= {H, q} − λ̇{Aλ, q},

dp

dt
= {H, p} − λ̇{Aλ, p}. (32)
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We thus see that the equations of motion in the moving frame preserve their Hamiltonian nature.

The new moving Hamiltonian is given by the generalized Galilean transformation

Hm = H− λ̇Aλ. (33)

If λ stands for a say x-coordinate of the reference frame then as we discussed Aλ = Px and the

expression above reduces to the standard Galilean transformation. If λ stands for an angle of

the reference frame that Aλ is the angular momentum and the transformation of the Hamiltonian

reduces to the Hamiltonian in the rotating frame, if λ is the dilation parameter then

Hm = H− λ̇

λ

∑

j

qjpj . (34)

Similarly one can check that standard gauge transformations in electromagnetism can be also

understood through going to a moving frame with respect to momentum.

Exercise

• Find the gauge potential corresponding to the translations of the momentum p = p + λ(t).

Find the gauge potential describing this transformation. Show that the moving frame Hamil-

tonian with the Galilean term accounts to the standard gauge transformation in the electro-

magnetism where Ax → Ax + ∂qf, ϕ → ϕ − ∂tf , where Ax and ϕ are the x-component of

the vector potential and the scalar potential. Find the relation between the guage potential

and the function f .

It is interesting that the Galilean transformation can be understood from the extended varia-

tional principle, where the equations of motion can be obtained by extremizing the action in the

extended parameter space-time

S =

∫
[p dq −Hdt+Aλdλ] (35)

with respect to all possible trajectories p(λ, t), q(λ, t) satisfying the initial conditions. Extremizing

the action at constant time t clearly gives back the canonical transformations (5). Extremizing

this action with respect to time reproduces the Hamiltonian equations of motion. If we extremize

the action along some space time trajectory λ(t) such that dλ = λ̇dt we will clearly reproduce the

Hamiltonian equations of motion with the Galilean term (33).

Very similar analysis goes through for the quantum systems. Thus the Schroedinger equation

i∂tψ = Hψ (36)
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after the transformation to the moving frame: ψ = U(λ)ψ̃ reads

iλ̇(∂λU)ψ̃ + iU∂tψ̃ = HUψ̃ (37)

Multiplying both sides of this equation by U † and moving the first term in the L.H.S. of this

equation to the right we find

i∂tψ̃ =
[
U †HU − λ̇Aλ

]
ψ̃. (38)

Here U †HU is the original Hamiltonian written in the rotating basis while −λ̇Aλ is the Galilean

term.

To be more specific let us consider a simple example of a spin one half particle in an external

field. The Hamiltonian in the fixed (lab) frame is:

H (λ) = −∆ (cos(λ)σz + sin(λ)σx)

with eigenstates

|gsλ〉 =


 cos

(
λ
2

)

sin
(
λ
2

)


 , |exλ〉 =


 − sin

(
λ
2

)

cos
(
λ
2

)




We will consider a very specific unitary transformation, which will be very important throughout

this course, namely the transformation, which diagonalizes the instantaneous Hamiltonian, H(λ).

Clearly this transformation is simply the rotation around the y-axis λ:

U(λ) = exp
[
−iσy

2
λ
]

=


 cos (λ/2) − sin (λ/2)

sin (λ/2) cos (λ/2)




Note that U(λ0 = 0) = I is the identity matrix. Then the gauge potential is:

Aλ = iU †(λ) (∂λU(λ)) =
σy
2
,

which in this example is λ-independent. Note that the Pauli matrix σy acts in the basis of the

instantaneous Hamiltonian.

H̃ ≡ U †(λ)H(λ)U(λ) = −∆σz,

with the eigenstates

|g̃s〉 =


 1

0


 , |ẽx〉 =


 0

1


 .

By direct inspection one can verify that

1

2
〈ñ|σy|m̃〉 = i〈n|∂λ|m〉, (39)

where n,m = {gs, es}.
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II. GEOMETRY OF THE GROUND STATE MANIFOLD. FUBINI-STUDY METRIC AND THE

BERRY CURVATURE.

In the previous section we treated quantum and classical systems on equal footing. In this

section we will focus on the geometric properties of the ground state manifold thus will focus on

exclusively quantum systems. In the next section, where we will study relation between geometry

and dynamics we will again consider both classical and quantum systems.

The first notion of the quantum geometric tensor appeared in 1980 in Ref. (Provost and Vallee,

1980). Formally the geometric tensor is defined on any manifold of states characterized by some

parameter ~λ: |ψ0(~λ)〉.2 We will be interested in the family of ground states of some Hamiltonian

H(~λ). We will assume that the ground state is either non-degenerate or in the case of degeneracy

ground states are not connected by the matrix elements of generalized forces ∂λαH. The geometric

tensor naturally appears when one considers the distance between nearby states |ψ0(~λ)〉 and |ψ0(~λ+

δ~λ)〉 and expands it to the lowest order in δ~λ:

d ≡ 1− f2 = 1− |〈ψ0(~λ)|ψ0(~λ+ δ~λ)〉|2, (40)

where f = |〈ψ0(~λ)|ψ0(~λ + δ~λ)〉| is the so called fidelity of the ground state. Note that 1 − f2 is

always positive therefore at small δ~λ the Taylor expansion of this quantity should not contain any

first order terms in δ~λ and rather start with a quadratic term:

1− f2 = δλαχαβδλβ +O(|δ~λ|3), (41)

where χαβ is the symmetric positive definite geometric tensor. To find this tensor explicitly let

us note that 1− f2 is nothing but the probability to excite the system during a quantum quench

where the parameter suddenly changes from ~λ to ~λ + δ~λ. Indeed f2 is simply the probability to

remain in the ground state after this quench. The amplitude of going to the excited state is

an = 〈ψn(~λ+ δ~λ)|ψ0(~λ)〉 ≈ δλα〈n|
←−
∂ α|0〉, (42)

where to shorten the notations we introduced ∂α ≡ ∂λα and the arrow over the derivative indicates

that it acts on the left. Also to simplify notations we use |n〉 instead of |ψn(~λ)〉. Differentiating

the orthonormality condition 〈n|m〉 with respect to λα we find

〈n|←−∂ α|m〉+ 〈n|∂α|m〉 = 0. (43)

2 From now on we will assume that the parameters can be multi-component.
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Recall that (see Eq. (28))

i〈n|∂α|m〉 = 〈ñ|Aα|m̃〉, (44)

where tilde refers to the instantaneous basis, i.e. the basis at ~λ+δ~λ. Thus we see that the amplitude

of going to the excited state in the leading order in δ~λ is given essentially by the matrix element

of the gauge potential

an = δλα〈n|
←−
∂ α|0〉 = −δλα〈n|∂α|0〉+O(|δ~λ|2) = i〈n|Aα|0〉+O(|δ~λ|2). (45)

Note that we can skip the tilde in the basis because in the leading order in δ~λ the basis does not

change. Thus we see that

1−f2 =
∑

n 6=0

|a2
n| =

∑

n6=0

δλαδλβ〈0|Aα|n〉〈n|Aβ|0〉+O(|δ~λ|3) = δλαδλβ〈0|AαAβ|0〉c+O(|δ~λ|3), (46)

where the subindex c implies that we are taking the connected correlation function (or equivalently

the covariance):

〈0|AαAβ|0〉c = 〈0|AαAβ|0〉 − 〈0|Aα|0〉〈0|Aβ|0〉. (47)

This covariance precisely determines the geometric tensor introduced by Provost and Vallee

χαβ = 〈0|AαAβ|0〉c. (48)

In terms of many-body wave functions the geometric tensor can be expressed through the overlap

of derivatives:

χαβ = 〈0|←−∂ α∂β|0〉c = 〈∂αψ0|∂βψ0〉c = 〈∂αψ0|∂βψ0〉 − 〈∂αψ0|ψ0〉〈ψ0|∂βψ0〉. (49)

The last term in this expression is necessary to enforce invariance of the distance under arbitrary

global phase transformations of the wave function ψ0(~λ) → exp[iφ(~λ)]ψ0(~λ), which should not

affect the notion of the distance between different ground states.

Note that in general the geometric tensor is not symmetric. Indeed because the operators Aα
are Hermitian one can show that

χαβ = χ∗βα. (50)

Only the symmetric part of χαβ determines the distance between the states. Indeed in the quadratic

form

d = δλαχαβδλβ (51)
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one can always symmetrize the indexes α and β so that the antisymmetric part drops out. Never-

theless, as we will see shortly, both the symmetric and the anti-symmetric parts of the geometric

tensor are very important so we will introduce both

gαβ =
χαβ + χβα

2
=

1

2
〈0|AαAβ +AβAα|0〉 = <〈0|AαAβ|0〉 (52)

is called the Fubini-Study metric tensor.3 The imaginary part of the geometric tensor is known

as the Berry curvature (Berry, 1984). It plays a crucial role in most known quantum topological

phenomena:

Fαβ = i(χαβ − χβα) = −2=χαβ = i〈0|[Aα,Aβ]|0〉. (53)

Let us note that the Berry curvature can be expressed through the derivatives of the Berry

connections:

Fαβ = ∂αAβ − ∂βAα, (54)

where

Aα = 〈0|Aα|0〉 = i〈0|∂α|0〉. (55)

Indeed direct differentiation gives

∂αAβ − ∂βAα = i〈0|←−∂ α∂β|0〉 − i〈0|
←−
∂ β∂α|0〉+ i〈0|∂2

αβ|0〉 − i〈0|∂2
βα|0〉 = i(χαβ − χβα). (56)

The Berry connection is directly related to the phase of the ground state wave function. Indeed

representing the latter as

ψ0 = |ψ0| exp[iφ] (57)

we find that

Aα = −∂αφ (58)

Therefore the integral of Aα over a closed path represents the total phase (Berry phase) accumulated

by the wave function during the adiabatic evolution

γ =

∮

~l
∂αφdλα = −

∮

~l
Aαdλα (59)

3 Sometimes in literature by the Fubini-Study metric one understands the complete metric in the projective Hilbert
space where the number of parameters λα coincides with the dimension of the Hilbert space.
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By the Stokes theorem the same phase can be represented as the integral of the Berry curvature

over the surface enclosed by the contour ~l:

γ =

∫

S
Fαβdλα ∧ dλβ, (60)

where the wedge product implies that the integral is directed.

To get an intuition about the Berry curvature and then the metric tensor let us consider two

simple examples. First, following the original paper by Berry, let us consider the Aharonov-

Bohm geometry, namely a particle confined in a deep potential in the presence of a solenoid. The

Hamiltonian for this system is

H =

(
~p− e

c
~Λ(~r)

)2

2m
+ V (~r − ~R), (61)

where ~Λ is the vector potential (we use ~Λ to avoid the confusion with the Berry connection) and

V (~r− ~R) is a confining potential near some point ~R outside the solenoid, where there is no magnetic

field. Therefore the vector potential can be written as a gradient of the magnetic potential

~Λ = ~∇Φ⇒ Φ =

∫
~Λd~l

Note that this expression is valid even if the magnetic field is non-zero but then the potential

Φ is path dependent. It is well known that the vector potential can be eliminated by a gauge

transformation:

ψ = ψ̃ exp
[
i
e

c~
Φ
]
. (62)

Then the Hamiltonian for ψ̃ becomes independent of the vector potential and thus the wave function

ψ̃ can be chosen to be real. In this case the Berry connection with respect to ~R, the position of

the trap, is

−∂~Rφ = − e

c~
∂~RΦ =

e

c~
∂~rΦ =

e

c~
~Λ(~R) (63)

In general one needs to average the vector potential over the wave function ψ̃(~r) but assuming that

it is localized near ~R the averaging is not important. So we see that up to fundamental constants

the Berry connection plays the role of the vector potential, hence the Berry phase assumes the role

of the flux and the Berry curvature (curl of the Berry connection) plays the role of the magnetic

field. This analogy is very useful when we think about general parameter space and as we will see

later this analogy is not coincidental. Like the magnetic field the Berry curvature is the source of

the Lorentz force.
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FIG. 1 Schematic representation of the spin in an external magnetic field, where the angles of the magnetic

field θ and φ are the parameters.

Now let us consider the next illustrative example of a spin one half in an external magnetic

field. We will analyze the geometry shown in Fig. 1. The Hamiltonian of this system is

H = −~h~σ. (64)

Because the ground state does not depend on the magnitude of the magnetic field we can choose

parameters to be the angles θ and φ. We already discussed the ground and excited states for this

model at φ = 0. For general φ we have

|ψ0〉 =


 cos(θ/2)eiφ/2

sin(θ/2)e−iφ/2


 , |ψ1〉 =


 − sin(θ/2)eiφ/2

cos(θ/2)e−iφ/2


 .

Direct evaluation of the geometric tensor for the ground state gives

χθθ =
1

4
, χφφ =

1

4
sin2(θ), χθφ = − i

4
sin(θ) (65)

This expressions can be either computed by direct differentiation of the ground state wave function

with respect to θ and φ or from calculating the covariance matrix of the gauge potentials

Aθ = i∂θ =
1

2
τy, Aφ = i∂φ =

1

2
(cos(θ)τz + sin(θ)τx) (66)
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Recall that the Pauli matrices here act in the basis of instantaneous eigenstates where the Hamil-

tonian is H = −hτz. The equations above generalize to particles with arbitrary spin where instead

of spin one half operators like 1/2τy one uses the angular momentum operators like Sy.

From the expression for the geometric tensor we see that the nonzero metric tensor components

are

gθθ =
1

4
, gφφ =

1

4
sin2 θ, (67)

and the Berry curvature is

Fθφ =
1

2
sin(θ). (68)

Note that the Fubini-Study metric for this model is equivalent to the metric of a sphere of radius

r = 1/2. It is interesting to point that for the excited state the metric tensor is the same while the

Berry curvature has an opposite sign.

Originally Provost and Vallee thought that the metric tensor is a nice mathematical object,

which is however unmeasurable. Contrary it was immediately understood that the Berry curvature

is responsible for many different physical phenomena like the Aharonov-Bohm effect or the quantum

Hall effect. Later in the course we will discuss in a greater detail the relation between the geometric

tensor and the dynamical response. For now let us show that the geometric tensor is measurable

and related to the standard dynamical response coefficients. Indeed let us differentiate the relation

H|n〉 = En|n〉 (69)

with respect to λ and multiply both sides on 〈m|, where m 6= n. For simplicity we will assume

there are no degeneracies. Then we find

〈m|∂λH|n〉+ Em〈m|∂λ|n〉 = En〈m|∂λ|n〉.

Thus we find

〈m|∂λ|n〉 =
〈m|∂λH|n〉
En − Em

. (70)

Using this result we can rewrite the components of the geometric tensor as

χαβ =
∑

n6=0

〈0|←−∂ α|n〉〈n|∂β|0〉 = −
∑

n6=0

〈0|∂α|n〉〈n|∂β|0〉 =
∑

n6=0

〈0|∂αH|n〉〈n|∂βH|0〉
(En − E0)2

(71)

Now let us use the following trick standard in connecting the Lehmann’s representation of some

observable to the non-equal time correlation functions:

1

(En − E0)2
=

∫ ∞

0
dω

1

ω2
δ(En − E0 − ω) =

∫ ∞

0
dω

∫ ∞

−∞

dt

2π
e−i(En−E0−ω)t. (72)
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In this integral we can always add exp[−ε|t|] for the convergence. Next we note that

〈0|eiE0t∂αHe−iEnt|n〉 = 〈0|∂αH(t)|n〉 (73)

is the matrix element of the operator ∂αH in the Heisenberg representation. Plugging this into

Eq. (71) we find

χαβ =

∫ ∞

0

dω

ω2
Sαβ(ω), (74)

where

Sαβ(ω) =

∫ ∞

−∞

dt

2π
eiωt〈0|∂αH(t)∂βH(0)|0〉c. (75)

This object Sαβ(ω) is a standard response coefficient. Its symmetric part, determining the metric

tensor, appears in the noise, full counting statistics and the absorption spectrum (through the

fluctuation-dissipation relations). Its antisymmetric part determining the Berry curvature appears

in the standard Kubo linear response. This implies that both the metric tensor and the Berry

curvature are measurable quantities in standard experimental setups.

III. GEOMETRIC INVARIANTS: GEOMETRY OF THE XY CHAIN.

Both the Berry curvature and the Fubini-Study metric tensor define geometric (topological)

invariants. There are many of those. In these lecture notes we will concentrate on two most

important ones: (first) Chern number and the Euler characteristic. Because the Chern number

has been extensively discussed in literature in many different contexts we will mention it only

briefly and will concentrate on the Euler characteristic, which has been discussed much less with

respect to physical systems. Also in this section we will focus exclusively on two-dimensional

manifolds. Geometry and topology of higher-dimensional manifolds is much more complex and is

often understood through various two-dimensional cuts in any case.

A. Basic definitions of the Euler characteristic and the first Chern number.

The Euler characteristic of the metric manifold M is an integer equal to the integrated Gauss

curvature over the manifold with an additional boundary term:

ξ(M) =
1

2π

[∫

M
KdS +

∮

∂M
kgdl

]
, (76)
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A standard notation for the Euler characteristic is χ but because we reserved this symbol for the

geometric tensor we will use ξ instead. The two terms on the left side of Eq. (76) are the bulk and

boundary contributions to the Euler characteristic of the manifold. We refer to the first term,

ξbulk(M) =
1

2π

∫

M
KdS , (77)

and the second term,

ξboundary(M) =
1

2π

∮

∂M
kgdl , (78)

as the bulk and boundary Euler integrals, respectively. These terms, along with their constituents

– the Gaussian curvature (K), the geodesic curvature (kg), the area element (dS), and the line

element (dl) – are geometric invariants, meaning that they remain unmodified under any change

of variables. More explicitly, if the metric is written in first fundamental form as

ds2 = Edλ2
1 + 2Fdλ1dλ2 +Gdλ2

2 , (79)

then these invariants are given by (Kreyszig, 1959)

K =
1√
g

[
∂

∂λ2

(√
g Γ2

11

E

)
− ∂

∂λ1

(√
g Γ2

12

E

)]

kg =
√
gG−3/2Γ1

22

dS =
√
gdλ1dλ2

dl =
√
Gdλ2 , (80)

where kg and dl are given for a curve of constant λ1. The metric determinant g and Christoffel

symbols Γkij are

g = EG− F 2 (81)

Γkij =
1

2
gkm (∂jgim + ∂igjm − ∂mgij) , (82)

where gij is the inverse of the metric tensor gij . As we see the explicit expressions for the Euler

characteristic are quite cumbersome but they are known and unique functions of the metric tensor.

A simple intuitive understanding of the Gauss curvature in two dimensions comes from

K =
1

R1R2
,

where R1 and R2 are the principal radii of curvature., which are the minimal and the maximal

radii of the circles touching the surface. The geodesic curvature is a curvature of the boundary
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projected to the tangent plane. Thus e.g. for a sphere the geodesic curvature of a great circle

is zero. In simple words the geodesic curvature measures the distance of the boundary from the

geodesic. For the manifolds without boundaries like a torus or a sphere the Euler characteristic

simply counts the number of holes in the manifold. Thus for a sphere the Euler characteristic is

ξ = 2 for a torus ξ = 0 and each additional hole gives an extra contribution of −2.

The other important topological characteristic is the (first) Chern number, which is defined

through the Berry curvature. To understand where it comes from let us consider a closed manifold

like shown in Fig. 1 and choose an arbitrary closed contour on that sphere like a dashed line. Let

us compute the Berry phase (flux) along this contour by two ways:

γtop =

∫

Stop

Fαβdλαdλβ, γbottom = −
∫

Sbottom

Fαβdλαdλβ, (83)

where the minus sign in the second term appears because the top and bottom surfaces of the sphere

bounded by the curve have opposite orientations with respect to this curve, which can be checked

by e.g. thumb rule. Recall that γ represents the physical phase acquired by the wave function

during the (adiabatic) motion in the parameter space. Since the wave function is unique the two

phases should be identical up to an overall constant 2πn. Thus we find that

2πn = γtop − γbottom =

∮

S
Fαβdλαdλβ (84)

The integer n is precisely the Chern number ch1 so we get

ch1 =
1

2π

∮

S
Fαβdλα ∧ dλβ (85)

As we found earlier for a spin one half particle in a magnetic field Fθφ = 1/2 sin(θ) so in this case

ch1 =
1

2π

∫ 2π

0
dφ

∫ π

0
dθ

1

2
sin(θ) = 1 (86)

One can easily check that for a particle with a spin S this Chern number is equal to 2S.

Exercise

• Prove the statement above.

B. Geometric structure of the XY chain.

Let us now analyze geometric invariants for a particular XY chain model. This model is suffi-

ciently simple so that all calculations can be done explicitly analytically but yet it has a very rich
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FIG. 2 Ground state phase diagram of the XY Hamiltonian (Eq. (89)) for φ = 0. The rotation parameter

φ modifies the Ising ferromagnetic directions, otherwise maintaining all features of the phase diagram.

As a function of transverse field h and anisotropy γ, the ground state undergoes continuous Ising-like

phase transitions between paramagnet and ferromagnet at h = ±1 and anisotropic transitions between

ferromagnets aligned along X and Y directions (X/Y-FM) at γ = 0. These two types of phase transition

meet at multi-critical points.

phase diagram with two different phase transitions and multicritical points. The content of this

chapter is adopted from Ref. (Kolodrubetz et al., 2013).

Quantum XY chain described by the Hamiltonian

H = −
∑

j

[
Jxσ

x
j σ

x
j+1 + Jyσ

y
j σ

y
j+1 + hσzj

]
, (87)

where Jx,y are exchange couplings, h is a transverse field, and the spins are represented as Pauli

matrices σx,y,z. It is convenient to re-parameterize the model in terms of new couplings J and γ

as

Jx = J

(
1 + γ

2

)
, Jy = J

(
1− γ

2

)
, (88)

where J is the energy scale of the exchange interaction and γ is its anisotropy. We add an additional

tuning parameter φ, corresponding to simultaneous rotation of all the spins about the z-axis by

angle φ/2. While rotating the angle φ has no effect on the spectrum of H, it does modify the

ground state wave function. To fix the overall energy scale, we set J = 1.

The Hamiltonian described above can be written as

H(h, γ, φ) = −
∑

j

[
σ+
j σ
−
j+1 + h.c.

]
− γ

∑

j

[
eiφσ+

j σ
+
j+1 + h.c.

]
− h

∑

j

σzj . (89)
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Since the Hamiltonian is invariant under the mapping γ → −γ, φ → φ + π, we generally restrict

ourselves to γ ≥ 0. This model has a rich phase diagram (Damle and Sachdev, 1996), as shown in

Fig. 2. There is a phase transition between paramagnet and Ising ferromagnet at |h| = 1 and γ 6= 0.

There is an additional critical line at the isotropic point (γ = 0) for |h| < 1. The two transitions

meet at multi-critical points when γ = 0 and |h| = 1. Another notable line is γ = 1, which

corresponds to the transverse-field Ising (TFI) chain. Finally let us note that there are two other

special lines γ = 0 and |h| > 1 where the ground state is fully polarized along the magnetic field and

thus h-independent. These lines are characterized by vanishing susceptibilities including vanishing

metric along the h-direction. One can show that such state is fully protected by the rotational

symmetry of the model and can be terminated only at the critical (gapless) point (Kolodrubetz

et al., 2013). The phase diagram is invariant under changes of the rotation angle φ.

Rewriting the spin Hamiltonian in terms of free fermions via a Jordan-Wigner transformation,

H can be mapped to an effective non-interacting spin one-half model(Sachdev, 1999) with

H =
∑

k

Hk; Hk = −


 h− cos(k) γ sin(k)eiφ

γ sin(k)e−iφ −[h− cos(k)]


 .

The ground state of Hk is a Bloch vector with azimuthal angle φ and polar angle

θk = tan−1

[
γ sin(k)

h− cos(k)

]
. (90)

Because the Hamiltonian effectively describes an independent set of two-level systems we can

immediately extend the results from the previous section to find the expression for different metric

tensor components.

In particular differentiating the ground state in each momentum sector with respect to h we

find

∂h|gsk〉 =
∂hθk

2


 − sin

(
θk
2

)
eiφ/2

cos
(
θk
2

)
e−iφ/2


 = −∂hθk

2
|esk〉. (91)

The same derivation applies to the anisotropy γ, since changing either γ or h only modifies θk and

not φ. Thus we find

Aλ =
1

2

∑

k

(
∂λθk

)
τyk , (92)

where λ = {h, γ} and τx,y,zk are Pauli matrices that act in the instantaneous ground/excited state

basis. Similarly, for the parameter φ, we find that

Aφ = −1

2

∑

k

[cos(θk)τ
z
k + sin(θk)τ

x
k ] . (93)
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Using that

gµν =
1

2
〈gs|AµAν +AνAµ|gs〉 (94)

we find

ghh =
1

4

∑

k

(
∂θk
∂h

)2

, gγγ =
1

4

∑

k

(
∂θk
∂γ

)2

, ghγ =
1

4

∑

k

∂θk
∂h

∂θk
∂γ

, gφφ =
1

4

∑

k

sin2(θk), (95)

The remaining two components of the metric tensor ghφ, gγφ are equal to zero.

The expressions for the metric tensor can be evaluated in the thermodynamic limit, where the

summation becomes integration over momentum space. It is convenient to divide all components

of the metric tensor by the system size and deal with intensive quantities gµν → gµν/L. Then one

calculates these integrals to find that

gφφ =
1

8





|γ|
|γ|+1 , |h| < 1

γ2

1−γ2

(
|h|√

h2−1+γ2
− 1

)
, |h| > 1

ghh =
1

16





1
|γ|(1−h2)

, |h| < 1

|h|γ2
(h2−1)(h2−1+γ2)3/2

, |h| > 1

gγγ =
1

16





1
|γ|(1+|γ|)2 , |h| < 1


2

(1−γ2)2

[
|h|√

h2−1+γ2
− 1
]
−

|h|γ2
(1−γ2)(h2−1+γ2)3/2


 , |h| > 1

ghγ =
1

16





0, |h| < 1

−|h|γ
h(h2−1+γ2)3/2

, |h| > 1
(96)

Using the metric tensor we can visualize the ground state manifold by building an equivalent

(i.e., isometric) surface and plotting its shape. It is convenient to focus on a two-dimensional

manifold by fixing one of the parameters. We then represent the two-dimensional manifold as an

equivalent three-dimensional surface. To start, let’s fix the anisotropy parameter γ and consider

the h−φ manifold. Since the metric tensor has cylindrical symmetry, so does the equivalent surface.

Parameterizing our shape in cylindrical coordinates and requiring that

dz2 + dr2 + r2dφ2 = ghhdh
2 + gφφdφ

2 , (97)

we see that

r(h) =
√
gφφ, z(h) =

∫ h

0
dh1

√
ghh(h1)−

(
dr(h1)

dh1

)2

. (98)
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FIG. 3 Equivalent graphical representation of the phase diagram of the transverse field Ising model (γ = 1)

in the h− φ plane. The ordered ferromagnetic phase maps to a cylinder of constant radius. The disordered

paramagnetic phases h > 1 and h < −1 map to the two hemispherical caps. The inset shows how the

cylindrical coordinates z and r depend on the transverse field h.

Using Eq. (96), we explicitly find the shape representing the XY chain. In the Ising limit (γ = 1),

we get




r(h) = 1

4

z(h) = arcsin(h)
4

|h| < 1,




r(h) = 1

4|h|

z(h) = π
8
|h|
h +

√
h2−1
4h

|h| > 1 . (99)

The phase diagram is thus represented by a cylinder of radius 1/4 corresponding to the ferro-

magnetic phase capped by the two hemispheres representing the paramagnetic phase, as shown in

Fig. 3. It is easy to check that the shape of each phase does not depend on the anisotropy param-

eter γ, which simply changes the aspect ratio and radius of the cylinder. Because of the relation

r(h) =
√
gφφ this radius vanishes as the anisotropy parameter γ goes to zero. By an elementary

integration of the Gaussian curvature, the phases have bulk Euler integral 0 for the ferromagnetic

cylinder and 1 for each paramagnetic hemisphere. These numbers add up to 2 as required, since

the full phase diagram is homeomorphic to a sphere. From Fig. 3, it is also clear that the phase

boundaries at h = ±1 are geodesics, meaning that the geodesic curvature (and thus the boundary

contribution ξboundary) is zero for a contour along the phase boundary. This boundary integral

protects the value of the bulk integral and vice versa.



22

In the Ising limit (γ = 1), the shape shown in Fig. 3, can also be easily seen from computing the

curvature K using Eq. (80). Within the ferromagnetic phase, the curvature is zero – no surprise,

given that the metric is flat by inspection. The only shape with zero curvature and cylindrical

symmetry is a cylinder. Similarly, within the paramagnet, the curvature is a constant K = 16, like

that of a sphere. Therefore, to get cylindrical symmetry, the phase diagram is clearly seen to be a

cylinder capped by two hemispheres.

We can also reconstruct an equivalent shape in the γ − φ plane. In this case we expect to see

a qualitative difference for |h| > 1 and |h| < 1 because in the latter case there is an anisotropic

phase transition at the isotropic point γ = 0, while in the former case there is none. These two

shapes are shown in Fig. 4. The anisotropic phase transition is manifest in the conical singularity

developing at γ = 0.4

The singularity at γ = 0 yields a non-trivial bulk Euler integral for the anisotropic phase

transition. To see this, consider the bulk integral

ξbulk(ε) = lim
L→∞

∫ 2π

0
dφ

∫ ∞

ε
dγ
√
g(γ, φ)K(γ, φ) . (100)

In the limit ε → 0+, this integral has a discontinuity as a function of h at the phase transition,

as seen in Fig. 4. Thus, ξbulk ≡ ξbulk(ε = 0+) can be used as a geometric characteristic of the

anisotropic phase transition. Direct calculation shows that ξbulk = 1/
√

2 in the ferromagnetic

phase and ξbulk = 1 in the paramagnetic phase. This non-integer geometric invariant is due to the

existence of a conical singularity.

A careful analysis shows that in both cases the bulk Euler characteristics are protected by

the universality of the transition. I.e. if one adds extra terms to the Hamiltonian, which do

not qualitatively affect the phase diagram the bulk Euler characteristic does not change. The

details of the proof are available in Ref. (Kolodrubetz et al., 2013). But the basic idea is very

simple. The sum of the bulk and the boundary Euler characteristics is protected by the geometry

of the parameter manifold. As long as the boundary of the manifold coincides with the phase

boundary all components of the metric tensor become universal (Campos Venuti and Zanardi,

2007). Therefore it is not surprising that the geodesic curvature also becomes universal and thus

the boundary Euler characteristic is protected. As a result the bulk Euler characteristic is protected

too. It is interesting that unlike critical exponents the bulk Euler characteristic truly characterizes

4 We note a potential point of confusion, namely that a naive application of Eq. (80) would seem to indicate
that the curvature is a constant K = 4 in the ferromagnetic phase for γ > 0, in which case the singularity at
γ = 0 is not apparent. However, a more careful derivation shows that the curvature is indeed singular at γ = 0:

K = 4− 8(1− γ) ∂2

∂2γ
|γ| = 4− 16δ(γ), where δ(γ) is the Dirac delta function.
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FIG. 4 (insets) Equivalent graphical representation of the phase diagram of the XY model in the γ − φ
plane, where γ ∈ [0,∞) and φ ∈ [0, 2π]. The right inset shows the paramagnetic disordered phase and the

left inset represents the ferromagnetic phase. It is clear that in the latter case there is a conical singularity

developing at γ = 0 which represents the anisotropic phase transition. The plots show bulk Euler integral

ξbulk(ε), demonstrating the jump in ξbulk at the phase transition between the paramagnet and ferromagnet

in the limit ε→ 0+.

the phase transition and does not depend on the parametrization. One can also analyze the Euler

characteristic and the Gauss curvature of the in the h−γ plane. One finds additional nonintegrable

curvature singularities near the anisotropic phase transition and near the multi-critical point.

IV. GAUGE POTENTIALS AND NON-ADIABATIC RESPONSE

A. Dynamical Quantum Hall effect

We already noted in the first section that the gauge potentials appear in the Galilean term in

the moving Hamiltonian:

Hm = U †HU − λ̇αAα = H̃ − λ̇αAα. (101)

The Hamiltonian H̃ is diagonal and thus only produces shifts in the energies but does not couple

them (i.e. does not have any off-diagonal matrix elements) so it is not responsible for the transi-

tions between levels. Conversely the Galilean term is in general off-diagonal and thus causes the

transitions between levels. Near the adiabatic limit the Galilean term is small and thus can be
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treated as a perturbation.

Let us first consider the setup where the system is initially prepared at equilibrium (for concrete-

ness in the ground state) at some initial value of the coupling ~λ0 ≡ ~λ(t = 0). Then the coupling

starts changing in time. To avoid need of worrying about initial transients, which can be done but

makes derivations more involved, we will assume that the rate of change of the coupling is a smooth

function of time. Under this smooth transformation in the leading order in |λ̇| the system follows

the ground state of the moving Hamiltonian Hm. One can worry whether the adiabatic theorem

applies to this Hamiltonian, which is still time-dependent. Later we will give a rigorous derivation

of the result (alternatively see Ref. (Gritsev and Polkovnikov, 2012) for more details). Loosely

speaking the Galilean term removes the leading non-adiabatic contribution from the Hamiltonian.

The higher order corrections will be of the higher order in |λ̇|2. When we do the measurement of

any observable in the system like magnetization, on the other hand, we typically do it in the lab

frame. Recall that we introduced the moving frame just for convenience. One can thus view the

instantaneous measurement process as sudden quench, where the rate λ̇ is quenched to zero.

Within the first order of perturbation theory the transition amplitudes to the excited states due

to such quench are given by

an = −λ̇α
〈n|Aα|0〉
En − E0

(102)

Next we compute the leading order correction to the observables due to this quench. It is convenient

to represent observables as generalized forces conjugate to some other coupling λβ:

Mβ = −∂βH. (103)

The matrix elements of these objects already appeared in the definition of the geometric tensor

so it is convenient to continue dealing with them. Note that any observable can be represented

as some generalized force. E.g. the magnetization is conjugate to the magnetic field, current is

conjugate to a vector potential, nearest neighbor correlation function is conjugate to the nearest

neighbor hopping or interaction etc. Then we find that

Mβ ≡ 〈ψ|Mβ|ψ〉 ≈M (0)
β − λ̇α

∑

n 6=0

(a∗n〈n|∂βH|0〉+ an〈0|∂βH|n〉 = M
(0)
β +

iλ̇α
∑

n6=0

〈0|∂α|n〉〈n|∂βH|0〉 − 〈0|∂βH|n〉〈n|∂α|0〉
En − E0

= M
(0)
β + Fβαλ̇α, (104)

where M
(0)
β is the generalized force evaluated in the instantaneous ground state. The last equality

immediately follows from Eq. (70). The equation above constitutes the dynamical Quantum Hall
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effect. It shows that the leading non-adiabatic (Kubo) correction to the generalized force comes

from the product of the Berry curvature and the rate of change of the parameter ~λ.

Let us illustrate that this relation reduces to the standard integer quantum Hall effect (QHE).

We will make only two generic assumptions: (i) the ground state of the system is not-degenerate

(degeneracies can lead to the fractional QHE) and (ii) the Hamiltonian of the system can be

represented in the form

H =

N∑

j=1

(
~pj − e

c
~Λj

)2

2mj
+ V (~r1, ~r2, . . . ~rN ), (105)

where V is an arbitrary momentum independent potential which can include both interactions

between particles and the external potential. We remind that we use the ~Λj ≡ ~Λ(~qj) notation for

the vector potential to avoid the confusion with the gauge potential. Let us assume that the vector

potential consists of some static part (not necessarily uniform) representing a static magnetic field

and an extra dynamic part representing the electric field in the system (recall that in the Coulomb

gauge ~E = 1/c ∂t~Λ). We will choose the components of the time-dependent vector potential divided

by speed of light as our parameters (or coordinates), i.e.

λx =
1

c
Λx, λy =

1

c
Λy. (106)

Note that the generalized force with respect to λy is

My = −∂λyH =
∑

j

e

mj

(
p

(y)
j −

e

c
Λ

(y)
j

)
= Jy, (107)

which is the current operator along the y-direction. Clearly in the absence of the electric field there

is no current so the dynamical Hall relation reads

Jy = ~Fλy ,λxEx, (108)

where we explicitly included the factor of ~ omitted in Eq. (104). This factor must be there

to fix the dimensions, or alternatively can be obtained by noting that the gauge potentials are

actually Aα = i~∂α. To find the Hall conductivity we note that the total current is related to the

two-dimensional current density via

Jy = LxLyjy, (109)

where Lx and Ly are the dimensions of the sample. Therefore the Hall conductivity σyx = jy/Ex
is related to the Berry curvature via

σxy =
~Fλxλy
LxLy

. (110)
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Now let us use the fact that the Chern number related to the integral of the Berry curvature over

the closed manifold is an integer. Because of the assumed form of the Hamiltonian the uniform

and thus curl-free vector potential (which leads to the uniform electric field) can be gauged away

by absorbing it into the phase of the wave function like in the Aharonov-Bohm geometry. Thus

the acquired phase by the wave-function is

φ =
e

c~

∫
(Λxdx+ Λydy) =

e

~
(λxLx + λyLy) (111)

Clearly this phase acquires the winding of 2π if λx changes between 0 and 2π~/(eLx) and similarly

for λy. So the parameter manifold is effectively a torus of the area 4π2~2/(e2LxLy). Because the

Berry curvature is independent of the vector potential (since it only affects the overall phase of the

wave function) the Chern number is just the product of the Berry curvature and the area divided

by 2π:

ch1 =
1

2π
Fλxλy

4π2~2

e2LxLy
(112)

or equivalently

Fλxλy =
e2LxLy

2π~2
ch1. (113)

Combining this with the expression for the Hall conductivity we find

σxy =
~

LxLy

e2LxLy
2π~2

ch1 =
e2

2π~
ch1, (114)

which precisely constitutes the integer quantum Hall effect. This simple derivation highlights that

the quantum Hall effect can be thought of as the linear non-adiabatic response of the system to

the time-dependent vector potential. Note that this derivation does not require assuming any

particular boundary conditions. We relied on the periodicity of the wave function in the vector-

potential space not in real space.

The second example we discuss is a again a spin in a time-dependent magnetic field. Namely

we will assume that the parameters θ and φ characterizing the angles of the external magnetic field

change in time. Suppose that the spin is prepared in the ground state along the magnetic field

and then the latter starts changing in time e.g. along the θ-direction. The generalized force along

the orthogonal φ-direction is just the φ-component of the magnetization. In the adiabatic limit it

is clearly zero since in this case the magnetization simply follows the magnetic field. The leading

non-adiabatic correction is then given by the Berry curvature:

mφ ≈ Fφθθ̇. (115)
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Likewise

mθ ≈ Fθφφ̇. (116)

in experiments it is easier to measure the magnetization along the y-direction. Then if the magnetic

field has a time dependent x-component and a time independent z-component we have

my = Fyxḣx, (117)

where

Fyx =
1

2h2
cos(θ). (118)

From this expression it is easy to recover Fθφ by a standard transformation to the spherical coor-

dinates:

Fθφ = h2Fyx tan(θ) =
1

2
sin(θ). (119)

In Fig. 5 we show numerically computed dependence of the transverse y-magnetization on the rate

of change of the magnetic field v for a particular protocol

H = −σz − hx(t)σx, (120)

where hx(t) = 0.5 + vt. The transverse magnetization is computed at time t = 0 and the initial

condition corresponds to the ground state at large negative time t = −100/v. As it is evident from

the figure at slow rates dependence of the transverse magnetization on the rate is linear and the

slope is exactly given by the Berry curvature. Integrating the Berry curvature over the angles of

the field one can measure the Chern number.

It is interesting that even within such a simple system one can already observe the topological

phase transition where the Chern number changes from 0 to 1. For this we can consider a slight

modification into the Hamiltonian by adding a constant static magnetic field along the z direction.

H = −1

2
[h0σz + h1 cos(θ)σz + h1 sin(θ) cos(φ)σx + h1 sin(θ) sin(φ)σy] . (121)

Then as one changes the magnetic field h1 along the sphere of constant radius at fixed h0 we can

have two different scenarios. First when h0 < h1 corresponds to the total magnetic field encircling

the origin h = 0 and thus producing the Chern number equal to one. The second scenario is

realized when h0 > h1. Then the total magnetic field does not enclose the origin and the Chern

number is zero. The easiest way to see this is to take the limit h1 → 0 and recall that the Chern
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FIG. 5 Dependence of the transverse magnetization on the rate of change of the magnetic field along the

x-direction (see text for details

number can not change unless the surface crosses a gapless crossing point. This phase transition

was recently observed in experiments on superconducting qubits (M. Schroer et. al., unpublished).

Recall that the Chern number is the total flux of the Berry curvature (magnetic field) and it only

depends on whether the gapless crossing point h = 0 is enclosed by the integration surface or

not. This situation is very similar to the electrostatics, where the electric field flux through a

closed surface only depends on the total charge inside this surface. Thus the level crossing point

plays the role of the magnetic monopole (similarly to the unit electric charge being the electric

monopole). Monopoles appear in more complicated systems and can not simply disappear under

small perturbations (because the Chern number is protected in any gapped phase). Thus contrary

to the common wisdom the level crossing points are protected and if one introduces some generic

perturbation they just move around in the parameter space.

This simple topological transition is actually equivalent to the transition from the normal to

the topological insulator realized e.g. in the Haldane model (Haldane, 1988). We will not go into

the details of this model, we only point that the model represents a single particle band of a two

dimensional honeycomb lattice which has two sublattices and a particular form of hoppings. At

each Bloch momentum ~k the Hamiltonian is effectively described by the 2 × 2 matrix, which is

equivalent to the spin one half system in a ~k-dependent magnetic field. One defines the Chern

number of the band as

1

2π

∫ ∫
dkx dkyFkx,ky , (122)
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where

Fkx,ky = i(〈∂kxψ|∂kyψ〉 − 〈∂kyψ|∂kxψ〉).

Because the Brillouin zone is a closed manifold (equivalent to a torus) this band Chern number is

either zero or one depending on the parameters of the Hamiltonian. The transition between the

bands with different Chern numbers is called topological phase transition. In Fig. 6 we pictorially

Mapping the single qubit system to a Haldane-like model

Michael Kolodrubetz and Anatoli Polkovnikov

We map the topology of a single qubit in an external field to that of the Haldane model in
graphene. This demonstrates the similarities between the single spin (qubit) and a non-interacting
fermion system.

Consider the qubit Hamiltonian

H = B2σ
z − B1n̂(θq, φq) · σ⃗ , (1)

where the labels θq and φq are used to indicate that these variables belong to the qubit model. We wish to show that
it can be mapped to the simplest model of non-interacting electrons on a lattice that exhibits a topological transition,
namely the Haldane model of graphene (see Haldane, PRL 61, 2015 (1988), hereafter referred to as HPRL). In this
model, the normal nearest neighbor hopping model of graphene is modified by adding second neighbor hopping (t2)
with a variable phase φ controlled by the locally-varying flux through the plaquette, as well as a sublattice ”mass”
M corresponding to a difference in chemical potentials between the sublattices. This system is topologically trivial if
|M | > |3

√
3t2 sin φ| and non-trivial otherwise.

The key notion that Haldane used in demonstrating these topological properties was a local expansion of the
Hamiltonian around the two non-equivalent corners of the first Brillouin zone. Near these points in momentum space,
denoted k0

±, the Hamiltonian is (up to a gauge choice of Pauli operators):

H± = !c(kx
±σx + ky

±σy) + m±c2σz , (2)

where c is the Fermi velocity, which we set to one, and

m± = M ∓ 3
√

3t2 sin φ . (3)

The topological properties of this model are determined by the relative signs of m±: if they have the same (different)
sign, the state is topologically trivial (non-trivial).

FIG. 1: Demonstration of mapping of the Haldane model (left) to the single qubit Hamiltonian (right). The mapping is shown
both for the topologically non-trivial case (top) and topologically trivial case (bottom).

To show that the qubit has the same properties, consider the mapping:

k = 2 tan

(
θ

2

)
, (4)

where k is the magnitude of the momentum. We also map the angle φq to the momentum angle tan−1(ky/kx) in the
x− y plane. This mapping takes the north pole (θ = 0) to zero momentum and the south pole to infinite momentum.

FIG. 6 Schematic representation of the mapping of the effective magnetic field in the Haldane model to the

spin one half system. In the topologically nontrivial phase the magnetic field wraps around the sphere. Plot

is courtesy of M. Kolodrubetz.

show how the mapping of the Haldane model to a spin one half particle in a magnetic field works.

In the topologically non-trivial phase the effective magnetic field wraps around the sphere, which

in our language corresponds to h1 > h0 and vice versa. It is interesting that we were able to define

the topological phase transition for just one spin. This works because we consider not one ground

state but rather the whole manifold of ground states, which maps to a completely filled band of

an insulator.

We used a simple single-particle problem as an illustration. The situation becomes much

more interesting if we consider interacting systems. In particular, following Ref. (Gritsev and

Polkovnikov, 2012) we quote the numerical results for the Chern number computed through the
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non-adiabatic response for a disordered spin chain:

H = −~h
N∑

j=1

ζj~σj − J
N−1∑

j=1

ηj~σj~σj+1, (123)

where ζj and ηj are drawn from a uniform distribution in the interval [0.75, 1.25]. We fix the

|~h| = 1 and look into the Berry curvature associated with angles of the magnetic field θ and φ as a

function of J (see Fig. 7). Because of the SU(2) invariance of the system like for a single spin the

Chern number and the Berry curvature are simply different by a factor of 2. At large negative J4
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FIG. 3: The Berry curvature extracted from numerically eval-
uating dynamical response of the magnetization of a Heisen-
berg spin chain to the rotating magnetic field. The two lines
represent chains of the length N = 9 and N = 10. The
quantization plateaus clearly indicate the topological charac-
ter of the response. Numerical simulations were done by solv-
ing time dependent Schrödinger equation with fixed velocity
v = 0.1 (see Eqs. (11) and (12)), The Berry curvature was ex-
tracted from the transverse magnetization: F�⇥ � my(v)/v.

N . The plot shows a clear signature of a phase transition
at J = �1/4h. We are going to analyze it in detail in a
di�erent publication. It is interesting to note that even
though we numerically extracted the slope of magneti-
zation F�⇥ ⇥ My(v)/v from a moderately small velocity
v = 0.1 the accuracy of the quantization of plateaus is
better than 0.1%. Let us point once more that the dy-
namical response can be either observed by performing
a series of destructive measurements like in cold atom
setups or by continuously observing transverse magneti-
zation in a rotating magnetic field.

The example above has still one significant simplifica-
tion coming from the fact that the magnetization com-
mutes with the Heisenberg interaction term. Therefore
the time evolution of the magnetization is decoupled from
the latter. To show that the quantization of the dynam-
ical response holds in a more generic setup we will next
consider a disordered (and hence nonintegrable) Heisen-
berg chain with the Hamiltonian

H = ��h
N�

j=1

⇥j�⇤j � J
N�1�

j=1

�j�⇤j�⇤j+1, (13)

where ⇥j and �j are random variables, which for concrete-
ness are both chosen from a box distribution in the in-
terval [0.75, 1.25]. We repeat the same protocol as before
extracting the Berry curvature from the response of the
magnetization to the velocity of the rotating magnetic
field. In Fig. 4 we show the results of such simulations
for a chain of length N = 9 with a given realization of
disorder. The slopes are extracted from two di�erent ve-
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FIG. 4: Berry curvature extracted from dynamical simula-
tions of the disordered Heisenberg chain (see Eq. (13)). The
simulations are done for the spin chain of length N = 9 using
the protocol identical to that in Fig. 3 for a particular real-
ization of the disorder. The two lines represent two di�erent
velocities v = 0.1 and v = 0.025. Smaller velocity clearly
improves the accuracy of quantization.

locities v = 0.1 and v = 0.025. The plot clearly shows
that the quantization of the response persists. At higher
velocity the crossovers between the plateaus are slightly
more rounded and one observes small fluctuations of F�⇥

in the plateau regions. At smaller velocity, i.e. closer
to the linear response regime, these fluctuations are sup-
pressed and we see again nearly perfect quantization.

Discussion and Conclusions. Our approach allows an
interesting possibility of mapping the Hilbert space ge-
ometry and topology through quantum dynamics. By
measuring the Berry curvature one can map out the met-
ric tensor of the quantum space experimentally. Once we
know the metric, the connection components as well as
the Riemann tensor can be further obtained. This infor-
mation can be then used to find a geodesics in the quan-
tum parameter space. Evolving the system according to
geodesics means to define a specific protocol. This proto-
col is characterized by maximal fidelity and thus should
be extremely useful for the quantum information setups.
One can also use these ideas for precision measurements,
as a sensitive probe of quantum phase transitions, espe-
cially topological phase transitions with no local order
parameter, as a probe of time reversal symmetry break-
ing in complicated systems e.g. in biology.

In conclusion we demonstrated that the Berry curva-
ture can be measured in generic systems, interacting or
not, as a leading non-adiabatic response of physical ob-
servables to quench velocity. This method does not re-
quire stringent adiabatic conditions hard to achieve in
large systems. While in this letter we focused on the
quantum dynamics close to the ground state, our main re-
sult Eq. (4) applies to the mixed states as well. We illus-

FIG. 7 Berry curvature at the equatorial plain θ = π/2 for a disordered spin chain as a function of the

coupling J for 9 spins. At large negative J the system minimizes the total spin to S = 1/2 the Berry

curvature is also 1/2 corresponding to the Chern number equal to one. At small J the system becomes

polarized and the Chern number is 9.

the system minimizes the total spin to S = 1/2 the Berry curvature is also 1/2 corresponding to

the Chern number equal to one. At small J the system becomes polarized and the Chern number is

9. In between the Berry curvature and thus the Chern number changes in steps. If one breaks the

SU(2) invariance considering e.g. anisotropic interactions the quantization of the Berry curvature

disappears while the Chern number remains quantized. The minimal model for observing this is a

two-spin system, which was recently realized experimentally also using superconducting qubits (P.

Roushan et. al., unpublished).
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B. General approach to non-adiabatic response. Emergent Newtonian dynamics.

In this section we extend the analysis of a previous section to a more general class of systems,

which are not necessarily in a ground state and which might have gapless excitations. This chap-

ter closely follows Ref. (D’Alessio and Polkovnikov, 2014). Our starting point will be the von

Neumann’s equation for the density matrix in the moving frame

i
dρ

dt
=
[
H− λ̇νAν , ρ

]
,

where we remind that H is the diagonal Hamiltonian in the instantaneous basis (we drop the tilde

sign to simplify notations), similarly all other observables appearing here are also rotated into the

instantaneous frame. We will then use the standard time-dependent perturbation theory (Kubo

formalism), where the Galilean term plays the role of the perturbation. Namely we will go to the

interaction picture (the Heisenberg representation with respect to H), where the von Neumann’s

equation becomes

i
dρH
dt

= −λ̇ν [AH,ν(t), ρH ] , (124)

which is equivalent to the integral equation

ρH(t) = ρH(0) + i

∫ t

0
dt′λ̇ν(t′)

[
AH,ν(t′), ρH(t′)

]
(125)

Note that if the moving Hamiltonian H is time dependent if the spectrum explicitly depends on ~λ.

However, this dependence is trivial because it amounts to phase factors φn =
∫ t

0 En(t′)dt′ instead

of φn = Ent. For example

〈ñ|OH(λ(t))|m̃〉 = exp

[
i

∫ t

0
dt′(En(t′)− Em(t′))

]
〈ñ|O(λ(t))|m̃〉, (126)

where |ñ〉 denotes the co-moving basis states. We emphasize that this expression is not the same as

the Heisenberg representation with respect to the original Hamiltonian H(λ(t)) in the lab frame.

The representation we use is perhaps more correctly termed as the adiabatic Heisenberg represen-

tation since it uses adiabatic energy levels En(t), while all the transitions (off-diagonal terms) are

treated perturbatively. Clearly if the spectrum is time independent the expression (126) reduces

to the conventional Heisenberg representation of the operator O(λ(t)). In the leading order in

perturbation theory we can substitute the stationary density matrix into the R.H.S. of the integral

equation (125):

ρH(t) = ρ0 + i

∫ t

0
dt′λ̇ν(t′)

[
AH,ν(t′), ρ0

]
, (127)
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where we used ρ0
H = ρ0. From this we can find the linear response correction to the generalized

forces:

〈Mν(t)〉 = Mν(t) + i

∫ t

0
dt′ λ̇µ(t′)〈[MH,ν(t),AH,µ(t′)]〉0,

where we recall that by definition Mν(t) ≡ 〈Mν(t)〉0. Evaluating this expression in the co-moving

basis and using Eqs. (44) and (70) we arrive at

〈Mν(t)〉 = Mν(t)−
∫ t

0
dt′ λ̇µ(t′)

∑

n 6=m

ρ0
n − ρ0

m

Em − En
ei(Em−En)(t−t′)〈m̃|Mν(λ(t))|ñ〉〈ñ|Mµ(λ(t′))|m̃〉

= Mν(t)−
∫ t

0
dt′ λ̇µ(t′)

∑

n6=m

ρ0
n − ρ0

m

Em − En
〈m̃|MH,ν(t)|ñ〉〈ñ|MH,µ(t′)|m̃〉

= Mν(t)−
∫ t

0
dt′
∫ β

0
dτ λ̇µ(t′)

∑

n6=m
ρ0
m〈m̃|MH,ν(t)|ñ〉〈ñ|MH,µ(t′ + iτ)|m̃〉

= Mν(t)−
∫ t

0
dt′
∫ β

0
dτ λ̇µ(t′)〈MH,ν(t)Mµ(t′ + iτ)〉0, (128)

which gives the microscopic force in the most general form. To go from the second to the third

line in this equation we used that for the thermal distribution, ρ0
m = Z−1 exp[−βEm], we have

∫ β

0
dτ ρ0

m e−(En−Em)τ =
ρ0
n − ρ0

m

Em − En
(129)

It is convenient to change the integration variable in Eq. (128) from t′ to t − t′ and use the fact

that in equilibrium the non-equal time correlation functions are translationally invariant in time.

Then

〈Mν(t)〉 ≈Mν(t)−
∫ t

0
dt′
∫ β

0
dτ λ̇µ(t− t′)〈MH,ν(t′)Mµ(iτ)〉0 ≈

Mν −
∫ t

0
dt′λ̇µ(t− t′)

∑

n6=m

ρ0
n − ρ0

m

Em − En
ei(Em−En)t′〈mλ|Mν |nλ〉〈nλ|Mµ|mλ〉 (130)

Now we will use the time scale separation. Namely, recall that by the assumption ~λ represent slow

variables in the system. Mathematically this statement implies that the non-equal time correlation

function of the generalized forces 〈MH,ν(t′)Mµ(iτ)〉0 decays much faster than the characteristic

time scale of changing ~λ(t). Because we are interested in long time dynamics of the system we

can extend the upper integration limit over t − t′ to ∞ (corresponding to the process starting

in the infinite paste). Effectively this corresponds to neglecting short time transients. Because

of the time scale separation it is natural to expand λ̇µ(t − t′) into the Taylor series near t′ = 0:

λ̇µ(t− t′) ≈ λ̇µ(t)− t′λ̈µ(t) + . . . . As we will see shortly it is important to keep the first two terms
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in this expansion and all other terms, in most cases, describe unessential subleading corrections.5

Then we find

〈Mν(t)〉 = Mν + Fνµλ̇µ − ηνµλ̇µ − κνµλ̈µ − F ′νµλ̈µ, (131)

where we split the coefficients in front of λ̇µ and λ̈µ into symmetric ηνµ, κνµ and anti-symmetric

Fνµ and F ′νµ components.

To find the explicit expressions for these coefficients we only need to evaluate simple integrals.

First

∫ ∞

0
exp[i(Em − En)t′]dt′ = −iP

(
1

Em − En

)
+ πδ(En − Em), (132)

where P stands for the principal value. Note that the first principal value term is antisymmetric

under the permutation of indexes n and m, while the second is symmetric. Because, as it is evident

from Eq. (130), the permutation of n and m is equivalent to the permutation of ν and µ we see

that the principal value determines the antisymmetric coefficient Fµν and the second, symmetric

term determines ηµν . Therefore

Fµν = −i
∑

n6=m

ρ0
n − ρ0

m

(Em − En)2
〈mλ|Mν |nλ〉〈nλ|Mµ|mλ〉

= i
∑

n6=m
ρ0
n

〈mλ|Mν |nλ〉〈nλ|Mµ|mλ〉 − 〈mλ|Mµ|nλ〉〈nλ|Mν |mλ〉
(En − Em)2

. (133)

If we compare this expression with Eq. (71) we will recognize that Fµν is just the thermal average

of the Berry curvature over the energy eigenstates. This justifies that we use the same notation Fµν

here. At zero temperature this expression obviously reduces to the ground state Berry curvature.

Similarly

ηνµ = πβ
∑

n6=m
ρ0
m〈mλ|Mν |nλ〉〈nλ|Mµ|mλ〉δ(En − Em),

where we used that

ρ0
n − ρ0

m

Em − En
→ ρ0

nβ (134)

when Em → En. As we will see shortly ηµν represents the friction force on the system. It is

non-zero only if the system has gapless excitation. In particular, at zero temperature, unless the

5 An important exception is a motion of a charged object in a vacuum, where the friction force is proportional to
the third derivative of the coordinate. In this case one has to add the next term to this expansion.
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system is quantum critical, the friction coefficient is always zero because one can not satisfy the δ

function constraint.

In a similar spirit one can derive the other two coefficients. Now we will use that

−
∫ ∞

0
t′ exp[i(Em − En)t′]dt′ =

1

(En − Em)2
− πδ′(En − Em), (135)

which can be checked by adding small imaginary part into the integral and sending it to zero. Now

the off-shell term is symmetric, while the on-shell term is antisymmetric. The first off-shell term

defines the coefficient κνµ, which as we will see shortly determines the mass renormalization

κνµ =
∑

n6=m

ρ0
n − ρ0

m

(εm − εn)3 〈mλ|Mν |nλ〉〈nλ|Mµ|mλ〉 =
∑

n6=m

ρ0
n − ρ0

m

εm − εn
〈mλ|

←−
∂λν |nλ〉〈nλ|

−→
∂λµ |mλ〉 (136)

At low temperatures β →∞ this expression reduces to

κνµ ≈
∑

m 6=0

〈0λ|Mν |mλ〉〈mλ|Mµ|0λ〉+ ν ↔ µ

(Em − E0)3 , (137)

while at high temperatures (or near the classical limit) we find

κνµ ≈
β

2

∑

m

ρm

(
〈mλ|

←−
∂λν
−→
∂λµ |mλ〉c + ν ↔ µ

)
= β gνµ (138)

where gνµ is the Fubini-Study metric tensor of energy eigenstates weighted with the thermal distri-

bution. This is a natural finite temperature generalization of the zero-temperature metric tensor.

Let us mention that in traditional units the expressions for the mass Eqs. (136) - (138) should be

multiplied by ~2, which follows from the correct definition of the Gauge potentials i∂λµ → i~∂λµ .

We also point that the mass tensor κ can be written through the integrated connected imaginary

time correlation function of the gauge potentials Aν and Aµ:

κνµ =
1

2

∫ β

0
dτ〈AH,ν(−iτ)AH,µ(0) + ν ↔ µ〉0,c (139)

At high temperatures the imaginary time integral reduces to a factor β and this result clearly

reduces to Eq. (138). And finally let us quote the expression for the antisymmetric tensor F ′:

F ′µν = iπ
∑

n6=m

ρ0
n − ρ0

m

En − Em
〈mλ|Mν |nλ〉〈nλ|Mµ|mλ〉 δ′(En − Em) (140)

As η this tensor is responsible for dissipation, but usually it is subleading and we will not discuss

it further. We only point that as F this tensor is always zero if the instantaneous Hamiltonian

respects time-reversal symmetry.

To see that the coefficients found above indeed have a meaning of the mass and the friction we

will now assume that ~λ(t) is not an external parameter but rather a macroscopic dynamical slow
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degree of freedom so that the total Hamiltonian describing the degree of freedom ~λ and the rest of

the system is

Htot(~λ) = H0(~λ) +H(~λ), (141)

where H0(~λ) is the Hamiltonian describing the bare motion of ~λ. The choice of splitting Htot
betweenH0 andH is somewhat arbitrary and we can well chooseH0 = 0 so thatHtot = H, however,

for an intuitive interpretation of the results, it is convenient to assume that H0(~λ) represents a

massive degree of freedom in some external potential V (~λ):

H0(~λ) =
~p 2
λ

2m
+ V (~λ).

In the infinite mass limit (m→∞), ~λ represents an external (control) parameter whose dynamics

is specified a priori. When m is finite, ~λ is a dynamical variable and its dynamics needs to be

determined self-consistently.

We can now self-consistently combine Eq. (131) with the classical (Lagrangian) equations of

motion for the parameter ~λ:

mνµ
dλν
dt

= pν ,
dpν
dt

= − ∂V
∂λν

+ 〈Mν(t)〉 (142)

and get the multicomponent dissipative Newton’s equations:

(mνµ + κνµ + F ′νµ)λ̈µ + (ηνµ − Fνµ)λ̇µ = − ∂V
∂λν

+Mν . (143)

The first term in this equation represents the renormalized mass thus κνµ indeed represents the

mass renormalization. The term ηνµλ̇µ is clearly dissipative. The Berry curvature defines an

analogue of the Coriolis or the Lorentz force and the other antisymmetric on-shell contribution

encoded in F ′ is effectively an antisymmetric friction term. And finally Mν is the generalized force

appearing in e.g. the Born-Oppenheimer approximation. It also defines the Casimir force.

Equation (143) has another interesting implication. At zero temperature both dissipative tensors

(η and F ′) vanish (unless the system is tuned to a critical point or if it has gapless low-dimensional

excitations). In this case Eq. (143) can be viewed as a Lagrangian equation of motion with the

Lagrangian:

L =
1

2
λ̇ν (m+ κ)νµ λ̇µ + λ̇µAµ(~λ)− V (~λ)− E0(~λ), (144)

where Aµ(~λ) = 〈0λ|Aµ|0λ〉 and E0(~λ) = 〈0λ|H(~λ)|0λ〉 are the value of the Berry connection and

Hamiltonian (see Eq. (141)) in the instantaneous ground state. From the Lagrangian (144) we can
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define the canonical momenta conjugate to the coordinates λν :

pν ≡
∂L
∂λ̇ν

= (mνµ + κνµ)λ̇µ +Aν(~λ) (145)

and the emergent Hamiltonian:

Hλ ≡ λ̇ν pν − L =
1

2
(pν −Aν)(m+ κ)−1

νµ (pµ −Aµ) + V (~λ) + E0(~λ). (146)

Clearly the Berry connection term plays the role of the vector potential. Thus we see that the

whole formalism of the Hamiltonian dynamics for arbitrary macroscopic degrees of freedom is

actually emergent. Without the mass renormalization this (minimal coupling) Hamiltonian was

first derived in Ref. (Berry, 1989). Away from the ground state the dissipative tensors (η and F ′)

are, in general, non-zero and it is not possible to reformulate Eq. (143) via Hamiltonian dynamics.

Let us illustrate this formalism with two simple examples. First we consider a massless spring

connected to the potential wall. In this section we will explicitly insert all factors of ~. We

also imagine that a quantum particle of mass m is initially prepared in the ground state of the

confining potential (see the left panel in Fig. 8). As in the previous example we will compute how

the mass of a classical object (the spring) coupled to a quantum environment (the potential well)

is renormalized.

FIG. 8 (Color on-line) Schematic of a quantum piston. a) The spring is connected to a wall of the potential

in which a quantum particle of mass m is initially confined into the ground state. b) As in a) but now the

spring is connected to the whole potential well which moves rigidly. The wave-lines in a) and b) represent

the low energy wavefunctions of the quantum particle in the confining potential.

According to Eq. (137) the mass renormalization is given by

κR = 2~2
∑

n6=0

|〈nλ|M|0λ〉|2
(En − E0)3

, (147)

where λ = XR is the position of the right potential wall. We approximate the confining potentail
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as a very deep square well potential. Then M≡ −∂λH = −V δ(x−XR) and we find

κR = 2~2
∑

n 6=0

V 2|ψ0(XR)|2|ψn(XR)|2
(En − E0)3

. (148)

Using the well known result for a finite (and deep) square well potentail

|ψn(XR)| =
√

2

L

√
En
V

where the factor of
√

2/L comes from the normalizazion of the wave-function in a square potential

of length L, we obtain

κR = 2~2

(
2

L

)2∑

n6=0

E0En
(En − E0)3

. (149)

Substituting

En =
~2k2

n

2m
, kn =

n+ 1

L
π, ∀n ≥ 0

we arrive at

κR = m
16

π2

∑

n≥1

(n+ 1)2

[(n+ 1)2 − 1]3
= m

2π2 − 3

6π2
≈ 0.28m

The result is identical if we connect the piston to the left wall, i.e. κL = κR.

Now let us consider a slightly different setup where the spring connects to the whole potential

well (see the right panel in Fig. 8) so that λ now indicates the center of mass of the well. From

the Galilean invariance we expect κ = m. In fact, since now both potentials walls are moving, our

expression gives

Mλ = −∂λH = −V (δ(x−XR)− δ(x−XL)),

where XL and XR are the left and right positions of the walls. Thus using Eq. (147) we obtain

κ+ = 2~2
∑

n6=0

V 2(ψ0(XL)ψn(XL)− ψ0(XR)ψn(XR))2

(En − E0)3
(150)

Since in a symmetric potential well ψn(XR) = (−1)nψn(XL) only the odd terms contribute in the

equation above. Following the same line of reasoning as before we arrive at (note the extra factor

of 4 with respect to Eq. (149))

κ+ = 2~2

(
2

L

)2

4
∑

n=odd

E0En
(En − E0)3

= m
64

π2

∑

n=odd

(n+ 1)2

[(n+ 1)2 − 1]3
= m
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So indeed we recover the expected result. This simple calculation illustrates that we can understand

the notion of the mass as a result of virtual excitations created due to the acceleration of the external

coupling (position of the wall(s) in this case). If instead we analyze the setup where the two walls

are connected to a spring and move towards each other so that λ is the (instantaneous) length of

the potential well we find

κ− = 2~2
∑

n6=0

V 2(ψ0(XL)ψn(XL) + ψ0(XR)ψn(XR))2

(En − E0)3

= m
64

π2

∑

n=even
n6=0

(n+ 1)2

[(n+ 1)2 − 1]3
= m

π2 − 6

3π2
≈ 0.13m.

(151)

Let us point another peculiar property of the mass. Clearly κL + κR ≈ 0.56m 6= κ+, κ−, i.e.

the mass renormalization of the two walls is not the same as the sum of the mass renormalization

of each wall measured separately. This is a result of quantum interference, which is apparent in

Eqs. (150) and (151). Note that (κ+ + κ−)/2 = κL + κR. Thus the mass behaves similarly to

the intensity in the double pass interferometer, where the sum of intensities in the symmetric and

antisymmetric channels is conserved. At a high temperature or in the classical limit the interference

term will disappear and we will find κL = κR ≈ 0.5m.

As a second example let us consider a macroscopic rotator (angular momentum) interacting

with independent spin-1
2 particles. If instead of the rotator we use the quantum spin operator,

this model is known as the central spin model. Because dynamics of a spin in any external field is

always classical (the evolution of the Wigner function is exactly described by classical trajectories)

there is no difference between quantum and classical dynamics in this case and we do not need to

assume that the rotator is macroscopic. The Hamiltonian describing the system is (141) with

H0 =
~L2

2I
+ V (~n), H = −~n ·

N∑

i=1

∆i ~σi, (152)

where I is the momentum of inertia, V (~n) is a time-dependent external potential, ~L is the angular

momentum and ~n is the three-dimensional unit vector which can be parameterized using spherical

angles: ~n = (nx, ny, nz) = (sin θ cosφ, sin θ sinφ, cos θ). This example is similar to the one consid-

ered earlier except that the effective magnetic field is no longer confined to the xz plane and we

no longer assume that it is given by an external protocol. The time evolution of this system needs

to be found self-consistently. On the one hand, each spin evolves according to the von Neumann

equation with the time-dependent Hamiltonian H(~n(t)):

i∂tρ = [H(~n(t)), ρ] (153)
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and, on the other hand, the rotator evolves according to the Hamilton equations of motion

I~̇n = ~L× ~n, ~̇L = ~n×
(
~Mext + 〈−∂H

∂~n
〉
)

= ~n×
(
~Mext +

∑

i

∆i〈~σi〉
)

(154)

where ~Mext = −∂V (~n)
∂~n is the external force and 〈. . . 〉 indicates the quantum average over the density

matrix ρ(t) (see Eq. (153)). We assume that initially ~n0 = (0, 0, 1) and the spins are in thermal

equilibrium with respect the Hamiltonian H(~n0), i.e. 〈σxi 〉0 = 〈σyi 〉0 = 0 and 〈σzi 〉0 = tanh(β∆i).

For the toy model proposed here these coupled equations can be easily solved numerically. In

fact, according to the Ehrenfest theorem, the evolution of the expectation values follow the classical

equation of motion and the von Neumann equation (153) can be replaced with the much simpler

equation ~̇mi = 2∆i ~mi × ~n where ~mi = 〈~σi〉. Therefore the exact dynamics of the system consists

of the vectors (~L,~n, {~mi}) precessing around each other.

We now compare the exact dynamics with the emergent Newton’s law. First, we note that the

form of Eqs (154) immediately implies

~̇n · ~L = 0, ~n · ~̇L = 0→ ~n · ~L = const

~̇n · ~n = 0→ |~n|2 = const, ~̈n · ~n = −|~̇n|2
(155)

Next we need to compute the generalized force 〈 ~M〉 = −〈∂~nH〉, and the tensors κ and F . The drag

term η and the anti-symmetric mass F ′ are zero since there are no gapless excitations. Therefore

Eq. (131) reduces to:

〈 ~M〉 = 〈 ~M〉0 + Fν,µṅµ − κν,µn̈µ

where ν, µ = x, y, z. The ground and excited states of each spin-1
2 are:

|gsiθ,φ〉 =


 cos

(
θ
2

)
e−iφ/2

sin
(
θ
2

)
e+iφ/2


 , |exiθ,φ〉 =


 sin

(
θ
2

)
e−iφ/2

− cos
(
θ
2

)
e+iφ/2


 (156)

with energy ±∆i respectively from which it follows

〈 ~M〉0 = 0, F = F0




0 nz −ny
−nz 0 nx

ny −nx 0


 ,

κ = κ0




1− n2
x −nxny −nxnz

−nynx 1− n2
y −nynz

−nznx −nzny 1− n2
z


 .
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where F0 ≡ 1
2

∑
i tanh(β∆i) and κ0 ≡

∑
i

tanh(β∆i)
4∆i

. Substituting these expressions in Eq. (154) we

find

I~̇n = ~L× ~n, ~̇L = ~n× ~Mext + F0 ~̇n− κ0 (~n× ~̈n)

where we have used standard properties of the vector triple product together with Eqs. (155). In

the equations above we can substitute ~L → ~L⊥ where by definition ~L⊥ = ~L − (~L · ~n)~n. We now

compute I~̈n = ~̇L⊥×~n+ ~L⊥× ~̇n and using standard properties of the vector triple product together

with ~L⊥ = I (~n× ~̇n) and Eqs. (155) we arrive at:

Ieff ~̈n =
(
~n× ~Mext

)
× ~n+ F0(~̇n× ~n)− Ieff |~̇n|2~n (157)

where we have defined the renormalized momentum of inertia is Ieff = I + κ0.

From this equation we see that the moment of inertia of the rotator is renormalized by the

interaction with the spin-1
2 particles. Moreover we see that, even when the external force is absent

( ~Mext = 0), the Berry curvature (F0) causes the Coriolis type force tilting the rotation plane of

the rotator. Indeed if we start with uniform rotations of the rotator in the xz plane, i.e. ~n, ~̇n lie in

the xz plane, we immediately see that the Berry curvature causes acceleration orthogonal to the

rotation plane. The physics behind the Coriolis force is intuitively simple. At any finite rotator’s

velocity, the spins will not be able to follow adiabatically the rotator and thus will be somewhat

behind. As a result there will be a finite angle between the instantaneous direction of the spins

and the rotator so the spins will start precessing around the rotator. This precession will result

in a finite tilt of the spin orientation with respect to the rotation plane proportional to the Berry

curvature (as we discussed in the previous section). In turn this tilt will result in precession of

the rotator around the spins and cause the tilt of the rotation plane. It is interesting that despite

the motion of the rotator is completely classical the Coriolis force given by the Berry curvature is

quantum in nature. In particular, at zero temperature the integral of the Berry curvature over the

closed manifold (4π spherical angle is this case) is quantized. Therefore by measuring the Coriolis

force and averaging it over the angles θ and φ one should be able to accurately see a quantized

value:
∫ π

0
dθ

∫ 2π

0
dφFθ,φ = 2πN. (158)

It is interesting that this result remains robust against any small perturbations in the system,

which do not close the gap in the spectrum. Similarly the origin of the extra mass (moment of

inertia) κ in this simple example is purely quantum, i.e. despite this mass describes the classical

Newtonian motion, it can not be computed within the classical framework.
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nzap(t)

FIG. 9 Dynamics of a rotator coupled to N = 20 spins- 12 . (Left panel) The exact trajectory of the rotator

obtained by numerically solving Eq. (153) and (154) (blue line) coincides with the approximated trajectory

Eq. (159) which delimits the shaded red plane. (Right panel) Behavior of nz(t) for the exact (continuous

blue) and approximated evolution (dashed red) versus time. The parameters of the exact simulations

are: N = 20, β = 0.1, I = 1, ∆i are randomly distributed in (1, 2). For these parameters F0 ≈ 1.5,

κ0 ≈ 0.5 and Ieff/I ≈ 1.5. The initial conditions are ~n0 = (0, 0, 1) and ~L0 = (0, 0, 0) and initially

the spins are in thermal equilibrium (see main text). We chose the time-dependent external force to be

~Mext(t) = 250
[

t
tc

(
1− t

tc

)]4
x̂ for 0 ≤ t ≤ tc = 3 and zero otherwise.

We now analyze the approximated Equation (157) in detail. We consider the situation in which

~Mext(t) is slowly turned on (off) at time t = 0 (t = tc). When ~Mext(t) = 0 Eq. (157) describes a

uniform circular motion whose solution can be written as:

~nap(t) =
√

1−A2
ap r̂ +Aap [cos(ωapt+ φ) ĉ1 + sin(ωapt+ φ) ĉ2] (159)

where Aap is the amplitude, ωap is the angular frequency, r̂ is the vector orthogonal to the plane

of motion (see Fig. 9) and ĉ1, ĉ2 are two orthogonal unit vectors spanning the plane of motion.

Substituting the ansatz (159) in Eq. (157) (with ~Mext = 0) we obtain

ωap = − F0

Ieff

√
1−A2

ap

. (160)

The amplitude and the orientation of the plane of motion can not be computed from the initial

conditions of Eq. (157) since this equation is only valid after a transient time. We therefore extract
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them from the exact numerical solution:

√
1−A2

ap r̂ = lim
T→∞

1

T

∫ tc+T

tc

dt′ ~nex(t′)

and compute ωap via Eq. (160). In Fig. 9 we compare the exact trajectory ~nex(t) obtained by

numerically solving Eq. (153) and Eq. (154) for the rotator coupled to N = 20 spins with gaps

∆i uniformly distributed between (1, 2) to the approximated trajectory ~nap(t) (159). We note

that the frequency of the approximated motion (estimated via Eq.(160)) underestimates the exact

frequency by 8% however if we had used the bare momentum of inertia in (160) with the chosen

simulation parameters (Ieff/I ≈ 1.5) we would have overestimated the exact frequency by 28%.

The accuracy will be higher if we increase the number of spins N .
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