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Outline.

Part |. Quantum ergodicity and the eigenstate
theramization hypothesis (ETH).

Part Il. Applications of ETH to equilibrium and non-
equilibrium thermodynamics.



Three different approaches describing isolated systems of particles
(systems with stationary Hamiltonian).

Microscopic based on studying long time limit of Hamiltonian dynamics

OH dp; OH
_{ 177-[} T _aq

dg;
dt _{“H}_ Op;  dt

Works for small few-particle systems. Can /\>
be prohibitively (exponentially) expensive &

in chaotic systems.

Chaotic Regular
Il. Statistical. Start from equilibrium statistical description (system is in the
most random state satisfying constraints). Use Hamiltonian (Lindblad) dynamics

perturbatively: linear response (Kubo)

_ / dXdP exp[—B(Ho(X, P) + Hint (X, P))] = Zo(exp[—BHn:(X, P)])o

lll. Mixed: kinetic equations, Master equation, Fokker Planck equation,...: use
statistical information and Hamiltonian dynamics to construct rate equations for

the probability distribution:

dpn,
—5 =2 _(Pmosnpn = Pnsmpn), pn = exp[—BEy] = const(t an%m =1



What is the fundamental problem with the first microscopic approach?

Imagine Universe consisting of three particles (classical or guantum)

O
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Can this universe describe itself? — No. There is no place to
store information.

Increase number of particles: can simulate three particle
dynamics. Complexity of the total system grows exponentially,
much faster than its ability to simulate itself.

It is fundamentally impossible to get a complete microsopic
description of large interacting systemes.



How do we connect these three approaches?

Classical ergodicity: over long periods of time, the time spent by an ensemble of
particles in some region of the phase space the same energy (and other conserved
integrals) is proportional to the volume of this region.

In simple words classical ergodicity is delocalization in phase space
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Chaotic (ergodic) Intergrable (non-ergodic). Number of
conserved quantities = number of
degrees of freedom

T— 00

5(X — X(t) = lim %/0 dt5(X — X(1)) = pme(E).

Most interacting many-particle systems are chaotic even with
regular interactions (no disorder)



Famous counter example: Fermi-Pasta Ulam problem. First numerical
study of ergodicity (thermalization) in an interacting many-body system.
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Onset of chaos and thermalization in classical systems

Integrable system of N degrees of freedom has N integrals of motion

I for j=1,---,N
1;,1;] =0 for all 4, 5

N constraints in 2N dimensional phase space:
each Ij corresponds to the hyper-surface in phase space

Trajectories are confined to intersection of all these surfaces forming

N-dimensional invariant tori.

KAM theorem: weak perturbation
preserves ‘almost all’ tori under
the condition:
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Thermalization (chaos) occurs though destruction of KAM tori



Similar scenario for the FPU problem
F. M. Izrailev and B. V. Chirikov, Soviet Physics Doklady 11,1 (1966)

Parametric resonance width matches resonance in 15t order perturbation theory:

Spectral Entropy: (Livi et. al, PRA 31, 2, 1985)
Spectral entropy:
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Setup: isolated quantum systems. Arbitrary initial state.
Hamiltonian dynamics.

Easiest interpretation of density matrix: start from some ensemble of pure states

|%0) §£:<%J7l = [¥(2) j£:<%z ~1Entn)

Look into expectation value of some observable O at time t.

(O) = WOIOW(D) = 3 eme PP Oy

In order to measure the expectation value need to perform many measurements
unless Y (t) is an eigenstate of O.

Each measurement corresponds to a new wave function due to statistical
fluctuations. So unless we can prepare identical states we can only measure

(O)) = WD) = Y creme P Em 0, =3 " prn ()0

nm

—i(Epm—FEyp)t —i(Ep—En)t

Pmn(t) = Pmn(0)e = C,Cm¢€

If Hamiltonian is fluctuating need to average over the Hamiltonians -> non-unitary evolution.



Ergodicity in Quantum Systems

Classical system: time average of the probability distribution becomes equivalent to
the microcanonical ensemble. Implies thermalization of all observables.

5(X — X(1) = lim 1/T dt5(X — X(1) = pme(E)

T'— o0

Quantum systems (quantum language?) — no relaxation of the density matrix to the
microcanonical ensemble (von Neumann, 1929).

| (1)) (P(t) | = Z | €a I*] Wa)(¥a |= Ading

Thermalization must be built in to the structure of Eigenstates and revealed through
observables (von Neuman, 1929; Mazur, 1968; Sredniki, 1994; Rigol et. al. 2008, Riemann
2008, ...)

(W (t) | Mp(t) | U(t)) =t—+00 Tr[Mppmec] = (Mp)me

The limit is understood as at long times at almost all times. In a way in quantum language
thermalization is prebuilt in the system. Time evolution is just dephasing.



Berry conjecture, semiclassical limit (m.v. Berry, 1977)

Wb <x 7, %)w(:x + 3) = %/dp ePS/IMSIE — H(x,p)]

Average is taken over the energy shall vanishing in the limit 7 — 0 but containing many
states. Equivalently

Wg(x,p) = (2rh)” /ds ) (x = —>¢E (X A 2) —ip-s/h

1
Wg"(x,p) ~ = [E — H(x, p)]
For non-relativistic particles Berry  (f(p)) = /dpzdp3 ] Yalps P2, ) )
conjecture implies Maxwell- 52
. . . €& 2mkT
Bolzmann distribution 3] kT = fus(p),

This follows from  (P1) /H dp;dg; py W (x,p)
J



Thermalization through eigenstates
(J. Deutsch, 1991, M. Srednicki 1994, M. Rigol et. al. 2008)

Main idea: thermalization is encoded in eigenstates of the Hamiltonian.
Dynamics is just dephasing between the eigenstates.

Prepare a quantum system in some state, characterized by the density matrix p,
and let it evolve with the Hamiltonian H.

p(t) =D P [0(0))(m(t)] = Py exp[—i(Ep — B )t]

Look into the long time limit of the expectation value static observable, O

In typical situations (both equilibrium and not) energy is extensive and energy
fluctuations are sub-extensive (consequence of locality of the Hamiltonian). If all
eigenstates within a subextensive energy shell are similar then

The long time limit of an observable does not depend on the details of the initial state.
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Fluctuations of the observables. Off-diagonal matrix elements
(M. Srednicki, 1999)

Consider ultimate microcanonical ensemble, a single energy eigenstate

607 = (n|0?n) — (n|On)*> = > (n|O[m){m|O|n)
m=#£n

There are exponentially many terms in this sum ~ exp[S], recall that the entropy is the
measure of the density of states (number of states within microscopic energy window)

Make an ansatz (M. Srednicki, 1996)
_ E,+E,
B 2

Expect that f,is a slow function of E (changing on extensive scales) but fast function of
w, on inverse relaxation time scale, o is a random variable with a unit variance .

502 =3 02, = / QU E-+w/2)| fo (B, w)[2 exp|—S(E)] = / do| fo (., )2 exp|Bw /2]
m#n

(n|O|m) = O(E)bnm + fo(E,w)exp|—S/2]onm, E w=F,—F,

The function f,(w) should decay faster than exponentially on intensive energy
scales.



Let us look into non-equal time correlation function
1
(O(t) ZO expli(En—FEm)t] = 2/dw|fo(E,w)]2exp[ﬂw/Q—iwt]

m#n

Long (Markovian) times (small frequencies): expect exponential decay.

r O AN
|f0(E )|2 ~ exp[ BW/Q] T Lorentz or Breit-Wigner distribution

Short (non-Markovian) times (large frequencies): expect Gaussian decay. Also follows
from short time perturbation theory (Zeno effect).

| fo(E, w)[* ~ exp[—T"w?]

Can recover fluctuation-dissipation relations under the same
conditions (V. Zelevinsky 1995, M. Srednicki 1999, E. Khatami et al 2013)



How representative is time average? (M. Srednicki, 1999)

2 2
— 1 /[t .
0 nm n

n#m

Using that

Omn ~ exp[—S/2], Tr[p?] < 1= ((O;) — 0)2 < C exp[—9]

If ETH applies we see that deviations of the expectation value
from the time average are exponentially small.

So the system remains exponetially close to the equilibrium state
at almost all times.



Quantum chaos and Wigner-Dyson distribution
Consider a fully chaotic random NxN matrix with the Gaussian probability distribution

H = {H;;}, P(H) ~ exp[—N/4 Tr[H?]

One can show that there is a level repulsion so that the probability of the level spacing is:

T

P(s) — §3 eXp[—7T32/4] Wigner-Dyson distribution for orthogonal ensembles.
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Many-body quantum systems

Integrable (in a compliated way) bosonic(L. Santos and M. Rigol, 2010)
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Quantum ergodicity and localization in the Hilbert space
Why does ETH work? Why does the single state describe equilibrium?

Imagine the most integrable many-body system: collection of non-interacting Ising
spins. The dynamics is very simple: each spin is conserved.

REARSRRRARNRANARARRAARAANN

A typical state with a fixed magnetization is thermal. This is how we derive Gibbs
distribution in statistical mechanics. We do not need non-integrability.

More sophisticated language: quantum typicality. If we take a typical many-body state
of a big system (Universe) and look into a small subsystem then it will look like the Gibbs
state (von Neumann 1929, Popescu et. al. 2006, Goldstein et. al. 2009)

Can we create typical states in the lab doing local perturbations? Let us flip 10 spins in the
middle doing the Rabi pulse

LT LT LT T

By performing a local quench we create a very atypical state, which is not thermal, whether
the system is integrable or not. In an integrable system this state will never thermalize.



More sophisticated example

Weak interaction quench in the Hubbard model (M. Moeckel and S. Kehrein, 2008)
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System relaxes to the atypical state with wrong
guasi-particle residue.

Simpler example: take Hnmﬂhm ww] "unum YMP We do not need

noninteracting fermions and ergodicity, ETH, chaos
hit with a local Hammer. to understand

_ statistical mechanics.
Can not possibly create

new Fermi-Dirac
distribution, too much
fine tuning.

We need them to
understand dynamics.




There are always atypical states. These are the states, which we
usually excite in experiments. ETH says that there are no atypical
stationary states (eigenstates of the Hamiltonian)

Fluctuations of observable between eigenstates (M. Rigol et. al. 2008)
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All eigenstates in a non-integrable system are indeed typical.

Physical reason: each eigenstate consists of (exponentially) many eigenstates of
other local Hamiltonians, e.g. of a noninteracting Hamiltonian.



Corollary: each energy eigenstate contains (exponentially) many noninteracting states.
Each non-interacting state is projected to many eigenstates (by a local perturbation)

C. Neuenhahn, F. Marquardt, 2010; G. Biroli, C. Kollath, A. Laeuchli, 2009
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Quantum ergodicity is a delocalization of the initial state in the Hilbert space
The picture is thus similar to classical. Phase space = Hilbert space.

While each eigenstate is enough to thermalize we always populate many!



Measures of (de)localization in the Hilbert space
(L. Santos and M. Rigol, 2010)
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Nonintegrable systems are more delocalized



More direct measure of delocalization — diagonal entropy
(von Neumann’s entropy of the diagonal ensemble)
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L. Santos, A. P. and M. Rigol (2012) thermaliaten



How robust are the eigenstates against small perturbation?

Consider two setups preparing the system in the energy eigenstate
| A B [
e 09 ) e o A o
TV T VT TTY By ey

Setup |: trace out few spins (do not
touch them but no access to them)

A B
EQEavE
v I T TV
Setup Il: suddenly cutoff the link

In both cases deal with the same reduced density matrix (right after the quench in case Il)

(nOaln) = > (nlna,np)(na,nplOalma, mp)(ma, mp|n)
nAMB,MA,MB PA — TI‘B,O
= Y (njna,ng)(nalOlma)(ma,npln) = Tr[pa, O4] = ) [na)(na,npn)(nma,np)(mal
na,ma,np np,naA,MAaA

Quench: the reduced density matrix evolves with the Hamiltonian H,

Define two relevant entropies (both are conserved in time after quench):

San = —Tr[palog(pa)] Sad ==Y _ pAann1og(pann)

Diagonal (measure of delocalization), entropy

Entanglement (von Neumann’s entropy) of time averaged density matrix after quench



1] ) 4
& | 2 1

SA,UTL — —Tr[pA log(pA)] SA,d - = Z PAnn log(pA,nn)

n

B>>A, trace out most of the system. Eigenstate is a typical state so expect that

PA ™ eXp[_BHA] = SA,vn ~ SA,d ~ Seq

B<<A, trace out few spins, perhaps only one (say out of 10%?). What happens?

SA,vn — SB,vn ~ NB

Remove one spin. Barely excite the system. Density matrix is almost diagonal (stationary)?

SAd %,m? Wrong (in nonintegrable case)

Use ETH: Perform quench, deposit non extensive energy S&E. Occupy all states in this
energy shell.

ETH tells us that even cutting one degree of
SA,d ~ IOg(Q(EA)5E) ~ SA,eq freedom is enough to recreate equilibrium
(microcanonical) density matrix.



(with L. Santos and M. Rigol, 2012)

T '1? ‘{ 1 | T 4‘ 1‘ iD Check: hard-core bosons in 1D

; R -~ 0.6k (b) AA— 4 A _
L-R Q.:‘ ! . .
0.8 [—r——r——r—— ~ 04F =
0.6f ] > oaf e
D A 0l R=Ls3 -
. O M ] M ]
0.4 T 1 v |
e 03F @ ——p—4 -
I o02F -
> I
0.1F R=21/3 g
0 M ] ]
—~ L y I I
Q.:‘ 025F () =
N 0.2F -
X 0.15F ®R=I -
o) S PRI R - %01'_le2 -
3 6 9 12 “ Vf - :
R 4 00sp 4RI .*545\/.:_'-
Entanglemen'F, dlagonal,- 00 005 0.1
Grand-Canonical entropies 1/L

Corollary: entropy — energy uncertainty. There is no temperature in a single eigenstate. In order
to measure temperature — need to couple to thermometer, e.g. a calibrated two level system.
This always mixes exponentially many states by ETH.

Otherwise would have contradictions with fundamental relation: dE = TdS — FdX



Quantum ergodicity and localization in real space

Non-interacting electrons in a disordered potential. Anderson localization
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Wigner-Dyson statistics Ep = h/7, 7 = L*/D, N ~ LYE1

Gang of four scaling theory (P.W. Anderson et. al., 1959)

Figure 4. According to scaling theory, Anderson localization is a criti-
cal phenomenon, at least in three dimensions. The scaling function B(g)
describes how—or more precisely, with what exponent—the average
conductance g grows with system size L. For a normal ohmic conductor
in D dimensions, the conductance varies as L°~2 consequently,

B(g) ~ D -2 for large g. Thus the beta function is positive for three-
dimensional conductors, zero for two-dimensional conductors, and neg-
ative in one dimension. In the localized regime, g decays exponentially
with sample size so that S(g) is negative. In three dimensions, that leads
to a critical point at which B vanishes for some special value for g associ-
ated with the mobility edge. Lower-dimension systems do not undergo
a genuine phase transition because the conductance always decreases
with system size. A small 2D conductor, for instance, will look like a
metal in the quasi-extended regime, but all its states are eventually
localized if the medium is large enough.

A. Lagendijk, B. van Tiggelen, and D. S. Wiersma (2009)

In 3D and above there is a transition between localized and delocalized states. Hi energy
states are typically localized. Localization means no ergodicity.

At finite temperature the system is always delocalized (ergodic).



Interacting were thought to be always ergodic

Insulator coupled to phonons. All states are localized
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At finite T can always hop and get the missing energy from the
phonons. In our language many-body levels are ergodic (satisfy ETH).

Pure two-body short range interactions between electrons.
Altshuller et. al. (1997), Basko, Aleiner , Altshuller (2005)
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1D disordered spin chains at infinite temperature
(A. Pal, V. Oganesyan, D. Huse, 2007+)
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Strong numerical indications of many-body localization as a localization in the Hilbert space. No
analytic theory yet near the transition. Ergodicity -> ETH.




What happens when the systems are not ergodic.

e e

0o
Chaotic system: rapid Integrable system: relax to
(exponential) relaxation to constraint equilibrium:
microcanonical ensemble P(z,p) = 0(p —po)o(0 — o)

Quantum language: in both cases relax to the diagonal ensemble

1
Pmn — pnn5mn Pnn = E CXP[— Z B'n,[n.]

n

Integrable systems: generalized Gibbs ensemble (Jaynes 1957, Rigol 2007, J.
Cardy, F. Essler, P. Calabrese, J.-S. Caux, E. Yuzbashyan ...)



F. Essler, talk at KITP, 2012
Let I, be local (in space) integrals of motion [In, In]=[Im, H(h)]=0

Define GGE density matrix by: pgc=exp(-Z Am In)/Zgc

Am fixed by trlpge Iml= <W(O)| Inm IP(O))
Reduced density matrix of B: Pge=1ra Pgc
Prove for a particular (transverse field Ising) model Ps(c0)= pgcs

Works both for equal and non-equal time correlation functions.
Need only integrals of motion, which “fit” to the subsystem

If we can not measure |, — have too many

.. : fitting parameters.
J What if integrability is slightly broken?



Pump energy at long wavelength. Dissipate at short wavelength. Non-equilibrium steady state

Scaling solution of the Navier Stokes equations

This energy can be thought of as the
2/31.—5/3
ov+(vV)v=-Vp+vAv FEp o Cv Pt mode dependent temperature. A

Vv=0 E(k) ~ P2/3k_5/3p1/3 particular type of GGE.

Zakharov, L'vov, Fal’kovich: derived this solution from the kinetic equations



Victor Gurarie (1994): Scaling solution from as the GGE

Weakly interacting (weakly nonintegrable) Bose gas

== E :wpa ap + E , )‘plpzpsm D1 pza’p3a’p4

P1pP2P3P4

Look for a stationary probability distribution

p = exp|—F, pr ap+)‘F(1)+/\2F(2)+ F(l) = Z Apy pa.ps.pa p1 pgap3ap4

p P1,pP2,pP3,P4
Find F1), F) perturbatively. Problem: perturbation theory is very
singular because of small denominators

A y fpl +fp2 - fp3 5 fp4

P1P2P3P4 :
Wpq il Wpy — Wpy — Wp, — 1€

)‘plp2psp4

Possible nonsingular solutions:

W
fp = Awp + B = (E,) = Aij_

With additional power-law constraint — additional Kolmogorov solution

Thermal equilibrium with chemical potentials.

B8 s TN s o ar o LS
=P, A papsps = Ao(P1p2p3pa) 2U (D1, P2, D3, Pa)0(P1 + D2 — P — Da)

Weak interactions select possible GGE!



Summary of part |

Ergodic quantum systems satisfy ETH: each eigenstate of the Hamiltonian
(each stationary state) is equivalent to the micro-canonical ensemble.

Ergodicity can be understood as a process of delocalization in the eigenstate
basis. Delocalized states are always ergodic (irrespective of integrability).

Direct analogy between (many-body) Anderson localization and ergodicity.

Many-body states are very fragile: tiny perturbation mixes exponentially
many eigenstates. Ensembles are stable.

Integrable systems relax to asymptotic states which can be described by the
GGE (generalized Gibbs ensembles) composed of local integrals of motion.

Weak interaction can select possible classes of stable GGE state, which
ultimately thermalize (prethermalization scenario). But still many open
problems remain.



Part Il. Applications of ETH to thermodynamics

Cool
environment
20°C
FIGURE 1-3
Heat flows in the direction of decreasing '™3a8€ taken from
SASHIE  BROOKLYN
lemperature. BODEGA

Thermodynamics (unlike statistical physics) typically deals with non-equilibrium
processes, which at each stage can be approximated as approximate local equilibrium



Setups considered

1. Prepare system A in a stationary
state (diagonal ensemble)

0,,(0)= 0,0,

2. Apply some time-dependent
perturbation (quench)

3. Let the system relax to a new
steady state

Prepare systems A and B in
stationary states

Connect them by a weak coupling
(quench) for a period of time .

Disconnect and let the systems
relax to the steady states. (Markov
process).



Fundamental thermodynamic relation for open and closed systems

Start from a stationary state. Consider some dynamical process

= punlog(ppn) = ASs == Apnnlog(pnn) + AP

Assume initial Gibbs Distribution

pun = 7 expl-BE,] = 108(pun) = —~HE, — og(2)

Combine together

E
AFE = g—f A)\—i— ASd S AE =TAS — FA\A)N, F = —aa—)\

Recover fundamental relation with the only assumption of Gibbs distribution

What if we do not have the Gibbs distribution?



Imagine we are umping some energy into
an isolated system. Does fundamental

\@ l .o.. . .. relation still apply?
® o .o ®
Si== 3 panlos(pun) = ~ [ dEAE)(E) oglo(E)

p(E)Q(E)=W/(FE) — Energy distribution

¢ log(2(E)) = S,, — microcanonical entropy

Sqa(e) = /deW(e)Smicm(e) —/deW(e) In(W (e))

Entropy is a unique function of energy (in the thermodynamic limit) if the
Hamiltonian is local and density matrix is not (exponentially) sparse. l.e. if
the system is not localized in the Hilbert space

Gaussian approximation for W(E), applies even for small systems:

S(E) = In(v2r6 EQ(E)) + % (1 O

5E§> SE2 =T*C, = —0E.(T)



In delocalized regime, which is always the case if ETH applies

Su(E) ~ — / dE W (E)S,,(E) ~ S, (E)
Recover fundamental relation + sub-extensive corrections from ETH

Integrable systems: sparse distributions

/ dEW (E)log(W(E)) Gives extensive contribution comparable to S,

Can we use GGE density of states?
Integrable Hamiltonian (with L. Santos and M. Rigol)

L—1 L o -
Hg = —t Z(b'i:b-jul +H.c.) —AZ cos (2> bib,. = .
| — pot p )77 Filling 1/5, period P=5, quench A

20 T T
LY. -4 solidline s,
15 /// -
N Y ® Dashed lines S| Sgqe
10 ”.0 //./ -
: Pl 00-16 ]  GGE s not constraining
: | enough

20 30 40 50 20 30 40 50 20 30 40 50 20 30 40 50



Isolated systems. Unitary dynamics. Initial stationary state.

0
Pm(0) = p,0,,
Unitarity of the evolution:
Pmm — Z Umnngn_n%L — p?n + an—wm(pg - pgn)
U =U": DPnosm=|Umnn|* — doubly stochastic matrix

Transition rates p,,_ . are non-negative numbers satisfying sum rule

e

Pion@®=>p, . ()=1

In general there is no detailed balance even for cyclic processes (but within the
Fremi-Golden rule or for symmetric protocols there is).

The only stable distribution under these transformations is the infinite temperature
maximum entropy state pg oy Const(n)



Second law of thermodynamics

/Eﬂi S Prn®= S Py () =1

Start from a stationary state with monotonically decreasing probability (e.g. Gibbs

distribution). Energy can only increase or stay constant, see picture Thirring, Quantum
Mathematical Physics, 1999, A. E. Allahverdyan, Th. M. Nieuwenhuizen, (2002).

Likewise (diagonal) entropy Sd = — Z Pn log(p,-,,)
T

satisfies the second law:

For any initial stationary state
Also immediately follows

S, ()=S (£)=S (0)=S,(0), fromthe sumrule.
Sa’l (t) + Sd2 (t) > Sdl (O) 4 Sd2 (O) Follows from Araki-Lieb subbaditivity

(thanks to C. Gogolin)



Initial stationary state + time reversability:
Pmn =— Pnm Microscopic probabilities are the same

Fluctuation theorems (Bochkov, Kuzovlev, Jarzynski, Crooks)
uf
Eigenstate thermalization hypothesis: microscopic
probabilities are smooth (independent on m,n)

men - - w) — pan(E + w)

PE—i—w(_w) — pan(E)

Pr(w)Q(E) = Ppiw(—w)Q(E +w)  Bochkov, Kuzivlev, 1979, Crooks 1998

Probability to do work w P(w) = /dEQ(E)p(E)PE(w)
If we assume the Gibbs distribution
P(w) = Zi /dEQ(E) exp|—BE]Pg(w) = Crooks equality, C. Crooks, 1998,
1 ~ Z ~
5 [ ABAE + w)expl-8(E + w = w) P (~w)) = L explulP(—u)

Z = exp|—PBF| = (exp|—pw]|) = exp[—BAF]||  Jarzynski equality, 1997




Jarzynski equality heavily relies on having Gibbs distribution, no
equivalence of ensembles. Probe large deviations

However, if interested in cumulants can use arbitrary ensembles.
Assume for simplicity a cyclic process Z,=Z..

Pg(w)Q(E) = Pgyw(—w)QE + w) ~ Pgy(—w)Q(E) explfu]

Now can integrate with an arbitrary distribution p(E).

<eXp[—BUJ]> — 1 Require that high cumulants are small, narrow distribution

2
<w> - 55102 >0 Second law of thermodynamics.

2 __ =
_B<w> + 7510 =0 = 9 — * Einstein-like drift diffusion relations.

Fokker-Planck (diffusion) equation:
W(E,t+ 6t) = W(E,t) + / dw[W (E — w)Pg_o(w) — W(E)Pg(—w)]

Exercise: expand to the second |
order in w. Beat subtleties atW(E’ t) — _0E(AW) + 58EE(BW)

(w) = A(E) - heating rate (drift), B(E) = dw? - diffusion
Hint, at small dt (w), dw? o dt, (w?) = dw? + (w)? ~ dw?

It is sufficient to know only the heating rate to find the energy distribution!



Simple way to derive the drift diffusion relation

1
OW (E,t) = —0g(AW) + 5a?EE(BW)
For unitary dynamics with arbitrary time dependent Hamiltonian the attractor is

Prn = p(E) = const = W(FE) =Q(E)p(E)=CQ(F) = Cexp|S(£)]

Plug back to the FP equation
~A(B) explS(E)] + 50p(B(E) explS(E)) = 0

: The last term is usually suppressed in large systems. It
Solution QA(E) — BB + OB can be also recovered from the Crooks relatiom

Example (particle in a deforming cavity C. Jarzynski, 1992)

Exercise: compute

A(E) = cE'? Equivalent to the
de Lorenz gas
— B(F) = (d+ 1>E3/2 solvable by

s —~  kinetic equations:
B(E) = (d —2)/(2FE) L. D’Alessio and P.

W(FE) x eXp[—f(t)\/E] Krapivsky.



Example: universal energy fluctuations for driven thermally isolated
systems (microvawe heati ng) (G. Bunin, L. D’Alessio, Y. Kafri, A. P., 2011)

Nonadiabatic (microwave) heating

Conventional heating

; AT . Universal non-Gibbs distribution
Gibbs distribution

Dynamical phase transitions as a
fluctuation-dissipation relations  function of the heating protocol (to

the superheated regime).
universal width: dE? = T2C,

Can prepare arbitrarily narrow

distributions.



Open systems (A can be a single spin or macroscopic)

AAJ/\TEl

Time reversal symmetry implies Crooks equality:

pa(n — m)pp(m’ — n') = pa(m — n)pp(n’ — m’)
Sum over eigenstates of B. Use ETH for the system B.

pa(n — m) _ Qp(Ep — AF)
pa(m — n) Qp(Ep)

~ exp|—BpAL]

Detailed balance follows from the Crooks equality for the two
systems and ETH for the system B.



Open systems (G. Bunin and Y. Kafri, 2011)

AET E

Time reversal symmetry implies Crooks equality:

pa(n — m)pg(m’ —n') =pa(m — n)pg(n’ —m')

Pg, 55 (—w, w)QA(EA)QB(EB) = P,y —w,Bptw(W, —w)Qa(Ea —w)Qp(Ep + w)

Jarzynski type relation for an open system (require narrow distributions)

(exp(Ba — Bp)ul) = 1 = (w) ~ 56w, A8 = 5 — B

Heat flows from hot to cold because of ETH



Example: two coupled black bodies at different temperatures
(with G. Bunin, Y. Kafri, V. Leconte, D. Podolsky)

T e Z hckaLaak,a 35 Z thbLabk,a + Hing
A k,a k,a
Tg :

Hipy = ey / dzdyal, . o) Diy0)a T e
a=1

Recoloring operator,
A —transmission amplitude

W

+ h.c Different gauge b->b e™2 — flux operator

)\hc
ti = 225" [ra ol

Use Fermi golden rule (exercise)

B! 2h 2L2 oo i
e H—C/ dekPn{ (1 +n?)  Agy = Wasse — Wossa = [M0(T; — Ty)

2
47T 0

212 372 45 2
(S M'(;iT;L/dk: K {n,&a)(l —l—ng))) +n§€b)(1 +n,(€a))} Bap = 8‘>\|20 [(TaTb)5/2 > ilser ] <T5/2 5/2) ]

(approximate expression)

A-B relation is satisfied when 54 ~ 8 otherwise high third order cumulant



(Non-equilibrium) Onsager relations.

Two or more conserved quantities.
in progress with L. D’Alessio, G. Bunin, Y. Kafri, also P. Gaspard and D. Andrieux (2011)

61471“’14 6B’MB

= Time reversibility and
A El, e ETH imply the Crooks

w, on relation

P(w, dn) exp|—Bpw—Apdn] = P(—w, —on) exp[—Baw—Aa0n], A = 3S/ON = —Bu

Two independent Jarzynski relations: <€Xp[—A6w]> — <exp[—A)\5n]>,
AB = Bp — Ba, AA=Ap — A (exp[—Afw — AXdn) =1

Onsager relations (cumulant expansion)

w o\ ow?  {(wdn). Ap
on )\ (wén).  In? AN

This is not a gradient expansion. E.g. temperatures can but need not be close!
Two currents and one current fluctuation set the other fluctuation and the cross-
correlation. Possible applications from spintronics to black hole radiation.



Energy localization transition in periodically driven systems

(with L. D’Alessio)

Instead of a single quench consider a periodic sequence of pulses:

dit g

What is the long time limit in

—>ce—> !
this system?

Ty 15
time

Fermi-Ulam problem (prototype of
the Fermi acceleration problem). ©

fixed wall
— 4 —
FW ALY ]
I IU 16a
BV 2 P A e B | rai r2a -
______ Y

. i Fig. 7.14. Poincaré phase space sec-
OSClllatlng wall tion for a harmonic wall oscillation with
(G. M. Zaslavskii and B. V. Chirikov, 1964 M = 20. Iterations of several selected

M. A. Liberman and J. Lichenberg 1972) trajectories.

Small energies: chaos
and diffusion. Large
energies — periodic
motion. Energy stays
localized within the
chaotic region.

Stochastic motion —
infinite acceleration.



Kicked rotor (realization of standard Chirikov map)
2

_ b B Transition from regular (localized) to chaotic
H(p,z,t) = 2 + K cos(z) Z o(t —n) (delocalized) motion as K increases. Chirikov, 1971
mn

1.0

00 02 04 06 08y/yl0 00 02 04 06 08y/g10 00 02 04 06 08yx1.0

K=0.5 K=K,=0.971635 K=5 (images taken from
scholarpedia.org)

Delocalization transition at K.=1.2 (B. chirikov (1979)).

Quantum systems: (dynamical) localization due to interference even
in the chaotic regime (F. Izrailev, B. Chirikov, ... 1979).

What about periodically driven ergodic systems in thermodynamic limit?



New non-equilibrium phases and phase transitions

Example: Kapitza pendulum (emerged from particle accelerators, 1951)

a) y b) N c) A

xV
xV

a

[

§=— (w% + —v2 cos (*yt)) sin 6

Stable inverted equilibrium for % wlo > /2
Stability: experimentally proven by Kapitsa using
Singer sewing machine and by Arnold using razor.

Theoretically proven by Arnold using KAM
theorem




Further experimental progress

Light induced Superconductivity in a Exciton-Polariton condensates in driven-
Stripe-ordered Cuprate dissipiative system

D. Fausti, et all, Science 331, 189 (2011)

Emission angle, 6 (degree)

-20 -10 0 10 20 -20 -10 O 10 20 -20 -10 O 10 20

Energy (meV)
>
»

3-2-1012 3 -3-2-1012 3-3-2-101 2 3
In-plane wavevector (104 cm-)

J. Kasprzak et. al, Nature, 443, 409 (2006)

Interesting unpublished results from R.
Averitt group in VO, driven by THz pump.

Image taken from A. Cavalleri web page



Periodic drive: wave function (density matrix) after n-periods

Y(nT)) = [U(D)]" [tho), U(T) = exp[—iHyTs] exp[—iHyT1] = exp[—iHpT]

[(nT)) = exp[—iH pnT]|to) T H, S
/[\ =
. ’ AW . ef f

Time evolution is like a single //

guench to the Floquet Hamiltonian =, Hy P ‘Ho
t t

nd’

Hp=Hy+V,V = Hp — H,. oo :

If V is small and local expect that the energy (Hy) is localized.

Magnus expansion:

Hp = %log[exp[—iHlTl]exp[—z'Hng]] = 1{/ dtH (t / dt1/ dto [H(t1), H(t2)]+. . .

e Each term in the expansion is extensive and local (like in high temperature expansion)
* Higher order terms are suppressed by the period T but become more and more non-local.
 Competition between suppression of higher order term and their non-locality — similar to

many-body localization.
* The expansion is well defined classically if we change commutators to the Poisson brackets.



Theory progress: no general framework yet but a good progress

Magnus (short-period) expansion for the Kapitza pendulum
L. D’Alessio and A.P. 2013 (original explanation, Kapitza 1951)

H(t) = —pe + f(t)cos®  f(t)=-—m(w§+ Ty COS( t))
Hepr = %1 glexp[—iH1T] exp[—iHoTs]] = ;/ dtH (t / dt1/ dto [H(t1), H(t2)]+.
Pt SR ] ) oo : :
H oy ps / dtH(t), Hf;= ST (ih) //0<t2<t1<T divdia[H (t1), H(t2)]
A3 = s I ([ )i B (t2): H(t3)] | + [ Hta); | H(t2): H ()] )
) 4 3 ary 2 a
Hé?f = 5P — mw} cos H(f)f = Héf)f ~m (2—1) sin?(6)

Other terms are down by powers of v at fixed av/I.
Stable upper equilibrium for avy/l > v/2wy.

Emergent steady state is an equilibrium for effective and nontrivial
Hamiltonian.

Thermalization with an undriven bath? Generality?



Specific model: classical or quantum spin chain
H=-h) si=J|g) sisizi+) (57570 + 575/ )
j j j

J e T, 7 Start in the ground state of
the noninteracting system.
e | Follow the noninteracting

= S SR B I > energy.
T T, time

Analytically tractable limit: 11 — O Classical limit: commutators -> Poisson brackets.

loglexp[X]explY]| =X +Y + %[X, Y]+ %[X, (X, Y]] +... +O(Y?)

X =ihTy Y 8%, Y =iTyJ gy sisiq+ Y (sfsiy+5;551)
J J J

1T
2(Ty +

Hp = H+J(g—1) o) (hTy cot(hTy) — 1) 2(0505+1—J?0?+1)+. . AO(JTY)
J

Singularity (phase transition?) at ATy = =«



Quantum spin chain: energy in the infinite time limit

0 1 2 3 4 5 6

Two different regimes. Is it a crossover or a transition?



Quantum spin chain (comparison with Magnus expansion)

Energy Entropy
12— I e
- |« L=10 $t" . N=10 : :.Zv:»f
1k |- L=11 330 N=11
|+ L=12 fi.ce 0.8F | + N=12
L=13 o . N=13
0.8 |« L=14 ,::"’ <« N=14
R ! 0.6f | = N=I3
0.6_ + L;17 :§f ) N;17
[ |-~ Hetf(l) 8 -~ Heff(1)
0.4 |- Heff(3) 1 04r |_ Heff(3) .
- | Hefi(S) . - Heff(5) i
0.2f |— Heff(o+5) — Heff(co+5) !
L e e 0.2 ;
() feeses st o T T T gad T e T
1 | | L | | A e Y P . . o
> T2 T 2a 26 28 3 W02 04 06 08 1

Clear evidence for the phase transition as a function of the driving period.

Very similar behavior in a classical chain.



Excess Energy divided by HalfBandwidth

Temporal simulations of a quantum spin chain.

Exact Time Evolution, NS=16

# number of cycles

[} 1
RV V1V

Fig. 7.14. Poincaré phase space sec-
tion for a harmonic wall oscillation with
M = 20. Iterations of several selected
trajectories.



Diagonal Entropy divided Smax=Log(N)

Entropy (log of number if occupied states)

Exact Time Evolution, NS=16

! ! ! ! |

T0=T1=0.6
24 T0=T1=1.0
T0=T1=1.2
T0=T1=1.4
TO=T1=1.6

ﬁ%& +# ¢+
w+ e + +

X

i 4 ﬁ %iﬁl
0.2 . 4¥ ++ + +++++ + T e ++ + + +++ + ek ++# 7
-+ ++ + L T4 s +
1* +++ ij gl 4 A i il ++:+ + ++ ++ ++++ ++ ** **1 & if +++ ++++
+ -+ s +++ Ing +4 +t ++ ++ T H e B
0 % I I I I I I I I I
0 100 200 300 400 500 600 700 800 900 1000

# number of cycles

Potential implications for driven dissipative systems



Application to non-equilibrium heat engines.
(with P. Mehta, 2013)

Standard heat engine: two reservoirs hot an cold

T Qu Qo T.

V T
v <Ne=1- —<
Qu

ASyg +ASc >0 = n=

More common heat engines: only one reservoir like atmosphere.



Ergodic and non-ergodic single reservoir engines

C
| _Energy 1] E
( i nergy
Thermalization T malizatiq
Equilibrate :ZIII::III] O Equilibrate e
with bath . 7 with bath 7
Tq
Perform T Perform [——
Work — Beeeerovenen] Work — feeenetiesnanes
I___I I=I
Ergodic engine Non-ergodic engine

What does second law tell us about maximum efficiency?



Application to heat engines (with P. Mehta).

Consider cyclic process. Small perturbation:
dE =TdS

Large perturbations. Can write inequalities

Equilibrium (1) Nonequilibrium Equilibrium (2)
o i ller Miom | o
° >l g o —|%e
o © O ® ‘Relaxaton : | @ @
T AT : D@
e T ey PSER g

R T R L L L L L LTI L R T L L L L LT T L

) TAASL < AEL,  II) TASY > AEY

The second inequality implies that the free energy can only
decrease during the relaxation; the first inequality is less known.



Extension of the fundamental relation to arbitrary processes.
Relative entropy (Kullback-Leibler Divergence).

Equilibrium (1) Nonequilibrium Equilibrium (2)
® .x() I ® " S X
® — — i | % °
®  Energy | | ©® 2T
® ST o ®  Relaxation i ® ®
PR Elnjectlon 2 : : =0
PER ¢ q.,E 2 POEY ¢

R T T U L L Lt LI C I eI I Tt I T IIITIITH CYTYTY T T T LTI LTI I LTI CCITTCTTTT I TITIITIII

Define microscopic heat AEL = Wi, + AQY, AEY = QY
and adiabatic work: Waa =Y (En(A2) — En(\))py,

T

Main results (also Deffner, Lutz, 2010). Proofs are straightforward calculus.
AQ" =TAS" + TS, (q|[p®) = TS, (0™ Ip'?),  S.(qllp) = Z ¢n 10g(qn /pn)

AQM =TASH —T8S,.(q|[p'?), AQY =-TASp = Sr(q|\p(2)) = ASA+ASp

All inequalities follow from non-negativity of the relative entropy.



Ergodic engines.

Assume that the enerqgy is first deposited without change of
external couplings. A" = A2, pll) = p(2)

Equilibrium (1) Nonequilibrium Equilibrium (2)
. .7\(1) ; Lo W) a A2
O ® :
© Tl e ® M=x—>1 " O
® ® E\?:c:tgign o : Relaxation : O ®
1 2 2) e
PIEITE o e B S

|||||||||||||||||||||||||||||||||||||||||||||||||||||||

(pW|p?) = TAST + TS, (q||pV)

|||||||||||||||||||||||||||||||||||||||||||||||||||||||

AQ = TAST + T8, (q|[p?) — TS,
TAST  TS,.(q/[p®») Maximum efficiency is given

WU’L(L:E _
G N T L= AQT — AQ! by the relative entropy
Ei+AQ! dsS E+AQ! dE T.
I _ haind | o 1 — 7 )
AS /Ei dE dFE = Nmax /Ei AQI ( T(E)) < Ne



Magnetic gas engine.

) ) 1) Flip spins with
1 probability 0<R<1.

T ¢+ = (1 — R)py + Rp,

q, = (1 - R)p, + Rpy
AQ =2BRN(py —p;) = 2BRN tanh|5B]

Ergodic engine: allow to thermalize with kinetic degrees of freedom and then
push the piston.

Non-ergodic engine: for inverted spin population (R>1/2) first perform the
work on B by rotating around x-axis ¢+ < ¢
and then use the residual energy to push the piston.



Ergodic engine: allow to thermalize with
v kinetic degrees of freedom and then push
the piston.

Non-ergodic engine: for inverted spin
v population (R>1/2) use macroscopic
magnetic energy to extract work

IT'N (g+ log(q+/py) + qp log(q, /p :
N (3 (T/X)Q 11og(q,/ U)) e = 1if R =1 (g1 = py)

1.0

o
(=)

o
()

Can beat maximum
equilibrium efficiency
by using non-ergodic
setup.

Efficiency M

o
)

0.0} F

Possible applications in
small systems?




