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Part	
  I.	
  Quantum	
  ergodicity	
  and	
  the	
  eigenstate	
  
theramiza5on	
  hypothesis	
  (ETH).	
  
	
  
	
  
	
  
Part	
  II.	
  Applica5ons	
  of	
  ETH	
  to	
  equilibrium	
  and	
  non-­‐
equilibrium	
  thermodynamics.	
  



Three	
  different	
  approaches	
  describing	
  isolated	
  systems	
  of	
  par5cles	
  
(systems	
  with	
  sta5onary	
  Hamiltonian).	
  

I. 	
  Microscopic	
  based	
  on	
  studying	
  long	
  5me	
  limit	
  of	
  Hamiltonian	
  dynamics	
  	
  

Works	
  for	
  small	
  few-­‐par5cle	
  systems.	
  Can	
  
be	
  prohibi5vely	
  (exponen5ally)	
  expensive	
  
in	
  chao5c	
  systems.	
  	
  

II. 	
  Sta5s5cal.	
  Start	
  from	
  equilibrium	
  sta5s5cal	
  descrip5on	
  (system	
  is	
  in	
  the	
  
most	
  random	
  state	
  sa5sfying	
  constraints).	
  Use	
  Hamiltonian	
  (Lindblad)	
  dynamics	
  
perturba5vely:	
  linear	
  response	
  (Kubo)	
  	
  

Chao5c	
  	
   Regular	
  

III. 	
  Mixed:	
  kine5c	
  equa5ons,	
  Master	
  equa5on,	
  Fokker	
  Planck	
  equa5on,…:	
  use	
  
sta5s5cal	
  informa5on	
  and	
  Hamiltonian	
  dynamics	
  to	
  construct	
  rate	
  equa5ons	
  for	
  
the	
  probability	
  distribu5on:	
  



What	
  is	
  the	
  fundamental	
  problem	
  with	
  the	
  first	
  microscopic	
  approach?	
  
Imagine	
  Universe	
  consis5ng	
  of	
  three	
  par5cles	
  (classical	
  or	
  quantum)	
  

Can	
  this	
  universe	
  describe	
  itself?	
  –	
  No.	
  There	
  is	
  no	
  place	
  to	
  
store	
  informa5on.	
  	
  

Increase	
  number	
  of	
  par5cles:	
  can	
  simulate	
  three	
  par5cle	
  
dynamics.	
  Complexity	
  of	
  the	
  total	
  system	
  grows	
  exponen5ally,	
  
much	
  faster	
  than	
  its	
  ability	
  to	
  simulate	
  itself.	
  

It	
  is	
  fundamentally	
  impossible	
  to	
  get	
  a	
  complete	
  microsopic	
  
descrip5on	
  of	
  large	
  interac5ng	
  systems.	
  	
  



How	
  do	
  we	
  connect	
  these	
  three	
  approaches?	
  

Classical	
  ergodicity:	
  over	
  long	
  periods	
  of	
  5me,	
  the	
  5me	
  spent	
  by	
  an	
  ensemble	
  of	
  
par5cles	
  in	
  some	
  region	
  of	
  the	
  phase	
  space	
  the	
  same	
  energy	
  (and	
  other	
  conserved	
  
integrals)	
  is	
  propor5onal	
  to	
  the	
  volume	
  of	
  this	
  region.	
  
	
  
In	
  simple	
  words	
  classical	
  ergodicity	
  is	
  delocaliza5on	
  in	
  phase	
  space	
  

Most	
  interac5ng	
  many-­‐par5cle	
  systems	
  are	
  chao5c	
  even	
  with	
  
regular	
  interac5ons	
  (no	
  disorder)	
  	
  

Intergrable	
  (non-­‐ergodic).	
  Number	
  of	
  
conserved	
  quan55es	
  =	
  number	
  of	
  
degrees	
  of	
  freedom	
  

Chao5c	
  (ergodic)	
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as an effective thermal bath? And if this is not possible,
are there some observable effects on the system dynam-
ics? While these questions are definitely connected to
quantum ergodicity (Goldstein et al., 2010), a topic with
a long history dating back to the early days of quantum
mechanics (Deutsch, 1991; Mazur, 1968; von Neumann,
1929; Pauli and Fierz, 1937; Peres, 1984; Srednicki, 1994;
Suzuki, 1971), the past few years have brought a great
deal of progress in the context of closed many-body sys-
tems. The main motivation came from recent experi-
ments on low dimensional cold atomic gases described
in some detail in Sec. IV in this Colloquium (Greiner
et al., 2002b; Kinoshita et al., 2006). The experimental
availability of essentially closed (on the time scales of ex-
periments) strongly correlated systems together with the
awareness of the conceptual importance of these issues
in a number of areas (e.g. transport problems, many-
body localization, integrable and non-integrable dynam-
ics) have stimulated a lot of interest on quantum ther-
malization. Below we will give a synthetic view on a
number of recent important developments on this sub-
ject, starting with the discussions of the general concepts
of ergodicity and thermalization, and then moving to the
discussion of many-body systems and integrability.

A. Quantum and classical ergodicity.

While the idea of ergodicity is well defined in classical
mechanics, the concept of quantum ergodicity is some-
what less precise and intuitive. Classically, an interacting
system of N particles in d dimensions is described by a
point X in a (2 d N)-dimensional phase space. The intu-
itive content of the word ”ergodic”, i.e. the equivalence of
phase space and time averages, can be then formalized by
requiring that if we select an initial condition X0 having
initial energy H(X0) = E, where H is the Hamiltonian
of the system, then

δ(X −X(t)) ≡ lim
T→∞

1

T

� T

0
dt δ(X −X(t)) = ρmc(E),

(13)
where ρmc(E) is the microcanonical density of the system
on the hyper-surface of the phase space of constant en-
ergy E, andX(t) is the phase space trajectory with initial
conditionX0. Of course if this condition is satisfied by all
trajectories, then it is also true for every observable. We
immediately see that in order to have ergodicity, the dy-
namics cannot be arbitrary: the trajectories X(t) have
to cover uniformly the energy hyper-surface for almost
every initial condition X0.

The most obvious quantum generalization of this no-
tion of ergodicity is arduous (von Neumann, 1929). Let
us first of all define a quantum microcanonical density
matrix: given a Hamiltonian with eigenstates | Ψα� of
energies Eα, a viable definition of the microcanonical
ensemble is obtained by coarse graining the spectrum
on energy shells of width δE, sufficiently big to con-
tain many states but small on macroscopic scales. De-

noting by H(E) the set of eigenstates of H having en-
ergies between E and E + δE, we define ρ̂mc(E) =�

α∈H(E) 1/N | Ψα��Ψα |, where N is the total num-
ber of states in the micro-canonical shell. Let us now
ask the most obvious question: given a generic initial
condition made out of states in a microcanonical shell,
| Ψ0� =

�
α∈H(E) cα | Ψα�, is the long time average

of the density matrix of the system given by the micro-
canonical density matrix? The answer to this question
for a quantum system is, unlike in the classical case, al-
most always no, as J. von Neumann realized already in
1929 (von Neumann, 1929). More precisely, if we assume
the eigenstates of the system not to be degenerate, the
time average is

| Ψ(t)��Ψ(t) | =
�

α

| cα |
2
| Ψα��Ψα |= ρ̂diag, (14)

where | Ψ(t)� is the time evolved of | Ψ0�. This object is
known in the modern literature as the diagonal ensem-
ble (Rigol, 2009; Rigol et al., 2008, 2007). Notice now
that the most obvious definition of ergodicity, i.e. the
requirement ρmc = ρdiag, implies that | cα |2= 1/N for
every α, a condition that can be satisfied only for a very
special class of states. Quantum ergodicity in the strict
sense above is therefore almost never realizable (Gold-
stein et al., 2010; von Neumann, 1929).
Our common sense and expectations, which very fre-

quently fail miserably in the quantum realm, make us
nevertheless believe that, in contrast with the arguments
above, macroscopic many-body systems should behave
ergodically almost always, unless some very special con-
ditions are met (e.g. integrability). The key to under-
stand ergodicity in therefore to look at quantum systems
in a different way, shifting the focus on observables rather
than on the states themselves (Mazur, 1968; von Neu-
mann, 1929; Peres, 1984). Given a set of macroscopic
observables {Mβ} a natural expectation from an ergodic
system would be for every | Ψ0� on a microcanonical shell
H(E)

�Ψ(t) | Mβ(t) | Ψ(t)� →t→+∞ Tr[Mβ ρ̂mc] ≡ �Mβ�mc,(15)

i.e. that looking at macroscopic observables long after the
time evolution started makes the system appear ergodic
for every initial condition we may choose in H(E). One
needs a certain care in defining the infinite time limit
here, since literally speaking it does not exist in finite
systems because of quantum revivals. A proper way to
understand this limit is to require that Eq. (15) holds in
the long time limit at almost all times. Mathematically
this means that the mean square difference between the
LHS and RHS of Eq. (15) averaged over long times is
vanishingly small for large systems (Reimann, 2008). To
avoid dealing with these issues ergodicity can be defined
using the time average, i.e. requiring that

�Ψ(t) | Mβ(t) | Ψ(t)� = Tr[Mβ ρ̂diag] = �Mβ�mc. (16)

Notice that if the expectation value of Mβ relaxes to a
well defined state in the sense described above, this state



Famous	
  counter	
  example:	
  Fermi-­‐Pasta	
  Ulam	
  problem.	
  First	
  numerical	
  
study	
  of	
  ergodicity	
  (thermaliza5on)	
  in	
  an	
  interac5ng	
  many-­‐body	
  system.	
  

.	
  	
  	
  .	
  	
  	
  .	
  	
  	
  .	
  	
  
1	
   2	
   3	
   n-­‐2	
   n-­‐1	
   n	
  

Slow	
  variables	
  

1.  Excite	
  single	
  normal	
  mode	
  
2.  Follow	
  dynamics	
  of	
  energies	
  	
  
3.  Eventual	
  energy	
  equipar55on	
  

Expecta5on:	
  

Found:	
  
1.  Quasiperiodic	
  mo5on	
  
2.  Energy	
  localiza5on	
  in	
  q-­‐space	
  
3.  Revivals	
  of	
  ini5al	
  state	
  
4.  No	
  thermaliza5on!	
  



Onset	
  of	
  chaos	
  and	
  thermaliza5on	
  	
  in	
  classical	
  systems	
  

Integrable	
  system	
  of	
  N	
  degrees	
  of	
  freedom	
  has	
  N	
  integrals	
  of	
  mo5on	
  

N	
  constraints	
  	
  in	
  2N	
  dimensional	
  phase	
  space:	
  

corresponds	
  to	
  the	
  hyper-­‐surface	
  in	
  phase	
  space	
  each	
  	
  

Trajectories	
  are	
  confined	
  to	
  intersec(on	
  of	
  all	
  these	
  surfaces	
  forming	
  	
  	
  

N-­‐dimensional	
  invariant	
  tori.	
  	
  

KAM	
  theorem:	
  	
  weak	
  perturba5on	
  
preserves	
  `almost	
  all’	
  tori	
  under	
  
the	
  condi5on:	
  

Thermaliza5on	
  (chaos)	
  occurs	
  though	
  destruc5on	
  of	
  KAM	
  tori	
  



Similar	
  scenario	
  for	
  the	
  FPU	
  problem	
  
F.	
  M.	
  Izrailev	
  and	
  B.	
  V.	
  Chirikov,	
  Soviet	
  Physics	
  Doklady	
  11	
  ,1	
  (1966)	
  

Parametric	
  resonance	
  width	
  matches	
  resonance	
  in	
  1st	
  order	
  perturba5on	
  theory:	
  

Spectral	
  Entropy:	
  (Livi	
  et.	
  al,	
  PRA	
  31,	
  2,	
  1985)	
  

Effec5ve	
  `Reynolds’	
  number	
  

Strong	
  stochas5city	
  threshold:	
  

Spectral	
  entropy:	
  

where	
  



Setup:	
  isolated	
  quantum	
  systems.	
  Arbitrary	
  ini5al	
  state.	
  
Hamiltonian	
  dynamics.	
  

Easiest	
  interpreta5on	
  of	
  density	
  matrix:	
  start	
  from	
  some	
  ensemble	
  of	
  pure	
  states	
  

Look	
  into	
  expecta5on	
  value	
  of	
  some	
  observable	
  O	
  at	
  5me	
  t.	
  

In	
  order	
  to	
  measure	
  the	
  expecta5on	
  value	
  need	
  to	
  perform	
  many	
  measurements	
  
unless	
  ψ(t)	
  is	
  an	
  eigenstate	
  of	
  O.	
  	
  
	
  
Each	
  measurement	
  corresponds	
  to	
  a	
  new	
  wave	
  func5on	
  due	
  to	
  sta5s5cal	
  
fluctua5ons.	
  So	
  unless	
  we	
  can	
  prepare	
  iden5cal	
  states	
  we	
  can	
  only	
  measure	
  

If	
  	
  Hamiltonian	
  is	
  fluctua5ng	
  need	
  to	
  average	
  over	
  the	
  Hamiltonians	
  -­‐>	
  non-­‐unitary	
  evolu5on.	
  	
  



Ergodicity	
  in	
  Quantum	
  Systems	
  
Classical	
  system:	
  5me	
  average	
  of	
  the	
  probability	
  distribu5on	
  becomes	
  equivalent	
  to	
  
the	
  microcanonical	
  ensemble.	
  Implies	
  thermaliza5on	
  of	
  all	
  observables.	
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as an effective thermal bath? And if this is not possible,
are there some observable effects on the system dynam-
ics? While these questions are definitely connected to
quantum ergodicity (Goldstein et al., 2010), a topic with
a long history dating back to the early days of quantum
mechanics (Deutsch, 1991; Mazur, 1968; von Neumann,
1929; Pauli and Fierz, 1937; Peres, 1984; Srednicki, 1994;
Suzuki, 1971), the past few years have brought a great
deal of progress in the context of closed many-body sys-
tems. The main motivation came from recent experi-
ments on low dimensional cold atomic gases described
in some detail in Sec. IV in this Colloquium (Greiner
et al., 2002b; Kinoshita et al., 2006). The experimental
availability of essentially closed (on the time scales of ex-
periments) strongly correlated systems together with the
awareness of the conceptual importance of these issues
in a number of areas (e.g. transport problems, many-
body localization, integrable and non-integrable dynam-
ics) have stimulated a lot of interest on quantum ther-
malization. Below we will give a synthetic view on a
number of recent important developments on this sub-
ject, starting with the discussions of the general concepts
of ergodicity and thermalization, and then moving to the
discussion of many-body systems and integrability.

A. Quantum and classical ergodicity.

While the idea of ergodicity is well defined in classical
mechanics, the concept of quantum ergodicity is some-
what less precise and intuitive. Classically, an interacting
system of N particles in d dimensions is described by a
point X in a (2 d N)-dimensional phase space. The intu-
itive content of the word ”ergodic”, i.e. the equivalence of
phase space and time averages, can be then formalized by
requiring that if we select an initial condition X0 having
initial energy H(X0) = E, where H is the Hamiltonian
of the system, then

δ(X −X(t)) ≡ lim
T→∞

1

T

� T

0
dt δ(X −X(t)) = ρmc(E),

(13)
where ρmc(E) is the microcanonical density of the system
on the hyper-surface of the phase space of constant en-
ergy E, andX(t) is the phase space trajectory with initial
conditionX0. Of course if this condition is satisfied by all
trajectories, then it is also true for every observable. We
immediately see that in order to have ergodicity, the dy-
namics cannot be arbitrary: the trajectories X(t) have
to cover uniformly the energy hyper-surface for almost
every initial condition X0.

The most obvious quantum generalization of this no-
tion of ergodicity is arduous (von Neumann, 1929). Let
us first of all define a quantum microcanonical density
matrix: given a Hamiltonian with eigenstates | Ψα� of
energies Eα, a viable definition of the microcanonical
ensemble is obtained by coarse graining the spectrum
on energy shells of width δE, sufficiently big to con-
tain many states but small on macroscopic scales. De-

noting by H(E) the set of eigenstates of H having en-
ergies between E and E + δE, we define ρ̂mc(E) =�

α∈H(E) 1/N | Ψα��Ψα |, where N is the total num-
ber of states in the micro-canonical shell. Let us now
ask the most obvious question: given a generic initial
condition made out of states in a microcanonical shell,
| Ψ0� =

�
α∈H(E) cα | Ψα�, is the long time average

of the density matrix of the system given by the micro-
canonical density matrix? The answer to this question
for a quantum system is, unlike in the classical case, al-
most always no, as J. von Neumann realized already in
1929 (von Neumann, 1929). More precisely, if we assume
the eigenstates of the system not to be degenerate, the
time average is

| Ψ(t)��Ψ(t) | =
�

α

| cα |
2
| Ψα��Ψα |= ρ̂diag, (14)

where | Ψ(t)� is the time evolved of | Ψ0�. This object is
known in the modern literature as the diagonal ensem-
ble (Rigol, 2009; Rigol et al., 2008, 2007). Notice now
that the most obvious definition of ergodicity, i.e. the
requirement ρmc = ρdiag, implies that | cα |2= 1/N for
every α, a condition that can be satisfied only for a very
special class of states. Quantum ergodicity in the strict
sense above is therefore almost never realizable (Gold-
stein et al., 2010; von Neumann, 1929).
Our common sense and expectations, which very fre-

quently fail miserably in the quantum realm, make us
nevertheless believe that, in contrast with the arguments
above, macroscopic many-body systems should behave
ergodically almost always, unless some very special con-
ditions are met (e.g. integrability). The key to under-
stand ergodicity in therefore to look at quantum systems
in a different way, shifting the focus on observables rather
than on the states themselves (Mazur, 1968; von Neu-
mann, 1929; Peres, 1984). Given a set of macroscopic
observables {Mβ} a natural expectation from an ergodic
system would be for every | Ψ0� on a microcanonical shell
H(E)

�Ψ(t) | Mβ(t) | Ψ(t)� →t→+∞ Tr[Mβ ρ̂mc] ≡ �Mβ�mc,(15)

i.e. that looking at macroscopic observables long after the
time evolution started makes the system appear ergodic
for every initial condition we may choose in H(E). One
needs a certain care in defining the infinite time limit
here, since literally speaking it does not exist in finite
systems because of quantum revivals. A proper way to
understand this limit is to require that Eq. (15) holds in
the long time limit at almost all times. Mathematically
this means that the mean square difference between the
LHS and RHS of Eq. (15) averaged over long times is
vanishingly small for large systems (Reimann, 2008). To
avoid dealing with these issues ergodicity can be defined
using the time average, i.e. requiring that

�Ψ(t) | Mβ(t) | Ψ(t)� = Tr[Mβ ρ̂diag] = �Mβ�mc. (16)

Notice that if the expectation value of Mβ relaxes to a
well defined state in the sense described above, this state

Quantum	
  systems	
  (quantum	
  language?)	
  –	
  no	
  relaxa5on	
  of	
  the	
  density	
  matrix	
  to	
  the	
  
microcanonical	
  ensemble	
  (von	
  Neumann,	
  1929).	
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as an effective thermal bath? And if this is not possible,
are there some observable effects on the system dynam-
ics? While these questions are definitely connected to
quantum ergodicity (Goldstein et al., 2010), a topic with
a long history dating back to the early days of quantum
mechanics (Deutsch, 1991; Mazur, 1968; von Neumann,
1929; Pauli and Fierz, 1937; Peres, 1984; Srednicki, 1994;
Suzuki, 1971), the past few years have brought a great
deal of progress in the context of closed many-body sys-
tems. The main motivation came from recent experi-
ments on low dimensional cold atomic gases described
in some detail in Sec. IV in this Colloquium (Greiner
et al., 2002b; Kinoshita et al., 2006). The experimental
availability of essentially closed (on the time scales of ex-
periments) strongly correlated systems together with the
awareness of the conceptual importance of these issues
in a number of areas (e.g. transport problems, many-
body localization, integrable and non-integrable dynam-
ics) have stimulated a lot of interest on quantum ther-
malization. Below we will give a synthetic view on a
number of recent important developments on this sub-
ject, starting with the discussions of the general concepts
of ergodicity and thermalization, and then moving to the
discussion of many-body systems and integrability.

A. Quantum and classical ergodicity.

While the idea of ergodicity is well defined in classical
mechanics, the concept of quantum ergodicity is some-
what less precise and intuitive. Classically, an interacting
system of N particles in d dimensions is described by a
point X in a (2 d N)-dimensional phase space. The intu-
itive content of the word ”ergodic”, i.e. the equivalence of
phase space and time averages, can be then formalized by
requiring that if we select an initial condition X0 having
initial energy H(X0) = E, where H is the Hamiltonian
of the system, then

δ(X −X(t)) ≡ lim
T→∞

1

T

� T

0
dt δ(X −X(t)) = ρmc(E),

(13)
where ρmc(E) is the microcanonical density of the system
on the hyper-surface of the phase space of constant en-
ergy E, andX(t) is the phase space trajectory with initial
conditionX0. Of course if this condition is satisfied by all
trajectories, then it is also true for every observable. We
immediately see that in order to have ergodicity, the dy-
namics cannot be arbitrary: the trajectories X(t) have
to cover uniformly the energy hyper-surface for almost
every initial condition X0.

The most obvious quantum generalization of this no-
tion of ergodicity is arduous (von Neumann, 1929). Let
us first of all define a quantum microcanonical density
matrix: given a Hamiltonian with eigenstates | Ψα� of
energies Eα, a viable definition of the microcanonical
ensemble is obtained by coarse graining the spectrum
on energy shells of width δE, sufficiently big to con-
tain many states but small on macroscopic scales. De-

noting by H(E) the set of eigenstates of H having en-
ergies between E and E + δE, we define ρ̂mc(E) =�

α∈H(E) 1/N | Ψα��Ψα |, where N is the total num-
ber of states in the micro-canonical shell. Let us now
ask the most obvious question: given a generic initial
condition made out of states in a microcanonical shell,
| Ψ0� =

�
α∈H(E) cα | Ψα�, is the long time average

of the density matrix of the system given by the micro-
canonical density matrix? The answer to this question
for a quantum system is, unlike in the classical case, al-
most always no, as J. von Neumann realized already in
1929 (von Neumann, 1929). More precisely, if we assume
the eigenstates of the system not to be degenerate, the
time average is

| Ψ(t)��Ψ(t) | =
�

α

| cα |
2
| Ψα��Ψα |= ρ̂diag, (14)

where | Ψ(t)� is the time evolved of | Ψ0�. This object is
known in the modern literature as the diagonal ensem-
ble (Rigol, 2009; Rigol et al., 2008, 2007). Notice now
that the most obvious definition of ergodicity, i.e. the
requirement ρmc = ρdiag, implies that | cα |2= 1/N for
every α, a condition that can be satisfied only for a very
special class of states. Quantum ergodicity in the strict
sense above is therefore almost never realizable (Gold-
stein et al., 2010; von Neumann, 1929).
Our common sense and expectations, which very fre-

quently fail miserably in the quantum realm, make us
nevertheless believe that, in contrast with the arguments
above, macroscopic many-body systems should behave
ergodically almost always, unless some very special con-
ditions are met (e.g. integrability). The key to under-
stand ergodicity in therefore to look at quantum systems
in a different way, shifting the focus on observables rather
than on the states themselves (Mazur, 1968; von Neu-
mann, 1929; Peres, 1984). Given a set of macroscopic
observables {Mβ} a natural expectation from an ergodic
system would be for every | Ψ0� on a microcanonical shell
H(E)

�Ψ(t) | Mβ(t) | Ψ(t)� →t→+∞ Tr[Mβ ρ̂mc] ≡ �Mβ�mc,(15)

i.e. that looking at macroscopic observables long after the
time evolution started makes the system appear ergodic
for every initial condition we may choose in H(E). One
needs a certain care in defining the infinite time limit
here, since literally speaking it does not exist in finite
systems because of quantum revivals. A proper way to
understand this limit is to require that Eq. (15) holds in
the long time limit at almost all times. Mathematically
this means that the mean square difference between the
LHS and RHS of Eq. (15) averaged over long times is
vanishingly small for large systems (Reimann, 2008). To
avoid dealing with these issues ergodicity can be defined
using the time average, i.e. requiring that

�Ψ(t) | Mβ(t) | Ψ(t)� = Tr[Mβ ρ̂diag] = �Mβ�mc. (16)

Notice that if the expectation value of Mβ relaxes to a
well defined state in the sense described above, this state

Thermaliza5on	
  must	
  be	
  built	
  in	
  to	
  the	
  structure	
  of	
  Eigenstates	
  and	
  revealed	
  through	
  
observables	
  (von	
  Neuman,	
  1929;	
  Mazur,	
  1968;	
  Sredniki,	
  1994;	
  Rigol	
  et.	
  al.	
  2008,	
  Riemann	
  
2008,	
  …)	
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as an effective thermal bath? And if this is not possible,
are there some observable effects on the system dynam-
ics? While these questions are definitely connected to
quantum ergodicity (Goldstein et al., 2010), a topic with
a long history dating back to the early days of quantum
mechanics (Deutsch, 1991; Mazur, 1968; von Neumann,
1929; Pauli and Fierz, 1937; Peres, 1984; Srednicki, 1994;
Suzuki, 1971), the past few years have brought a great
deal of progress in the context of closed many-body sys-
tems. The main motivation came from recent experi-
ments on low dimensional cold atomic gases described
in some detail in Sec. IV in this Colloquium (Greiner
et al., 2002b; Kinoshita et al., 2006). The experimental
availability of essentially closed (on the time scales of ex-
periments) strongly correlated systems together with the
awareness of the conceptual importance of these issues
in a number of areas (e.g. transport problems, many-
body localization, integrable and non-integrable dynam-
ics) have stimulated a lot of interest on quantum ther-
malization. Below we will give a synthetic view on a
number of recent important developments on this sub-
ject, starting with the discussions of the general concepts
of ergodicity and thermalization, and then moving to the
discussion of many-body systems and integrability.

A. Quantum and classical ergodicity.

While the idea of ergodicity is well defined in classical
mechanics, the concept of quantum ergodicity is some-
what less precise and intuitive. Classically, an interacting
system of N particles in d dimensions is described by a
point X in a (2 d N)-dimensional phase space. The intu-
itive content of the word ”ergodic”, i.e. the equivalence of
phase space and time averages, can be then formalized by
requiring that if we select an initial condition X0 having
initial energy H(X0) = E, where H is the Hamiltonian
of the system, then

δ(X −X(t)) ≡ lim
T→∞

1

T

� T

0
dt δ(X −X(t)) = ρmc(E),

(13)
where ρmc(E) is the microcanonical density of the system
on the hyper-surface of the phase space of constant en-
ergy E, andX(t) is the phase space trajectory with initial
conditionX0. Of course if this condition is satisfied by all
trajectories, then it is also true for every observable. We
immediately see that in order to have ergodicity, the dy-
namics cannot be arbitrary: the trajectories X(t) have
to cover uniformly the energy hyper-surface for almost
every initial condition X0.

The most obvious quantum generalization of this no-
tion of ergodicity is arduous (von Neumann, 1929). Let
us first of all define a quantum microcanonical density
matrix: given a Hamiltonian with eigenstates | Ψα� of
energies Eα, a viable definition of the microcanonical
ensemble is obtained by coarse graining the spectrum
on energy shells of width δE, sufficiently big to con-
tain many states but small on macroscopic scales. De-

noting by H(E) the set of eigenstates of H having en-
ergies between E and E + δE, we define ρ̂mc(E) =�

α∈H(E) 1/N | Ψα��Ψα |, where N is the total num-
ber of states in the micro-canonical shell. Let us now
ask the most obvious question: given a generic initial
condition made out of states in a microcanonical shell,
| Ψ0� =

�
α∈H(E) cα | Ψα�, is the long time average

of the density matrix of the system given by the micro-
canonical density matrix? The answer to this question
for a quantum system is, unlike in the classical case, al-
most always no, as J. von Neumann realized already in
1929 (von Neumann, 1929). More precisely, if we assume
the eigenstates of the system not to be degenerate, the
time average is

| Ψ(t)��Ψ(t) | =
�

α

| cα |
2
| Ψα��Ψα |= ρ̂diag, (14)

where | Ψ(t)� is the time evolved of | Ψ0�. This object is
known in the modern literature as the diagonal ensem-
ble (Rigol, 2009; Rigol et al., 2008, 2007). Notice now
that the most obvious definition of ergodicity, i.e. the
requirement ρmc = ρdiag, implies that | cα |2= 1/N for
every α, a condition that can be satisfied only for a very
special class of states. Quantum ergodicity in the strict
sense above is therefore almost never realizable (Gold-
stein et al., 2010; von Neumann, 1929).
Our common sense and expectations, which very fre-

quently fail miserably in the quantum realm, make us
nevertheless believe that, in contrast with the arguments
above, macroscopic many-body systems should behave
ergodically almost always, unless some very special con-
ditions are met (e.g. integrability). The key to under-
stand ergodicity in therefore to look at quantum systems
in a different way, shifting the focus on observables rather
than on the states themselves (Mazur, 1968; von Neu-
mann, 1929; Peres, 1984). Given a set of macroscopic
observables {Mβ} a natural expectation from an ergodic
system would be for every | Ψ0� on a microcanonical shell
H(E)

�Ψ(t) | Mβ(t) | Ψ(t)� →t→+∞ Tr[Mβ ρ̂mc] ≡ �Mβ�mc,(15)

i.e. that looking at macroscopic observables long after the
time evolution started makes the system appear ergodic
for every initial condition we may choose in H(E). One
needs a certain care in defining the infinite time limit
here, since literally speaking it does not exist in finite
systems because of quantum revivals. A proper way to
understand this limit is to require that Eq. (15) holds in
the long time limit at almost all times. Mathematically
this means that the mean square difference between the
LHS and RHS of Eq. (15) averaged over long times is
vanishingly small for large systems (Reimann, 2008). To
avoid dealing with these issues ergodicity can be defined
using the time average, i.e. requiring that

�Ψ(t) | Mβ(t) | Ψ(t)� = Tr[Mβ ρ̂diag] = �Mβ�mc. (16)

Notice that if the expectation value of Mβ relaxes to a
well defined state in the sense described above, this state

The	
  limit	
  is	
  understood	
  as	
  at	
  long	
  5mes	
  at	
  almost	
  all	
  5mes.	
  In	
  a	
  way	
  in	
  quantum	
  language	
  
thermaliza5on	
  is	
  prebuilt	
  in	
  the	
  system.	
  Time	
  evolu5on	
  is	
  just	
  dephasing.	
  	
  



Berry	
  conjecture,	
  semiclassical	
  limit	
  (M.V.	
  Berry,	
  1977)	
  

In many problems of physical interest, it is necessary to abandon a search for the exact

solution, and to turn instead to a statistical approach. This involves mentally replacing the

answer which we seek, with an ensemble of possibilities, then adopting the attitude that each

member of the ensemble is an equally likely candidate for the true solution. The choice of

ensemble then becomes centrally important, and here information theory provides a reliable

guiding principle. The principle instructs us to choose the least biased ensemble (the one

which minimizes information content), subject to some relevant constraints. A well-known

illustration arises in classical statistical mechanics: the least biased distribution in phase

space, subject to a fixed normalization and average energy, is the canonical ensemble of Gibbs

[1]. Another example appears in random matrix theory: by minimizing the information

content of an ensemble of matrices, subject to various simple constraints, one obtains the

standard random matrix ensembles [2]. The purpose of this paper is to point out that

Berry’s conjecture [3] regarding the energy eigenstates of chaotic systems, also emerges

naturally from this principle of least bias.

Berry’s conjecture makes two assertions regarding the high-lying energy eigenstates ψE of

quantal systems whose classical counterparts are chaotic and ergodic1: (1) Such eigenstates

appear to be random Gaussian functions ψ(x) on configuration space, (2) with two-point

correlations given by

ψ∗

(

x −
s

2

)

ψ

(

x +
s

2

)

=
1

Σ

∫

dp eip·s/h̄δ[E − H(x,p)] (1)

Here, E is the energy of the eigenstate, H(x,p) is the classical Hamiltonian describing

the system, and Σ ≡
∫

dx
∫

dp δ[E −H(x,p)]; if the Hamiltonian is time-reversal-invariant,

then ψ(x) is a real random Gaussian function, otherwise ψ(x) is a complex random Gaussian

function. Berry’s conjecture thus uniquely specifies, for a given energy E, an ensemble ME

of wavefunctions ψ(x) (i.e. ME is the Gaussian ensemble with two-point correlations given

1 By “chaotic and ergodic”, we mean that all trajectories, except a set of measure zero, chaotically

and ergodically explore the surface of constant energy in phase space.

2

Average	
  is	
  taken	
  over	
  the	
  energy	
  shall	
  vanishing	
  in	
  the	
  limit	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  but	
  containing	
  many	
  
states.	
  Equivalently	
  

� → 0

by Eq.1), and states that an eigenstate ψE at energy E will look as if it were chosen randomly

from this ensemble.

The correlations given by Eq.1 are motivated by considering the Wigner function [4]

corresponding to the eigenstate ψE ,

WE(x,p) ≡ (2πh̄)−D
∫

dsψ∗

E

(

x −
s

2

)

ψE

(

x +
s

2

)

e−ip·s/h̄, (2)

where D is the dimensionality of the system. For high-lying states ψE , this Wigner func-

tion, after local smoothing in the x variable, is expected to converge to the microcanonical

distribution in phase space [3,5–7]:

W sm

E (x,p) ≈
1

Σ
δ[E − H(x,p)]. (3)

By taking the Fourier transform of both sides of Eq.1, and then smoothing locally in the

x-variable2 rather than averaging over the ensemble ME, it is straightforward to show that

the correlations given by Eq.1 produce the desired result, Eq.3.

The assertion that ψE(x) is a Gaussian random function is most easily motivated by

viewing ψE(x), locally, as a superposition of de Broglie waves with random phases [3].

When the number of these waves becomes infinite, the central limit theorem tells us that

ψE(x) will look like a Gaussian random function.

We can interpret Berry’s conjecture as making a specific prediction about the eigenstate

ψE : once we compute ψE(x) by solving the Schrödinger equation, we can subject it to

various tests (see e.g. Ref. [8]), and we will observe that, yes, ψE(x) really behaves as a

Gaussian random function with two-point correlations given by Eq.1. Alternatively, we can

interpret Berry’s conjecture as providing us with the appropriate ensemble of wavefunctions

from which to choose a surrogate for the true eigenstate ψE , if we cannot (or do not care

2This smoothing is performed on a scale which is large compared with the local correlation length

of ψ(x), but small compared with a classically relevant distance scale (see e.g. equations 3.29 and

3.30 of Ref. [7]). This allows us to replace ensemble averaging with local smoothing.
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limit the momentum distribution function is

�f(p)� =

�
dp2dp3 . . . �| Ψα(p,p2, . . . ) |2�

=
e−

p2

2mkT

(2πmkT )3/2
= fMB(p), (27)

where the temperature is set by the equipartition law as
Eα = 3/2NkT . Notice that this is expected to happen
for every eigenstate of energy close to Eα, as required by
the ETH. Hence thermal behavior will follow for every
initial condition sufficiently narrow in energy.

For generic many-body systems, such as Hubbard-like
models and spin chains, the close relation between break-
ing of integrability and quantum chaotic behavior is a
known fact (Poilblanc et al., 1993). In particular, finite
size many-body integrable systems are characterized by
the Poisson spectral statistics while the gradual breaking
of integrability by a perturbation leads to a crossover to
the Wigner-Dyson statistics. The latter is typically asso-
ciated, in mesoscopic systems or billiards, with diffusive
behavior and can be taken as a signature of quantum
chaos (Imry, 1997). In many-body disordered systems
the emergence of the Wigner-Dyson statistics was ar-
gued to be an indicator of the transition between metallic
(ergodic) and insulating (non-ergodic) phases (Mukerjee
et al., 2006; Oganesyan and Huse, 2007). Inspired by
these close analogies, recent studies gave a boost to our
understanding of the crossover from non-ergodic to ther-
mal behavior as integrability is gradually broken and of
the origin of ergodicity/thermalization in systems suffi-
ciently far from integrability (Biroli et al., 2010; Kollath
et al., 2007; Manmana et al., 2007; Rigol, 2009; Rigol
et al., 2008). In particular, a careful study of the asymp-
totics of density-density correlators and momentum dis-
tribution function for hard-core bosons in 1d showed that
the transition from non-thermal to thermal behavior in
finite size systems takes the form of a crossover con-
trolled by the strength of the integrability breaking per-
turbation and the system size (Rigol, 2009). Moreover
there is a universality in state to state fluctuations of
simple observables in this crossover regime (Neuenhahn
and Marquardt, 2010), which goes hand-by-hand with
an analogous transition from Poisson to Wigner-Dyson
level statistics (Rigol and Santos, 2010; Santos and Rigol,
2010a). When integrability is broken by sufficiently
strong perturbation ergodic behavior emerges (Neuen-
hahn and Marquardt, 2010; Rigol, 2009; Rigol and San-
tos, 2010), which in turn appears to be related to the
validity of the ETH (Rigol et al., 2008). In this con-
text, the anomalous, non-ergodic behavior of integrable
models has been reinterpreted as originating from wide
fluctuations of the expectation value of natural observ-
ables around the microcanonical average (Biroli et al.,
2010).

All these statements apply to the asymptotic (or time
averaged) state. So far the relaxation in time, in par-
ticular in the thermodynamic limit, has received much

less attention. In a series of studies of relaxation in
fermionic Hubbard models subject to quenches in the
interactions strength it has been argued that for suffi-
ciently rapid quenches relaxation towards thermal equi-
librium occurs through a pre-thermalized phase (Moeckel
and Kehrein, 2008, 2010). Similar two step dynamics oc-
curs in quenches of coupled superfluids where initial fast
“light cone” dynamics leads to a pre-thermalized steady
state, which then slowly decays to the thermal equilib-
rium through the vortex-antivortex unbinding (Mathey
and Polkovnikov, 2010). In Ref. (Burkov et al., 2007) a
very unusual sub-exponential in time decay of correlation
functions was predicted and later observed experimen-
tally (Hofferberth et al., 2007) for relaxational dynamics
of decoupled 1d bosonic systems.

D. Outlook and open problems: quantum KAM threshold

as a many-body delocalization transition ?

The arguments above clearly pointed to the connection
between thermalization in strongly correlated systems
and in chaotic billiards. This analogy however , rather
than being the end of a quest, opens an entire new kind
of questions, which are a current focus of both theoreti-
cal and experimental research. In particular, we do know
that in a number of models of strongly correlated parti-
cles eigenstate thermalization is at the root of thermal
behavior (Rigol et al., 2008). What is the cause of eigen-
state thermalization in a generic many-body system, i.e.
the analogue of the diffusive eigenstates in phase space
of Berry’s conjecture ? And most importantly, while in a
finite size system the transition from non-ergodic to er-
godic behavior takes the form of a crossover, what hap-
pens in the thermodynamic limit ? Is the transition from
ergodic to non-ergodic behavior still a crossover or it is
sharp (a quantum KAM threshold ) ?
At present, research on these questions has just

started. An interesting idea that has recently emerged is
that the study of the transition from integrability to non-
integrability in quantum many-body systems is deeply
connected to another important problem at the frontier
of condensed matter physics: the concept of many-body
localization (Altshuler et al., 1997; Basko et al., 2006),
which extends the original work of Anderson on single-
particle localization (Anderson, 1958). We note that re-
lated ideas were put forward in studying energy transfer
in interacting harmonic systems in the context of large or-
ganic molecules (Leitner and Wolynes, 1996; Logan and
Wolynes, 1990). More specifically, it has been noticed
that a transition from localized to delocalized states ei-
ther in real space (Pal and Huse, 2010) or more gener-
ally in quasi-particle space (Canovi et al., 2011) is closely
connected to a corresponding transition from thermal to
non-thermal behavior in the asymptotics of significant
observables. For weakly perturbed integrable models,
the main characteristic of the observables to display such
transition appears to be again their locality with respect

This	
  follows	
  from	
  	
  



Thermaliza5on	
  through	
  eigenstates	
  
(J.	
  Deutsch,	
  1991,	
  M.	
  Srednicki	
  1994,	
  M.	
  Rigol	
  et.	
  al.	
  2008)	
  

Main	
  idea:	
  thermaliza5on	
  is	
  encoded	
  in	
  eigenstates	
  of	
  the	
  Hamiltonian.	
  
Dynamics	
  is	
  just	
  dephasing	
  between	
  the	
  eigenstates.	
  	
  

Prepare	
  a	
  quantum	
  system	
  in	
  some	
  state,	
  characterized	
  by	
  the	
  density	
  matrix	
  ρ0	
  
and	
  let	
  it	
  evolve	
  with	
  the	
  Hamiltonian	
  H.	
  

Look	
  into	
  the	
  long	
  5me	
  limit	
  of	
  the	
  expecta5on	
  value	
  sta5c	
  observable,	
  O	
  

In	
  typical	
  situa5ons	
  (both	
  equilibrium	
  and	
  not)	
  energy	
  is	
  extensive	
  and	
  energy	
  
fluctua5ons	
  are	
  sub-­‐extensive	
  (consequence	
  of	
  locality	
  of	
  the	
  Hamiltonian).	
  If	
  all	
  
eigenstates	
  within	
  a	
  subextensive	
  energy	
  shell	
  are	
  similar	
  then	
  

The	
  long	
  5me	
  limit	
  of	
  an	
  observable	
  does	
  not	
  depend	
  on	
  the	
  details	
  of	
  the	
  ini5al	
  state.	
  	
  



M. Rigol, V. Dunjko & M. Olshanii, 
Nature 452, 854 (2008) 

a, Two-dimensional lattice on which 
five hard-core bosons propagate in 
time.  
 
b, The corresponding relaxation 
dynamics of the central component n
(kx = 0) of the marginal momentum 
distribution, compared with the 
predictions of the three ensembles 
 
 c, Full momentum distribution function 
in the initial state, after relaxation, and 
in the different ensembles.  



Fluctua5ons	
  of	
  the	
  observables.	
  Off-­‐diagonal	
  matrix	
  elements	
  
(M.	
  Srednicki,	
  1999)	
  

Consider	
  ul5mate	
  microcanonical	
  ensemble,	
  a	
  single	
  energy	
  eigenstate	
  	
  

There	
  are	
  exponen5ally	
  many	
  terms	
  in	
  this	
  sum	
  ~	
  exp[S],	
  recall	
  that	
  the	
  entropy	
  is	
  the	
  
measure	
  of	
  the	
  density	
  of	
  states	
  (number	
  of	
  states	
  within	
  microscopic	
  energy	
  window)	
  

Make	
  an	
  ansatz	
  (M.	
  Srednicki,	
  1996)	
  

Expect	
  that	
  fO	
  is	
  a	
  slow	
  func5on	
  of	
  E	
  (changing	
  on	
  extensive	
  scales)	
  but	
  fast	
  func5on	
  of	
  
ω,	
  on	
  inverse	
  relaxa5on	
  5me	
  scale,	
  σ	
  is	
  a	
  random	
  variable	
  with	
  a	
  unit	
  variance	
  .	
  	
  

The	
  func5on	
  fO(ω)	
  should	
  decay	
  faster	
  than	
  exponen5ally	
  on	
  intensive	
  energy	
  
scales.	
  



Let	
  us	
  look	
  into	
  non-­‐equal	
  5me	
  correla5on	
  func5on	
  

Long	
  (Markovian)	
  5mes	
  (small	
  frequencies):	
  expect	
  exponen5al	
  decay.	
  

Lorentz	
  or	
  Breit-­‐Wigner	
  distribu5on	
  	
  

Short	
  (non-­‐Markovian)	
  5mes	
  (large	
  frequencies):	
  expect	
  Gaussian	
  decay.	
  Also	
  follows	
  
from	
  short	
  5me	
  perturba5on	
  theory	
  (Zeno	
  effect).	
  

Can	
  recover	
  fluctua5on-­‐dissipa5on	
  rela5ons	
  under	
  the	
  same	
  
condi5ons	
  (V.	
  Zelevinsky	
  1995,	
  M.	
  Srednicki	
  1999,	
  E.	
  Khatami	
  et	
  al	
  2013)	
  



How	
  representa5ve	
  is	
  5me	
  average?	
  (M.	
  Srednicki,	
  1999)	
  

Using	
  that	
  

If	
  ETH	
  applies	
  we	
  see	
  that	
  devia5ons	
  of	
  the	
  expecta5on	
  value	
  
from	
  the	
  5me	
  average	
  are	
  exponen5ally	
  small.	
  	
  
	
  
So	
  the	
  system	
  remains	
  expone5ally	
  close	
  to	
  the	
  equilibrium	
  state	
  
at	
  almost	
  all	
  5mes.	
  



Quantum	
  chaos	
  and	
  Wigner-­‐Dyson	
  distribu5on	
  	
  

Consider	
  a	
  fully	
  chao5c	
  random	
  NxN	
  matrix	
  with	
  the	
  Gaussian	
  probability	
  distribu5on	
  

One	
  can	
  show	
  that	
  there	
  is	
  a	
  level	
  repulsion	
  so	
  that	
  the	
  probability	
  of	
  the	
  level	
  spacing	
  is:	
  	
  

Wigner-­‐Dyson	
  distribu5on	
  for	
  orthogonal	
  ensembles.	
  

Level	
  spacing	
  distribu5on	
  in	
  heavy	
  nuclei	
  	
  
K.H.	
  Böchhoff	
  (Ed.),	
  Nuclear	
  Data	
  for	
  Science	
  and	
  
Technology,	
  Reidel,	
  Dordrecht	
  (1983)	
  

Level	
  spacing	
  distribu5on	
  in	
  Sinai	
  billiard	
  	
  
O.	
  Bohigas,	
  M.J.	
  Giannoni,	
  C.	
  Schmit	
  
Phys.	
  Rev.	
  Lev.,	
  52	
  (1984)	
  



Hydrogen	
  in	
  a	
  strong	
  magne5c	
  field	
  
D.	
  Wintgen,	
  H.	
  Friedrich	
  
Phys.	
  Rev.	
  A,	
  35	
  (1987),	
  

A	
  histogram	
  of	
  spacings	
  between	
  bus	
  arrival	
  5mes	
  in	
  Cuernavaca	
  
(Mexico),	
  in	
  crosses;	
  the	
  solid	
  line	
  is	
  the	
  predic5on	
  from	
  random	
  
matrix	
  theory.	
  (Source:	
  Krbalek-­‐Seba,	
  J.	
  Phys.	
  A.,	
  2000)	
  

Spacing	
  distribu5on	
  for	
  a	
  billion	
  zeroes	
  of	
  the	
  Riemann	
  zeta	
  
func5on,	
  and	
  the	
  corresponding	
  predic5on	
  from	
  random	
  matrix	
  
theory.	
  (Source:	
  Andrew	
  Odlyzko,	
  Contemp.	
  Math.	
  2001)	
  



Many-­‐body	
  quantum	
  systems	
  

Integrable	
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  compliated	
  way)	
  bosonic(L.	
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  and	
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  2010)	
  

The	
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  of	
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  with	
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onset	
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  defined	
  through	
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  observables.	
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bosonic and fermionic systems studied in Refs. [31] and
[32]. These systems are clean and have only two-body in-
teractions; the transition to chaos is achieved by increas-
ing the strength of next-nearest-neighbor (NNN) terms
rather than by adding random parameters to the Hamil-
tonian. Under certain conditions these systems may also
be mapped onto Heisenberg spin-1/2 chains. Several pa-
pers have analyzed spectral statistics of disordered [38–
42] and clean [43–46] 1D Heisenberg spin-1/2 systems.
Mostly, they were limited to sizes smaller than consid-
ered here and, in the case of clean systems, focused on
properties associated with the energy levels, while here
eigenvectors are also analyzed. Our goal is to establish
a direct comparison between indicators of chaoticity and
the results obtained in Refs. [31] and [32] for thermaliza-
tion and the validity of ETH. Our analysis also provides
a way to quantify points (i) and (ii) in the previous para-
graph, which can result in the absence of thermalization
in finite systems.

Overall, the crossover from integrability to chaos,
quantified with spectral observables and delocalization
measures, mirrors various features of the onset of ther-
malization investigated in Refs. [31] and [32], in partic-
ular, the distinct behavior of observables between sys-
tems that are close and far from integrability, and be-
tween eigenstates whose energies are close and far from
the energy of the ground state. We also find that the
contrast between bosons and fermions pointed out in
Ref. [32] is translated here into the requirement of larger
integrability-breaking terms for the onset of chaos in
fermionic systems. Larger system sizes also facilitate the
induction of chaos. In addition, we observe that mea-
sures of the degree of delocalization of eigenstates become
smooth functions of energy only in the chaotic regime, a
behavior that may be used as a signature of chaos.

The paper is organized as follows. Section II describes
the model Hamiltonians studied and their symmetries.
Section III analyzes the integrable-chaos transition based
on various quantities. After a brief review of the unfold-
ing procedure, Sec.III.A focuses on quantities associated
with the energy levels, such as level spacing distribution
and level number variance. Section III.B introduces mea-
sures of state delocalization, namely information entropy
and inverse participation ratio (IPR), showing results for
the former in the mean field basis. Results for the inverse
participation ratio and discussions about representations
are left to the Appendix. Concluding remarks are pre-
sented in Sec. IV.

II. SYSTEM MODEL

We consider both scenarios: hardcore bosons and spin-
less fermions on a periodic one-dimensional lattice in
the presence of nearest-neighbor (NN) and next-nearest-
neighbor (NNN) hopping and interaction. The Hamilto-
nian for bosons HB and for fermions HF are respectively

given by

HB =
L
∑

i=1

[

−t
(

b†i bi+1 + h.c.
)

+ V

(

nb
i −

1

2

)(

nb
i+1 −

1

2

)

− t′
(

b†ibi+2 + h.c.
)

+ V ′

(

nb
i −

1

2

)(

nb
i+2 −

1

2

)]

, (1)

and

HF =
L
∑

i=1

[

−t
(

f †
i fi+1 + h.c.

)

+ V

(

nf
i −

1

2

)(

nf
i+1 −

1

2

)

− t′
(

f †
i fi+2 + h.c.

)

+ V ′

(

nf
i −

1

2

)(

nf
i+2 −

1

2

)]

.(2)

Above, L is the size of the chain, bi and b†i (fi and f †
i )

are bosonic (fermionic) annihilation and creation oper-
ators on site i, and nb

i = b†ibi (nf
i = f †

i fi) is the boson
(fermion) local density operator. Hardcore bosons do not
occupy the same site, i.e., b†2i = b2i , so the operators com-
mute on different sites but can be taken to anti-commute
on the same site. The NN (NNN) hopping and interac-
tion strengths are respectively t (t′) and V (V ′). Here,
we only study repulsive interactions (V, V ′ > 0). We take
! = 1 and t = V = 1 set the energy scale in the remaining
of the paper.
The bosonic (fermionic) Hamiltonian conserves the to-

tal number of particles Nb (Nf ) and is translational in-
variant, being therefore composed of independent blocks
each associated with a total momentum k. In the par-
ticular case of k = 0, parity is also conserved, and at
half-filling, particle-hole symmetry is present, that is, the
bosonic [fermionic] model becomes invariant under the

transformation
∏L

i (b
†
i + bi) [

∏L
i (f

†
i + fi)], which annihi-

lates particles from filled sites and creates them in empty
ones. The latter two symmetries will be avoided here by
selecting k "= 0 and Nb,f = L/3. For even L, we consider
k = 1, 2, . . . , L/2−1 and for odd L, k = 1, 2, . . . (L−1)/2.
The dimension Dk of each symmetry sector studied is
given in Table I.
Exact diagonalization is performed to obtain all eigen-

values and eigenvectors of the systems under investiga-
tion. When t′ = V ′ = 0, models (1) and (2) are integrable
and may be mapped onto one another via the Jordan-
Wigner transformation [47]. A correspondence with the
Heisenberg spin-1/2 chain also holds, in which case the
system may be solved with the Bethe ansatz [48, 49].

III. SIGNATURES OF QUANTUM CHAOS

The concept of exponential divergence, which is at the
heart of classical chaos, has no meaning in the quan-
tum domain. Nevertheless, the correspondence princi-
ple requires that signatures of classical chaos remain in
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TABLE I: Dimensions of subspaces

Bosons
L = 18 k = 1, 5, 7 k = 2, 4, 8 k = 3 k = 6

1026 1035 1028 1038
L = 21 k = 7 other k’s

5538 5537
L = 24 odd k’s k = 2, 6, 10 k = 4 k = 8

30624 30664 30666 30667

Fermions
L = 18 k = 1, 5, 7 k = 2, 4, 8 k = 3 k = 6

1035 1026 1038 1028
L = 21 k = 7 other k’s

5538 5537
L = 24 odd k’s k = 2, 6, 10 k = 4 k = 8

30624 30664 30667 30666

the quantum level. Different quantities exist to identify
the crossover from the integrable to the non-integrable
regime in quantum systems. We consider both spectral
observables associated with the eigenvalues and quanti-
ties used to measure the complexity of the eigenvectors.

A. Spectral observables

Spectral observables, such as level spacing distribution
and level number variance are investigated below. They
are intrinsic indicators of the integrable-chaos transition.
Their analysis are based on the unfolded spectrum of each
symmetry sector separately.

1. Unfolding procedure

The procedure of unfolding consists of locally rescal-
ing the energies as follows. The number of levels with
energy less than or equal to a certain value E is given
by the cumulative spectral function, also known as the
staircase function, N(E) =

∑

n Θ(E − En), where Θ is
the unit step function. N(E) has a smooth part Nsm(E),
which is the cumulative mean level density, and a fluctu-
ating part Nfl(E), that is, N(E) = Nsm(E) + Nfl(E).
Unfolding the spectrum corresponds to mapping the en-
ergies {E1, E2, . . . , ED} onto {ε1, ε2, . . . εD}, where εn =
Nsm(En), so that the mean level density of the new
sequence of energies is 1. Different methods are used
to separate the smooth part from the fluctuating one.
Statistics that measure long-range correlations are usu-
ally very sensitive to the adopted unfolding procedure,
while short-range correlations are less vulnerable [50].
Here, we discard 20% of the energies located at the edges
of the spectrum, where the fluctuations are large, and
obtain Nsm(E) by fitting the staircase function with a
polynomial of degree 15.

2. Level spacing distribution

The distribution of spacings s of neighboring energy
levels [2, 7, 8, 10] is the most frequently used observ-
able to study short-range fluctuations in the spectrum.
Quantum levels of integrable systems are not prohib-
ited from crossing and the distribution is Poissonian,
PP (s) = exp(−s). In non-integrable systems, crossings
are avoided and the level spacing distribution is given by
the Wigner-Dyson distribution, as predicted by random
matrix theory. The form of the Wigner-Dyson distribu-
tion depends on the symmetry properties of the Hamilto-
nian. Ensembles of random matrices with time reversal
invariance, the so-called Gaussian orthogonal ensembles
(GOEs), lead to PWD(s) = (πs/2) exp(−πs2/4). The
same distribution form is achieved for models (1) and (2)
in the chaotic limit, since they are also time reversal in-
variant. However, these systems differ from GOEs in the
sense that they only have two-body interactions and do
not contain random elements. Contrary to GOEs and to
two-body random ensembles [15], the breaking of sym-
metries here is not caused by randomness, but instead
by the addition of frustrating next-nearest-neighbor cou-
plings. Notice also that the analysis of level statistics in
these systems is meaningful only in a particular symme-
try sector; if different subspaces are mixed, level repulsion
may be missed even if the system is chaotic [46, 51].
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FIG. 1: (Color online.) Level spacing distribution for hard-
core bosons averaged over all k’s in Table I, for L = 24, and
t′ = V ′. For comparison purposes, we also present the Poisson
and Wigner-Dyson distributions. Bottom right panel: energy
difference between first excited state E1 and ground state E0

in the full spectrum times L, for L = 18 (circles), L = 21
(squares), and L = 24 (triangles).

In Figs. (1) and (2), we show P (s) across the transi-
tion from integrability to chaos for bosons and fermions,
respectively, in the case of L = 24. An average over all
k’s is performed, but we emphasize that the same be-
havior is verified also for each k-sector separately. As
t′, V ′ increases and symmetries are broken, level repul-
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matrices are pseudo-random vectors; that is, their ampli-
tudes are random variables.20,21 All the eigenstates are
statistically similar, they spread through all basis vectors
with no preferences and are therefore ergodic.
Despite the success of random matrix theory in de-

scribing spectral statistical properties, it cannot capture
the details of real quantum many-body systems. The fact
that random matrices are completely filled with statisti-
cally independent elements implies infinite-range inter-
actions and the simultaneous interaction of many parti-
cles. Real systems have few-body (most commonly only
two-body) interactions which are usually finite range. A
better picture of systems with finite-range interactions
is provided by banded random matrices, which were also
studied byWigner.22 Their off-diagonal elements are ran-
dom and statistically independent, but are non-vanishing
only up to a fixed distance from the diagonal. There are
also ensembles of random matrices that take into account
the restriction to few body interactions, so that only the
elements associated with those interactions are nonzero;
an example is the two-body-random-ensemble23–25 (see
reviews in Refs. 21,26). Other models which describe sys-
tems with short-range and few-body interactions do not
include random elements, such as nuclear shell models,27

and the systems of interacting spins which we consider
in this article.
All the matrices we have mentioned can lead to level re-

pulsion, but differences are observed. For instance, eigen-
states of random matrices are completely spread (delo-
calized) in any basis, whereas the eigenstates of systems
with few-body interactions delocalize only in the middle
of the spectrum.26–30

In this paper we study a one-dimensional system
of interacting spins 1/2. The system involves only
nearest-neighbor interactions, and in some cases, also
next-nearest-neighbor interactions. Depending on the
strength of the couplings, the system may develop chaos,
which is identified by calculating the level spacing distri-
bution. We also compare the level of delocalization of the
eigenstates in the integrable and chaotic domains. It is
significantly larger in the latter case, where the most de-
localized states are found in the middle of the spectrum.
The paper is organized as follows. Section II provides

a detailed description of the Hamiltonian of a spin 1/2
chain. Section III explains how to compute the level
spacing distribution and how to quantify the level of de-
localization of the eigenstates. Section IV shows how
the mixing of symmetries may erase level repulsion even
when the system is chaotic. Final remarks are given in
Sec. V.

II. SPIN-1/2 CHAIN

We study a one-dimensional spin 1/2 system (a spin
1/2 chain) described by the Hamiltonian

H = Hz +HNN, (1a)

where

Hz =
L
∑

i=1

ωiS
z
i =

(

L
∑

i=1

ωSz
i

)

+ εdS
z
d (1b)

HNN =
L−1
∑

i=1

[

Jxy
(

Sx
i S

x
i+1 + Sy

i S
y
i+1

)

+ JzS
z
i S

z
i+1

]

. (1c)

We have set ! equal to 1, L is the number of sites,
Sx,y,z
i = σx,y,z

i /2 are the spin operators at site i, and
σx,y,z
i are the Pauli matrices. The term Hz gives the

Zeeman splitting of each spin i, as determined by a static
magnetic field in the z direction. All sites are assumed
to have the same energy splitting ω, except a single site
d, whose energy splitting ω + εd is caused by a magnetic
field slightly larger than the field applied on the other
sites. This site is referred to as a defect.
A spin in the positive z direction (up) is indicated by

| ↑〉 or by the vector
(

1
0

)

; a spin in the negative z direction

(down) is represented by | ↓〉 or
(

0
1

)

. An up spin on site
i has energy +ωi/2, and a down spin has energy −ωi/2.
A spin up corresponds to an excitation.
The second term, HNN, is known as the XXZ Hamilto-

nian. It describes the couplings between nearest-neighbor
(NN) spins; Jxy is the strength of the flip-flop term
Sx
i S

x
i+1+Sy

i S
y
i+1, and Jz is the strength of the Ising inter-

action Sz
i S

z
i+1. The flip-flop term exchanges the position

of neighboring up and down spins according to

Jxy(S
x
i S

x
i+1 + Sy

i S
y
i+1)| ↑i↓i+1〉 = (Jxy/2)| ↓i↑i+1〉, (2)

or, equivalently, it moves the excitations through the
chain. We have assumed open boundary conditions as
indicated by the sum in HNN which goes from i = 1 to
L−1. Hence, an excitation in site 1 (or L) can move only
to site 2 (or to site L− 1). Closed boundary conditions,
where an excitation in site 1 can move also to site L (and
vice-versa) are mentioned briefly in Sec. IV.
The Ising interaction implies that pairs of parallel spins

have higher energy than pairs of anti-parallel spins, that
is,

JzS
z
i S

z
i+1| ↑i↑i+1〉 = +(Jz/4)| ↑i↑i+1〉, (3)

and

JzS
z
i S

z
i+1| ↑i↓i+1〉 = −(Jz/4)| ↑i↓i+1〉. (4)

For the chain described by Eqs. (1) the total spin in
the z direction, Sz =

∑L
i=1 S

z
i , is conserved, that is,

[H,Sz] = 0. This condition means that the total number
of excitations is fixed; the Hamiltonian cannot create or
annihilate excitations, it can only move them through the
chain.
To write the Hamiltonian in matrix form and diagonal-

ize it to find its eigenvalues and eigenstates, we need to
choose a basis. The natural choice corresponds to arrays
of up and down spins in the z direction, as in Eqs. (2),
(3) and (4). We refer to it as the site basis. In this basis,
Hz and the Ising interaction contribute to the diagonal
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the local density of states is unity. This procedure is the
one we used.35

Given the unfolded spacings of neighboring levels, the
histogram can now be computed. To compare it with the
theoretical curves, the distribution needs to be normal-
ized, so that its total area is equal to 1.
Figure 1 shows the level spacing distribution when the

defect is placed on site 1 and on site !L/2". The first case
corresponds to an integrable model and the distribution
is a Poisson; the second case is a chaotic system, so the
distribution is Wigner-Dyson.

!

FIG. 1: (Color online) Level spacing distribution for the
Hamiltonian in Eqs. (1) with L = 15, 5 spins up, ω = 0,
εd = 0.5, Jxy = 1, and Jz = 0.5 (arbitrary units); bin size =
0.1. (a) Defect on site d = 1;(b) defect on site d = 7. The
dashed lines are the theoretical curves.

B. Number of principal components

We now investigate how the transition from a Poisson
to a Wigner-Dyson distribution affects the structure of
the eigenstates. In particular, we study how delocalized
they are in both regimes.
To determine the spreading of the eigenstates in a par-

ticular basis, we look at their components. Consider
an eigenstate |ψi〉 written in the basis vectors |ξk〉 as
|ψi〉 =

∑D
k=1 cik|ξk〉. It will be localized if it has the par-

ticipation of few basis vectors, that is, if a few |cik|2 make
significant contributions. It will be delocalized if many
|cik|2 participate with similar values. To quantify this cri-
terion, we use the sum of the square of the probabilities,
|cik|4 (the sum of the probabilities would not be a good
choice, because normalization implies

∑D
k=1 |cik|

2 = 1),
and define the number of principal components of eigen-
state i as27,28

ni ≡
1

∑D
k=1 |cik|

4
. (7)

The number of principal components gives the number
of basis vectors which contribute to each eigenstate. It
is small when the state is localized and large when the
state is delocalized.
For Gaussian orthogonal ensembles, the eigenstates are

random vectors, that is, the amplitudes cik are indepen-
dent random variables. These states are completely de-
localized. Complete delocalization does not mean, how-
ever, that the number of principal components is equal to

D. Because the weights |cik|2 fluctuate, the average over
the ensemble gives number of principal components ∼
D/3.27,28

To study the number of principal components for
Eqs. (1), we need to choose a basis. This choice depends
on the question we want to address. We consider two
bases, the site- and mean-field basis. The site-basis is
appropriate when analyzing the spatial delocalization of
the system. To separate regular from chaotic behavior,
a more appropriate basis consists of the eigenstates of
the integrable limit of the model, which is known as the
mean-field basis.27 In our case the integrable limit corre-
sponds to Eqs. (1) with Jxy &= 0, εd &= 0, and Jz = 0.
We start by writing the Hamiltonian in the site-basis.

Let us denote these basis vectors by |φj〉. In the absence
of the Ising interaction, the diagonalization of the Hamil-
tonian leads to the mean-field basis vectors. They are
given by |ξk〉 =

∑D
j=1 bkj |φj〉. The diagonalization of the

complete matrix, including the Ising interaction, gives
the eigenstates in the site-basis, |ψi〉 =

∑D
j=1 aij |φj〉. If

we use the relation between |φj〉 and |ξk〉, we may also
write the eigenstates of the total Hamiltonian in Eqs. (1)
in the mean-field basis as

|ψi〉 =
D
∑

k=1





D
∑

j=1

aijb
∗

kj



 |ξk〉 =
D
∑

k=1

cik|ξk〉. (8)

Figures 2 shows the number of principal components
for the eigenstates in the site-basis [(a), (b)] and in the
mean-field basis [(c), (d)] for the cases where the defect
is placed on site 1 [(a), (c)] and on site !L/2" [(b), (d)].
The level of delocalization increases significantly in the
chaotic regime. However, contrary to random matrices,
the largest values are restricted to the middle of the spec-
trum, the states at the edges being more localized. This
property is a consequence of the Gaussian shape of the
density of states of systems with two-body interactions.
The highest concentration of states appears in the middle
of the spectrum, where the strong mixing of states can
occur leading to widely distributed eigenstates.
An interesting difference between the integrable and

chaotic regimes is the fluctuations of the number of prin-
cipal components. For the regular system the number of
principal components shows large fluctuations. In con-
trast, in the chaotic regime the number of principal com-
ponents approaches a smooth function of energy. Chaotic
eigenstates close in energy have similar structures and
consequently similar values of the number of principal
components.

IV. SYMMETRIES

The presence of a defect breaks symmetries of the sys-
tem. In this section we remove the defect and have a
closer look at the symmetries.
We refer to the system in the absence of a defect

(εd = 0) as defect-free. Contrary to the case where
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FIG. 1: The Heisenberg equation of motion for an observable

O is solved by transforming to the B =∞ eigenbasis of the in-

teracting Hamiltonian H (forward transformation), where the

time evolution can be computed easily. Time evolution intro-

duces phase shifts, and therefore the form of the observable

in the initial basis B = 0 (after a backward transformation)

changes as a function of time.

the limit of high dimensions [15], but the calculation also
applies to finite dimensions with the same conclusions up
to quantitative details.

We study the above real time evolution problem by
using the approach introduced in [16]. One solves the
Heisenberg equations of motion for the operators that one
is interested in by performing a unitary transformation
to an (approximate) eigenbasis of the interacting Hamil-
tonian. There one can easily work out the time evolution
and then transform back to the original basis where the
initial state is specified. In this manner one induces a
solution of the Heisenberg equations of motion for an op-
erator in the original basis but without secular terms,
which are usually a major problem in other approxima-
tion schemes [17]. Fig. 1 gives a sketch of our approach.
Notice that the same general idea was recently also used
by Cazalilla to study the behavior of the exactly solvable
one-dimensional Luttinger model subject to a quench [8].

Since our model is non-integrable, we implement the
above diagonalizing transformation by the flow equa-
tion method [18, 19], which permits a systematic con-
trolled expansion for many equilibrium and nonequi-
librium quantum many-body problems [19]. One uses
a continuous sequence of infinitesimal unitary transfor-
mations parametrized by a parameter B with dimen-
sion (energy)−2 that connects the eigenbasis of the free
Hamiltonian (B = 0) with the energy diagonal basis of
the interacting Hamiltonian (B = ∞). Each infinites-
imal step of the unitary transformation is defined by
the canonical generator η(B) = [H0(B), Hint(B)], where
H0(B) is the diagonal and Hint(B) the interacting part
of the Hamiltonian. This generator η(B) has the re-
quired property of making H(B) increasingly energy di-
agonal for B → ∞ [18]. All operators O(B) (including
the Hamiltonian itself) flow according to the differen-
tial equation ∂O(B)/∂B = [η(B),O(B)]. Higher order
terms generated by the commutator are truncated af-
ter normal-ordering (denoted by : :) and the flow equa-
tions decompose into a set of ordinary differential equa-
tions resembling scaling equations in a renormalization

approach. However, contrary to conventional renormal-
ization schemes which reduce the size of the effective
Hilbert space, the flow equation approach retains the full
Hilbert space, which makes it particularly appropriate
for nonequilibrium problems (for more details see [19]).

Flow equations for the Hubbard model. First we work
out the diagonalizing flow equation transformation for
the Hubbard Hamiltonian. The expansion parameter is
the (small) interaction U and normal-ordering is with
respect to the zero temperature Fermi-Dirac distribution:

H(B) =
�

kσ=↑,↓
�k :c†kσckσ: (2)

+
�

p�pq�q

Up�pq�q(B) :c†p�↑cp↑c
†
q�↓cq↓:

with Up�pq�q(B = 0) = U . The flow of the one-particle en-
ergies and the generation of higher normal-ordered terms
in the Hamiltonian can be neglected since we are in-
terested in results in second order in U . The flow of
the interaction is to leading order given by Up�pq�q(B) =
U exp(−B∆2

p�pq�q) with an energy difference ∆p�pq�q
def=

�p� − �p + �q� − �q.
Next we work out the flow equation transformation for

the number operator Nk↑(B) = C
†
k↑(B) Ck↑(B), which

can be obtained from the transformation of a single cre-
ation operator C†k↑(B). Under the sequence of unitary
transformations the operator changes its form to describe
dressing by electron-hole pairs. A truncated ansatz reads:

C
†
k↑(B)=hk(B)c†k↑ +

�

p�q�p

M
k
p�q�p(B)δk+p

p�+q� :c†p�↑c
†
q�↓cp↓:

(3)
We introduce the zero temperature momentum distri-
bution function of a free Fermi gas nk, define n

−
k

def=
1 − nk and a phase space factor Qp�pq� [n] def= n

−
p�n

−
q�np +

np�nq�n
−
p . The flow equations for the creation operator

are:

∂hk(B)
∂B

= U

�

p�q�p

M
k
p�q�p(B) ∆kp�pq� e

−B∆2
kp�pq�

Qp�pq� [n]

∂M
k
p�q�p(B)
∂B

= hk(B) U ∆p�pq�ke
−B∆2

p�pq�k (4)

Here and in the ansatz (3) we have only taken into ac-
count the terms that are required to describe the momen-
tum distribution function up to second order in U . The
initial conditions for the above transformation of C†k↑ are
hk(0) = 1 and M

k
p�q�p(0) = 0 (i.e., C†k↑(B = 0) = c

†
k↑),

and we denote the asymptotic values from the solution
of (4) by hk(B = ∞, t = 0) and M

k
p�q�p(B = ∞, t = 0).

Time evolution according to Fig. 1 yields hk(B =∞, t) =
hk(B = ∞, t = 0) e

−i�kt and M
k
p�q�p(B = ∞, t) =

M
k
p�q�p(B = ∞, t = 0) e

−i(�p�+�q�−�p)t, which are then
input as the initial conditions of the system of equations
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(4) at B = ∞. Integrating back to B = 0 gives the
time evolved creation operator in the original basis, and
it is straightforward to evaluate the time dependent mo-
mentum distribution function with respect to the initial
Fermi gas state [20].

Nonequilibrium momentum distribution function. One
finds the following time-dependent additional term to the
distribution nk of the free Fermi gas in O(U2):

∆N
NEQ
k (t) = N

NEQ
k (t)− nk (5)

= −4U
2

� ∞

−∞
dE

sin2
�

(�k−E)t
2

�

(�k − E)2
Jk(E;n)

The phase space factor Jk(E;n) resembles the quasipar-
ticle collision integral of a quantum Boltzmann equation:

Jk(E;n) =
�

p�q�p

δ
p�+q�

p+k δ
�p�+�q�

�p+E

�
nknpn

−
p�n

−
q� − n

−
k n

−
p np�nq�

�

For computational convenience we use the limit of infi-
nite dimensions, specifically a Gaussian density of states
ρ(�) = exp

�
−(�/t∗)2/2

�
/
√

2πt∗ [15]. In the sequel
ρF = ρ(� = 0) denotes the density of states at the Fermi
level. Results from a numerical evaluation of the above
scheme for three time steps are presented in Fig. 2.

Equilibrium momentum distribution function. Eqs. (4)
can also be used to evaluate the equilibrium distribution
function, which will later be important for comparison.
In fact, the asymptotic value hkF (B = ∞) at the Fermi
energy is directly related to the quasiparticle residue (Z-
factor), ZEQU = [hkF (B = ∞)]2 [19]. It is easy to solve
(4) analytically at the Fermi energy for zero temperature
in O(U2) and one finds for momenta k infinitesimally
above or below the Fermi surface

∆N
EQU
k = −U

2

� ∞

−∞
dE

Jk(E;n)
(�k − E)2

(6)

consistent with a conventional perturbative evaluation.
Short-time correlation buildup. The numerical evalua-

tion of the momentum distribution function depicted in
Fig. 2 shows the initial buildup of a correlated state from
the Fermi gas. For times 0 < t � ρ

−1
F U−2 one observes

a fast reduction of the Fermi surface discontinuity and
1/t oscillations in the momentum distribution function.
This short time regime can be understood as the forma-
tion of quasiparticles from the free electrons of the initial
noninteracting Fermi gas.

Intermediate quasi-steady regime. For times t of or-
der ρ

−1
F U−2 the sinusoidal time dependence in (5) gen-

erates an increasing localization in energy space, which
eventually becomes a δ-function (Fermi’s golden rule).
There are no further changes in the momentum distribu-
tion function for times t � ρ

−1
F U−2 in the present order

of the calculation. For momenta k infinitesimally above

FIG. 2: (a)-(d): Time evolution of NNEQ(�) plotted around
the Fermi energy for ρF U = 0.6. A fast reduction of the dis-
continuity and 1/t-oscillations can be observed. The arrow in
(d) indicates the size of the quasiparticle residue in the quasi-
steady regime. In (e) the universal curves for ∆Nk = Nk−nk

are given for both equilibrium and for the nonequilibrium
quasi-steady state in the weak-coupling limit.

or below the Fermi surface one then finds from (5):

∆N
NEQ
k (t→∞) = −4U

2

� ∞

−∞
dE

1
2

Jk(E;n)
(�k − E)2

= 2 ∆N
EQU
k (7)

since sin2 in (5) yields a factor 1/2 in the long time limit.
In the quasi-steady state the momentum distribution
function is therefore that of a zero temperature Fermi
liquid. However, from (7) one deduces that its Z-factor
is smaller than in equilibrium, 1−ZNEQ = 2(1−ZEQU).
This factor 2 implies a quasiparticle distribution function
in the vicinity of the Fermi surface in the quasi-steady
state equal to the equilibrium distribution function of
the physical electrons, N

QP:NEQ
k = N

EQU
k , as opposed to

its equilibrium distribution, N
QP:EQU
k = Θ(kF − k).

Remarkably, Cazalilla’s findings [8] for the interaction
quench in the Luttinger model mirror these features: the
critical exponent describing the asymptotic behavior of
the electronic Green’s function differs from the equilib-
rium result. As Cazalilla points out this corresponds to a
non-equilibrium distribution for the bosonic modes after
bosonization. A main difference between the Luttinger
liquid and the Fermi liquid cases follows from the inte-
grability of the Luttinger liquid with an infinite number
of conservation laws, which make this regime stable for
t→∞. For the Fermi liquid, on the other hand, on-shell
interactions lead to thermalization as we will see next.

Thermalization. The previous flow equation calcula-
tion of the real time dynamics contains all contributions
to the time evolution for times smaller than ρ

−3
F U−4. For

the long time dynamics one generally expects a quantum
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lattice. We again found that the ETH holds true (3% relative
standard deviation of eigenstate-to-eigenstate fluctuations).
On the other hand, Figs. 3d-f show how the ETH fails

for an isolated one-dimensional integrable system. The lat-
ter consists of five hard-core bosons initially prepared in their
ground state in an 8-site chain, one of the ends of which we

then link to one of the ends of an adjoining (empty) 13-site
chain to trigger relaxation dynamics. As Fig. 3e shows, n(kx)
as a function of energy is a broad cloud of points, meaning
that the ETH is not valid; Fig. 3f shows that scenario (ii) does
not hold either.

FIG. 3: Eigenstate thermalization hypothesis. a, In our nonintegrable system, the momentum distribution n(kx) for two typical eigenstates
with energies close to E0 is identical to the microcanonical result, in accordance with the ETH. b, Upper panel: n(kx = 0) eigenstate
expectation values as a function of the eigenstate energy resemble a smooth curve. Lower panel: the energy distribution ρ(E) of the three
ensembles considered in this work. c, Detailed view of n(kx = 0) (left labels) and |Cα|2 (right labels) for 20 eigenstates around E0. d, In the
integrable system, n(kx) for two eigenstates with energies close to E0 and for the microcanonical and diagonal ensembles are very different
from each other, i.e., the ETH fails. e, Upper panel: n(kx = 0) eigenstate expectation value considered as a function of the eigenstate energy
gives a thick cloud of points rather than resembling a smooth curve. Lower panel: energy distributions in the integrable system are similar to
the nonintegrable ones depicted in b. f, Correlation between n(kx = 0) and |Cα|

2 for 20 eigenstates around E0. It explains why in d the
microcanonical prediction for n(kx = 0) is larger than the diagonal one.

Nevertheless, one may still wonder if in this case scenario
(i) might hold—if the averages over the diagonal and the
microcanonical energy distributions shown in Fig. 3e might
agree. Figure 3d shows that this does not happen. This is so
because, as shown in Fig. 3f, the values of n(kx = 0) for
the most-occupied states in the diagonal ensemble (the largest
values of eigenstate occupation numbers |Cα|2) are always
smaller than the microcanonical prediction, and those of the
least-occupied states, always larger. Hence, the usual thermal
predictions fail because the correlations between the values
of n(kx = 0) and |Cα|2 preclude unbiased sampling of the
latter by the former. These correlations have their origin in
the nontrivial integrals of motion that make the system inte-

grable and that enter the generalized Gibbs ensemble, which
was introduced in Ref. [3] as appropriate for formulating sta-
tistical mechanics of isolated integrable systems. In the non-
integrable case shown in Fig. 3c, n(kx = 0) is so narrowly
distributed that it does not matter whether or not it is corre-
lated with |Cα|2 (we have in fact seen no correlations in the
nonintegrable case).

The thermalization mechanism outlined thus far explains
why long-time averages converge to their thermal predictions.
A striking aspect of Fig. 1b, however, is that the time fluc-
tuations are so small that after relaxation the thermal predic-
tion works well at every instant of time. Looking at Eq. (1),
one might think this is so because the contribution of the off-
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be considered when computing T . Our results here show
that the differences with considering specific momentum
sectors are small and decreasing with the system size.

2. Results in the mean-field basis

Figures 11 and 12 show the mean-field Shannon en-
tropy vs energy for all the eigenstates of the k = 2 sector.
Notice that the whole spectrum for the k = 2 sector is
presented and not only the energies leading to T ≤ 10
as in Figs. 6 and 7. The typical behavior of banded ma-
trices is observed: larger delocalization appearing away
from the edges of the spectrum, although not as large as
the GOE result SGOE = ln(0.48D) +O(1/D), and lower
complexity at the edges [13, 15, 57].

FIG. 11: (Color online.) Shannon entropy in the mean field
basis vs energy for bosons, L = 24, k = 2, and t′ = V ′. The
dashed line gives the GOE averaged value SGOE ∼ ln(0.48D).

FIG. 12: (Color online.) Same as in Fig. 11 for fermions.

A similar behavior is seen in the plots of the in-
verse participation ratio in the mean-field basis vs en-

ergy (Figs. 13 and 14). The IPR values increase sig-
nificantly with t′, V ′, but do not reach the GOE result
IPR = (D+2)/3 [11, 12]. IPR gives essentially the same
information as S, although the first shows larger fluctua-
tions.

FIG. 13: (Color online.) Inverse participation ratio in the
mean field basis vs energy for bosons, L = 24, k = 2, and
t′ = V ′. The GOE result IPRGOE ∼ D/3 is beyond the
chosen scale.

FIG. 14: (Color online.) Same as in Fig. 13 for fermions.

3. Results in the k−basis

Identifying the mean-field basis may not always be a
simple task. For example, some 1D models may have
more than one integrable point. It may also happen that
one is so far from any integrable point that there is no rea-
son to believe that such a point has any relevance for the
chosen system. The latter case may be particularly ap-
plicable to higher-dimensional systems where integrable
points are, in general, the noninteracting limit or other
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tion measures [11, 12], are not intrinsic indicators of the
integrable-chaos transition since they depend on the ba-
sis in which the computations are performed. The choice
of basis is usually physically motivated. The mean-field
basis is the most appropriate representation to separate
global from local properties, and therefore capture the
transition from regular to chaotic behavior [12]. Here,
this basis corresponds to the eigenstates of the integrable
Hamiltonian (t′, V ′ = 0). Other representations may also
provide relevant information, such as the site basis, which
is meaningful in studies of spatial localization, and the
momentum basis, which can be used to study k-space
localization (see the Appendix for further discussions).
The degree of complexity of individual eigenvectors

may be measured, for example, with the information
(Shannon) entropy S or the inverse participation ratio
(IPR). The latter is also sometimes referred to as number
of principal components. For an eigenstate ψj written in

the basis vectors φk as ψj =
∑D

k=1 c
k
jφk, S and IPR are

respectively given by

Sj ≡ −
D
∑

k=1

|ckj |
2 ln |ckj |

2, (5)

and

IPRj ≡
1

∑D
k=1 |c

k
j |

4
. (6)

The above quantities measure the number of basis vectors
that contribute to each eigenstate, that is, how much
delocalized each state is in the chosen basis.
For the GOE, the amplitudes ckj are independent ran-

dom variables and all eigenstates are completely delocal-
ized. Complete delocalization does not imply, however,
that S = lnD. For a GOE, the weights |ckj |

2 fluctu-
ate around 1/D and the average over the ensemble is
SGOE = ln(0.48D) +O(1/D) [11, 12].
Figures 6 and 7 show the Shannon entropy in the mean

field basis Smf vs the effective temperature for bosons
and fermions, respectively. The effective temperature,
Tj of an eigenstate ψj with energy Ej is defined as

Ej =
1

Z
Tr

{

Ĥe−Ĥ/Tj

}

, (7)

where

Z = Tr
{

e−Ĥ/Tj

}

. (8)

Above, Ĥ is Hamiltonian (1) or (2), Z is the partition
function with the Boltzmann constant kB = 1, and the
trace is performed over the full spectrum as in Refs. [31]
and [32] (see the Appendix for a comparison with effec-
tive temperatures obtained by tracing over exclusively
the sector k = 2). The figures include results only for
Tj ≤ 10; for highEj , the temperatures eventually become
negative. By plotting the Shannon entropy as a function

FIG. 6: (Color online.) Shannon entropy in the mean field
basis vs effective temperature for bosons, L = 24, k = 2,
and t′ = V ′. The dashed line gives the GOE averaged value
SGOE ∼ ln(0.48D).

FIG. 7: (Color online.) As in Fig. 6 for fermions.

of the effective temperature, we allow for a direct com-
parison of our results here and the results presented in
Refs. [31] and [32].
As seen in Figs. 6 and 7, the mixing of basis vectors,

and therefore the complexity of the states, increases with
t′, V ′, but it is only for Tj ! 2 that the eigenstates of our
systems approach the GOE result. Similarly, in plots of
Smf vs energy (see Figs. 11 and 12 in the Appendix), it is
only away from the borders of the spectrum that Smf →
SGOE; in the borders, the states are more localized and
therefore less ergodic. This feature is typical of systems
with a finite range of interactions, such as models (1)
and (2) and also banded, embedded random matrices,
and two-body random ensembles [13, 15, 57].
The analysis of the structure of the eigenstates hints

on what to expect for the dynamics of the system. In
the context of relaxation dynamics, not only the den-
sity of complex states participating in the dynamics is
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Ĥe−Ĥ/Tj
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SGOE; in the borders, the states are more localized and
therefore less ergodic. This feature is typical of systems
with a finite range of interactions, such as models (1)
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(a) (b)

(c) (d)

FIG. 1: (Color online) Entropies vs t′ = V ′. Left: bosons; right:
fermions; top: quench from tini = 0.5, Vini = 2.0; bottom: quench
from tini = 2.0, Vini = 0.5. Filled symbols: d entropy (1); empty
symbols: Ss (2); © T = 1.5; ! T = 2.0; " T = 3.0. All panels:
1/3-filling and L = 24; insets of panels (a) and (c) show Sd/Ss for
L = 24, thick (red) line, and L = 21, thin (black) line for T = 3.0.
Solid lines in the insets of panels (b) and (d), from bottom to top:
microcanonical entropy; canonical entropy Sc for eigenstates with
k = 0 and the same parity as the initial state; Sc for eigenstates with
k = 0 and both parities; and Sc for all eigenstates with N = 8.

initial state after the quench. Explicit results for the micro-
canonical entropy with δE determined by the energy uncer-
tainty are in surprisingly good agreement with those of Sd.
Up to a nonextensive constant, the canonical entropy Sc can
also be written in the same form as Sm (2) if we use the canon-
ical width δE2

c = −∂βE. Results for Sc are shown for three
different sets of eigenstates: (i) all the states in the N sec-
tor, (ii) only the states in the N sector with k = 0, (iii) only
the states in the N sector with k = 0 and the same parity as
the initial state. The latter, as expected, is the closest to Sm

(also computed from eigenstates in the same symmetry sec-
tor as |ψini〉) and Sd. In the thermodynamic limit, all three
sets of eigenstates should produce the same leading contribu-
tion to Sc, but for finite systems it is necessary to take into
account discrete symmetries in order to get an accurate ther-
modynamic description of the equilibrium ensemble.

The fact that Sd/Sm → 1 in the chaotic limit and that the
agreement improves with system size provide an important in-
dication that Sf is small and subextensive. Information con-
tained in the fluctuations of the density matrix becomes neg-
ligible in chaotic systems and only the smooth (measurable)
part of the energy distribution contributes to the entropy of
the system. Also, the close agreement between Sd and Sm in
the insets of Fig. 1(b) and 1(d) suggests that Sd is indeed the
proper entropy to characterize isolated quantum systems after
relaxation. Results for the energy distribution W (E) in Fig. 2
further support these findings.

Figure 2 shows W (E) for HCBs for quenches in the in-
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tegrable (left) and chaotic (right) domains. The sparsity
of the density matrix in the integrable limit is reflected
by large and well separated peaks, while for the noninte-
grable case W (E) approaches a Gaussian shape similar to
(
√
2πδE)−1e−(E−Eini)

2/(2δE2), as shown with the fits. The
shape of W (E) is determined by the product of the average
weight of the components of the initial state and the den-
sity of states. The latter is Gaussian and the first depends on
the strength of the interactions that lead to chaos, it becomes
Gaussian for large interactions [15]. A plot of ρnn vs energy,
on the other hand, does not capture so clearly the integrable-
chaos transition [12].
Integrable systems. We consider a 1D HCB model with NN

hopping and an external potential described by,

HS = −t
L−1
∑

j=1

(b†jbj+1 +H.c.)+A
L
∑

j=1

cos

(

2πj

P

)

b†jbj . (5)

This model is exactly solvable as it maps to spinless noninter-
acting fermions (see e.g., Ref. [16]). The period P is taken
to be P = 5, t = 1, and the amplitude A takes the values
4, 8, 12, and 16. We study systems with L = 20, 25 . . .55
at 1/5 filling. For the quench, we start with the ground state
of (5) with A = 0 and evolve the system with a superlattice
(A %= 0) and vice-versa. Open boundary conditions are used
in this case.

We first study how the deviation of Sd from Ss, as quanti-
fied by Sf/Sd, scales with increasing lattice size for different
quenches. As shown in Figs. 3 (a) and (b), Sf/Sd, does not
decrease as L increases, rather, we find indications that Sf/Sd

saturates to a finite value in the thermodynamic limit. Hence,
for these systems Sd is not expected to be equivalent to the
microcanonical entropy.

In the lower panels of Fig. 3, we study the scaling ofSd with
increasing system size for the same quenches. A clear linear
behavior is seen, demonstrating that Sd is indeed additive. In
these panels, we also show the microcanonical (with δE de-
termined as for the interaction quenches [17]) and canonical
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initial state after the quench. Explicit results for the micro-
canonical entropy with δE determined by the energy uncer-
tainty are in surprisingly good agreement with those of Sd.
Up to a nonextensive constant, the canonical entropy Sc can
also be written in the same form as Sm (2) if we use the canon-
ical width δE2

c = −∂βE. Results for Sc are shown for three
different sets of eigenstates: (i) all the states in the N sec-
tor, (ii) only the states in the N sector with k = 0, (iii) only
the states in the N sector with k = 0 and the same parity as
the initial state. The latter, as expected, is the closest to Sm

(also computed from eigenstates in the same symmetry sec-
tor as |ψini〉) and Sd. In the thermodynamic limit, all three
sets of eigenstates should produce the same leading contribu-
tion to Sc, but for finite systems it is necessary to take into
account discrete symmetries in order to get an accurate ther-
modynamic description of the equilibrium ensemble.

The fact that Sd/Sm → 1 in the chaotic limit and that the
agreement improves with system size provide an important in-
dication that Sf is small and subextensive. Information con-
tained in the fluctuations of the density matrix becomes neg-
ligible in chaotic systems and only the smooth (measurable)
part of the energy distribution contributes to the entropy of
the system. Also, the close agreement between Sd and Sm in
the insets of Fig. 1(b) and 1(d) suggests that Sd is indeed the
proper entropy to characterize isolated quantum systems after
relaxation. Results for the energy distribution W (E) in Fig. 2
further support these findings.

Figure 2 shows W (E) for HCBs for quenches in the in-
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tegrable (left) and chaotic (right) domains. The sparsity
of the density matrix in the integrable limit is reflected
by large and well separated peaks, while for the noninte-
grable case W (E) approaches a Gaussian shape similar to
(
√
2πδE)−1e−(E−Eini)

2/(2δE2), as shown with the fits. The
shape of W (E) is determined by the product of the average
weight of the components of the initial state and the den-
sity of states. The latter is Gaussian and the first depends on
the strength of the interactions that lead to chaos, it becomes
Gaussian for large interactions [15]. A plot of ρnn vs energy,
on the other hand, does not capture so clearly the integrable-
chaos transition [12].
Integrable systems. We consider a 1D HCB model with NN

hopping and an external potential described by,

HS = −t
L−1
∑

j=1

(b†jbj+1 +H.c.)+A
L
∑

j=1

cos

(

2πj

P

)

b†jbj . (5)

This model is exactly solvable as it maps to spinless noninter-
acting fermions (see e.g., Ref. [16]). The period P is taken
to be P = 5, t = 1, and the amplitude A takes the values
4, 8, 12, and 16. We study systems with L = 20, 25 . . .55
at 1/5 filling. For the quench, we start with the ground state
of (5) with A = 0 and evolve the system with a superlattice
(A %= 0) and vice-versa. Open boundary conditions are used
in this case.

We first study how the deviation of Sd from Ss, as quanti-
fied by Sf/Sd, scales with increasing lattice size for different
quenches. As shown in Figs. 3 (a) and (b), Sf/Sd, does not
decrease as L increases, rather, we find indications that Sf/Sd

saturates to a finite value in the thermodynamic limit. Hence,
for these systems Sd is not expected to be equivalent to the
microcanonical entropy.

In the lower panels of Fig. 3, we study the scaling ofSd with
increasing system size for the same quenches. A clear linear
behavior is seen, demonstrating that Sd is indeed additive. In
these panels, we also show the microcanonical (with δE de-
termined as for the interaction quenches [17]) and canonical
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for nonintegrable systems, Sd approaches SGC after cutting
off a few (possibly one) sites, i.e., our hypothesis above is
verified. SvN, on the other hand, remains different from Sd

and SGC until a large fraction of the lattice is traced out [9].
This motivates us to distinguish between the conventional (or
strong) typicality SvN ∼= Sd

∼= SGC and a weaker typicality in
the sense that SvN "= Sd

∼= SGC. The latter implies that only
the diagonal part of the density matrix of the reduced system
in the energy eigenbasis exhibits a thermal structure.
Our results then show that the diagonal entropy satisfies the

key thermodynamic relation:

∂SS

∂ES
=

∂SE

∂EE
=

1

T
, (3)

whereES andEE are the energies of the subsystems. This fol-
lows from the fact that Sd coincides with the thermodynamic
entropy for S and E simultaneously. In contrast, SvN cannot
satisfy this equality, as one can see by considering E # S. In
this case, SvN = SS = SE is proportional to the size of S,
while EE is proportional to the size of E , so ∂SE/∂EE → 0.
Another of our main goals in this work is to understand the

description of few-body observables in the mixed states ob-
tained by the two procedures mentioned before. For that, we
study their expectation values as given by the reduced density
matrix, the diagonal ensemble, and the GC ensemble. The
results for the first two are similar even if very few sites are
traced out and the system sizes are small. This suggests that
either tracing out part of the original system or removing the
same number of sites and waiting for the reduced system to
relax leads to the same results, up to non-extensive bound-
ary terms. For all practical purposes both procedures are then
equivalent. The agreement with the GC expectation values is
also good and improves with increasing system size. This im-
plies that, for few-body observables, only weak typicality is
needed to observe thermal behavior in experiments.
System.– We study hard-core bosons in a one-dimensional

lattice with open-boundary conditions described by

Ĥ = ε

(

n̂1 −
1

2

)

(4)

+
L−1
∑

i=1

[

−t
(

b̂†i b̂i+1 + H.c.
)

+ V

(

n̂i −
1

2

)(

n̂i+1 −
1

2

)]

+
L−2
∑

i=1

[

−t′
(

b̂†i b̂i+2 + H.c.
)

+ V ′

(

n̂i −
1

2

)(

n̂i+2 −
1

2

)]

,

where, t and t′ [V and V ′] are nearest-neighbor (NN) and
next-nearest-neighbor (NNN) hopping [interaction], L is the
chain size, and standard notation has been used [10]. Symme-
tries, and therefore degeneracies, are avoided by considering
1/3-filling and by placing an impurity (ε "= 0) on the first site.
In what follows, t = V = 1 sets the energy scale, ε = 1/5,
and t′ = V ′. When t′ = V ′ = 0, the model is integrable [11].
As the ratio between NNN and NN couplings increases, the
system transitions to the chaotic domain [10]. The results be-
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FIG. 1: (Color online) (a),(b) Entropies per site vs temperature for
R = L/3. (c),(d) Entropies per site vs R for a fixed temperature;
T = 4. (a),(c) t′ = V ′ = 0 (integrable); (b),(d) t′ = V ′ = 0.32
(chaotic). All panels: L = 18.

low depend on the regime (integrable vs nonintegrable), but
not on specific values of the parameters.
For our calculations, we select an eigenstate |Ψj〉 of Ĥ (4),

with energy Ej closest to E =
∑

j Eje−Ej/T /
∑

j e
−Ej/T

corresponding to an effective temperature T . Since SvN =
Sd = 0, this can be seen as the most distant choice for a state
with a thermodynamic entropy. We then trace out a certain
number of sites R ≤ 2L/3, on the right side of the chain,
and study the entropies and observables of the reduced sys-
tem. The reduced density matrix ρ̂S describing the remain-
ing system consists of different subspaces each with a number
N ∈ [max(L/3−R, 0), L/3] of particles.
Entropies.– The von Neumann, diagonal, and GC entropies

are given by Eq. (1), Eq. (2), and

SGC = lnΞ+
ES − µNS

TGC
, (5)

respectively. In Eq. (5), Ξ =
∑

n e
(µNn−En)/TGC is the grand

partition function, TGC is the GC temperature, µ is the chem-
ical potential, and ES = Tr[ĤS ρ̂S ] and NS = Tr[N̂S ρ̂S ] are,
respectively, the average energy and number of particles in the
remaining subsystem S.
Results.– In Fig. 1, we show results for SvN, Sd, and SGC in

the integrable [(a),(c)] and chaotic [(b),(d)] domains. Larger
fluctuations are seen in Figs. 1(a) and 1(c) as characteristic of
the integrable regime. Figs. 1(a) and 1(b) show the entropies
vs different eigenstates, which are increasingly away from the
ground state (T increases), when 1/3 of the sites are traced
out. In the chaotic regime, and for all states selected, one can
see that Sd is close to SGC, while SvN is quite far. This hints
a thermal structure in the diagonal part of the reduced density
matrix in the energy eigenbasis.
In Figs. 1(c) and 1(d) we show results for a fixed T as an in-

creasingly larger fraction of the original system is traced out.
One can see again that in the chaotic limit Sd is much closer
to SGC than to SvN, even when very few sites are traced out.
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FIG. 2: (Color online) (a)–(d) Entropies per site vs 1/L for T =
4 and a fixed ratio R/L (indicated). (e),(f) Full (empty) symbols:
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However, in both regimes, all entropies approach each other as
the fraction of sites traced out increases. For the lattice sizes
considered here, we need to trace out more than one half of the
chain for the effects of the off-diagonal elements of the den-
sity matrix to become irrelevant in SvN, leading this entropy
to finally approach Sd and SGC.
The results presented in Fig. 1 were obtained for L = 18,

the largest system size that we can study with full exact di-
agonalization. Figure 2 depicts the scaling of the entropies in
both domains, integrable [(a),(c)] and nonintegrable [(b),(d)],
and for T = 4. In Figs. 2(a) and 2(b), when L/3 sites are
cut off, Sd and SGC approach each other as L increases, up to
a possible non-extensive correction. This trend is seen for all
systems we have studied in the chaotic regime [14], and opens
up a new question: could cutting off an infinitesimal part of
the original system lead Sd and SGC to be equal in the thermo-
dynamic limit? In Figs. 2(e) and 2(f), we show the difference
between SGC and Sd per site vs system size when tracing out
one, two, or three sites. In the chaotic regime [Fig. 2(f)], the
results are consistent with a vanishing difference in the ther-
modynamic limit (even when cutting one site [14]). This find-
ing is reinforced with the empty symbols, which show the dif-
ference between the microcanonical entropy (Smc) and Sd. In
this case, finite size effects are significantly reduced, leading
to a much better agreement between the two entropies, which
further improves with L [15]. Hence, one could argue that
single eigenstates of generic many-body Hamiltonians have a
thermodynamic entropy [9]. In Figs. 2(a) and 2(b), one can
also see that for R = L/3, the von Neumann entropy (per
site) saturates to a different value from Sd and SGC (per site),
as the lattice size increases. As shown in Figs. 2(c) and 2(d), it
is only when R > L/2 that the three entropies become com-
parable. However, for our system sizes, this happens only in
the chaotic regime.
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Close to the integrable point [Figs. 2(a), 2(c), and 2(e)],
large fluctuations are observed for different values of T and
t′, V ′, which makes it difficult to draw general conclusions.
Fluctuations are indeed expected to be larger in the integrable
regime than in the chaotic one. In the chaotic regime (and
away from the edges of the spectrum) all eigenstates of the
Hamiltonian that are close in energy have (i) a similar struc-
ture, as reflected by the inverse participation ratio and infor-
mation entropy in different bases [10], and (ii) thermal expec-
tation values of few-body observables [4, 5, 16, 17]. How-
ever, this is not the case close to integrability where most
quantities fluctuate wildly between eigenstates close in energy
[4, 5, 10, 17], and this is affecting our results here.
Observables.–An important question we are left to address

is whether the extra information carried by the off-diagonal el-
ements of the reduced density matrix is of relevance to quan-
tities measured experimentally. We focus our analysis on few-
body observables. Their expectation values from the reduced,
diagonal, and grand canonical density matrices are given by

OvN = Tr[Ôρ̂S ], Od =
∑

n

ρnnOnn, (6)

OGC =
1

Ξ

∑

n

Onne
(µNn−En)/T , (7)

respectively. Here, Onn = 〈ψn|Ô|ψn〉 and |ψn〉’s are the
eigenstates of the Hamiltonian in the reduced system.
Results.– Figure 3 shows results for the kinetic energy

K̂ = −t
L−R−1
∑

i=1

(

b̂†i b̂i+1 + H.c.
)

−t′
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and the momentum distribution function,

n̂(k) =
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∑

j,l=1

ei
2πk
L−R

(j−l)b̂†j b̂l, (9)

for an increasingly large fraction of sites traced out. The re-
sults obtained with the three density matrices are comparable,
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FIG. 2: (Color online) (a)–(d) Entropies per site vs 1/L for T =
4 and a fixed ratio R/L (indicated). (e),(f) Full (empty) symbols:
SGC − Sd (Smc − Sd) per site vs 1/L for R = 1, 2, and 3. (a),(c),(e)
t′ = V ′ = 0 (integrable); (b),(d),(f) t′ = V ′ = 0.32 (chaotic).

However, in both regimes, all entropies approach each other as
the fraction of sites traced out increases. For the lattice sizes
considered here, we need to trace out more than one half of the
chain for the effects of the off-diagonal elements of the den-
sity matrix to become irrelevant in SvN, leading this entropy
to finally approach Sd and SGC.
The results presented in Fig. 1 were obtained for L = 18,

the largest system size that we can study with full exact di-
agonalization. Figure 2 depicts the scaling of the entropies in
both domains, integrable [(a),(c)] and nonintegrable [(b),(d)],
and for T = 4. In Figs. 2(a) and 2(b), when L/3 sites are
cut off, Sd and SGC approach each other as L increases, up to
a possible non-extensive correction. This trend is seen for all
systems we have studied in the chaotic regime [14], and opens
up a new question: could cutting off an infinitesimal part of
the original system lead Sd and SGC to be equal in the thermo-
dynamic limit? In Figs. 2(e) and 2(f), we show the difference
between SGC and Sd per site vs system size when tracing out
one, two, or three sites. In the chaotic regime [Fig. 2(f)], the
results are consistent with a vanishing difference in the ther-
modynamic limit (even when cutting one site [14]). This find-
ing is reinforced with the empty symbols, which show the dif-
ference between the microcanonical entropy (Smc) and Sd. In
this case, finite size effects are significantly reduced, leading
to a much better agreement between the two entropies, which
further improves with L [15]. Hence, one could argue that
single eigenstates of generic many-body Hamiltonians have a
thermodynamic entropy [9]. In Figs. 2(a) and 2(b), one can
also see that for R = L/3, the von Neumann entropy (per
site) saturates to a different value from Sd and SGC (per site),
as the lattice size increases. As shown in Figs. 2(c) and 2(d), it
is only when R > L/2 that the three entropies become com-
parable. However, for our system sizes, this happens only in
the chaotic regime.
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Close to the integrable point [Figs. 2(a), 2(c), and 2(e)],
large fluctuations are observed for different values of T and
t′, V ′, which makes it difficult to draw general conclusions.
Fluctuations are indeed expected to be larger in the integrable
regime than in the chaotic one. In the chaotic regime (and
away from the edges of the spectrum) all eigenstates of the
Hamiltonian that are close in energy have (i) a similar struc-
ture, as reflected by the inverse participation ratio and infor-
mation entropy in different bases [10], and (ii) thermal expec-
tation values of few-body observables [4, 5, 16, 17]. How-
ever, this is not the case close to integrability where most
quantities fluctuate wildly between eigenstates close in energy
[4, 5, 10, 17], and this is affecting our results here.
Observables.–An important question we are left to address

is whether the extra information carried by the off-diagonal el-
ements of the reduced density matrix is of relevance to quan-
tities measured experimentally. We focus our analysis on few-
body observables. Their expectation values from the reduced,
diagonal, and grand canonical density matrices are given by
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respectively. Here, Onn = 〈ψn|Ô|ψn〉 and |ψn〉’s are the
eigenstates of the Hamiltonian in the reduced system.
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SGC − Sd (Smc − Sd) per site vs 1/L for R = 1, 2, and 3. (a),(c),(e)
t′ = V ′ = 0 (integrable); (b),(d),(f) t′ = V ′ = 0.32 (chaotic).

However, in both regimes, all entropies approach each other as
the fraction of sites traced out increases. For the lattice sizes
considered here, we need to trace out more than one half of the
chain for the effects of the off-diagonal elements of the den-
sity matrix to become irrelevant in SvN, leading this entropy
to finally approach Sd and SGC.
The results presented in Fig. 1 were obtained for L = 18,

the largest system size that we can study with full exact di-
agonalization. Figure 2 depicts the scaling of the entropies in
both domains, integrable [(a),(c)] and nonintegrable [(b),(d)],
and for T = 4. In Figs. 2(a) and 2(b), when L/3 sites are
cut off, Sd and SGC approach each other as L increases, up to
a possible non-extensive correction. This trend is seen for all
systems we have studied in the chaotic regime [14], and opens
up a new question: could cutting off an infinitesimal part of
the original system lead Sd and SGC to be equal in the thermo-
dynamic limit? In Figs. 2(e) and 2(f), we show the difference
between SGC and Sd per site vs system size when tracing out
one, two, or three sites. In the chaotic regime [Fig. 2(f)], the
results are consistent with a vanishing difference in the ther-
modynamic limit (even when cutting one site [14]). This find-
ing is reinforced with the empty symbols, which show the dif-
ference between the microcanonical entropy (Smc) and Sd. In
this case, finite size effects are significantly reduced, leading
to a much better agreement between the two entropies, which
further improves with L [15]. Hence, one could argue that
single eigenstates of generic many-body Hamiltonians have a
thermodynamic entropy [9]. In Figs. 2(a) and 2(b), one can
also see that for R = L/3, the von Neumann entropy (per
site) saturates to a different value from Sd and SGC (per site),
as the lattice size increases. As shown in Figs. 2(c) and 2(d), it
is only when R > L/2 that the three entropies become com-
parable. However, for our system sizes, this happens only in
the chaotic regime.
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Close to the integrable point [Figs. 2(a), 2(c), and 2(e)],
large fluctuations are observed for different values of T and
t′, V ′, which makes it difficult to draw general conclusions.
Fluctuations are indeed expected to be larger in the integrable
regime than in the chaotic one. In the chaotic regime (and
away from the edges of the spectrum) all eigenstates of the
Hamiltonian that are close in energy have (i) a similar struc-
ture, as reflected by the inverse participation ratio and infor-
mation entropy in different bases [10], and (ii) thermal expec-
tation values of few-body observables [4, 5, 16, 17]. How-
ever, this is not the case close to integrability where most
quantities fluctuate wildly between eigenstates close in energy
[4, 5, 10, 17], and this is affecting our results here.
Observables.–An important question we are left to address

is whether the extra information carried by the off-diagonal el-
ements of the reduced density matrix is of relevance to quan-
tities measured experimentally. We focus our analysis on few-
body observables. Their expectation values from the reduced,
diagonal, and grand canonical density matrices are given by

OvN = Tr[Ôρ̂S ], Od =
∑
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ρnnOnn, (6)

OGC =
1
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∑
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(µNn−En)/T , (7)

respectively. Here, Onn = 〈ψn|Ô|ψn〉 and |ψn〉’s are the
eigenstates of the Hamiltonian in the reduced system.
Results.– Figure 3 shows results for the kinetic energy

K̂ = −t
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)
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However, in both regimes, all entropies approach each other as
the fraction of sites traced out increases. For the lattice sizes
considered here, we need to trace out more than one half of the
chain for the effects of the off-diagonal elements of the den-
sity matrix to become irrelevant in SvN, leading this entropy
to finally approach Sd and SGC.
The results presented in Fig. 1 were obtained for L = 18,

the largest system size that we can study with full exact di-
agonalization. Figure 2 depicts the scaling of the entropies in
both domains, integrable [(a),(c)] and nonintegrable [(b),(d)],
and for T = 4. In Figs. 2(a) and 2(b), when L/3 sites are
cut off, Sd and SGC approach each other as L increases, up to
a possible non-extensive correction. This trend is seen for all
systems we have studied in the chaotic regime [14], and opens
up a new question: could cutting off an infinitesimal part of
the original system lead Sd and SGC to be equal in the thermo-
dynamic limit? In Figs. 2(e) and 2(f), we show the difference
between SGC and Sd per site vs system size when tracing out
one, two, or three sites. In the chaotic regime [Fig. 2(f)], the
results are consistent with a vanishing difference in the ther-
modynamic limit (even when cutting one site [14]). This find-
ing is reinforced with the empty symbols, which show the dif-
ference between the microcanonical entropy (Smc) and Sd. In
this case, finite size effects are significantly reduced, leading
to a much better agreement between the two entropies, which
further improves with L [15]. Hence, one could argue that
single eigenstates of generic many-body Hamiltonians have a
thermodynamic entropy [9]. In Figs. 2(a) and 2(b), one can
also see that for R = L/3, the von Neumann entropy (per
site) saturates to a different value from Sd and SGC (per site),
as the lattice size increases. As shown in Figs. 2(c) and 2(d), it
is only when R > L/2 that the three entropies become com-
parable. However, for our system sizes, this happens only in
the chaotic regime.
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Close to the integrable point [Figs. 2(a), 2(c), and 2(e)],
large fluctuations are observed for different values of T and
t′, V ′, which makes it difficult to draw general conclusions.
Fluctuations are indeed expected to be larger in the integrable
regime than in the chaotic one. In the chaotic regime (and
away from the edges of the spectrum) all eigenstates of the
Hamiltonian that are close in energy have (i) a similar struc-
ture, as reflected by the inverse participation ratio and infor-
mation entropy in different bases [10], and (ii) thermal expec-
tation values of few-body observables [4, 5, 16, 17]. How-
ever, this is not the case close to integrability where most
quantities fluctuate wildly between eigenstates close in energy
[4, 5, 10, 17], and this is affecting our results here.
Observables.–An important question we are left to address

is whether the extra information carried by the off-diagonal el-
ements of the reduced density matrix is of relevance to quan-
tities measured experimentally. We focus our analysis on few-
body observables. Their expectation values from the reduced,
diagonal, and grand canonical density matrices are given by

OvN = Tr[Ôρ̂S ], Od =
∑
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OGC =
1
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respectively. Here, Onn = 〈ψn|Ô|ψn〉 and |ψn〉’s are the
eigenstates of the Hamiltonian in the reduced system.
Results.– Figure 3 shows results for the kinetic energy
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sults obtained with the three density matrices are comparable,

Corollary:	
  entropy	
  –	
  energy	
  uncertainty.	
  There	
  is	
  no	
  temperature	
  in	
  a	
  single	
  eigenstate.	
  In	
  order	
  
to	
  measure	
  temperature	
  –	
  need	
  to	
  couple	
  to	
  thermometer,	
  e.g.	
  a	
  calibrated	
  two	
  level	
  system.	
  
This	
  always	
  mixes	
  exponen5ally	
  many	
  states	
  by	
  ETH.	
  	
  
	
  
Otherwise	
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Quantum	
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  localiza5on	
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  real	
  space	
  
Non-­‐interac5ng	
  electrons	
  in	
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  disordered	
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  Anderson	
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  number	
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  (number	
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  energy	
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  3D	
  and	
  above	
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  Hi	
  energy	
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  localized.	
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  delocalized	
  (ergodic).	
  	
  

Gang	
  of	
  four	
  scaling	
  theory	
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  et.	
  al.,	
  1959)	
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Classical waves offer certain advantages for studying lo-
calization. Unlike electrons, photons don’t interact with each
other, and wave experiments are easy to control experimen-
tally at room temperature; frequency takes over the role of
electron energy. One drawback of classical waves, however, is
that they do not localize at low frequencies, where the mean
free path becomes large due to weak, Rayleigh, scattering. 

To recognize whether incoming classical waves are local-
ized in a material, one could examine how the transmission
scales with system size. In regular diffusive systems, the
transmission is dictated by Ohm’s law, in which the signal in-
tensity falls off linearly with thickness. In the regime of An-
derson localization, the transmission should decay exponen-
tially with length. However, one should be careful to exclude
absorption effects, which also show up as exponential decay. 

A huge advantage of using classical waves is that other
properties in addition to conductance—for example, the sta-
tistical distribution of the intensity, the complex amplitude of
the waves, and their temporal response—can be measured.
All those properties are expected to be strongly influenced
by localization. In particular, the localized regime is pre-
dicted to exhibit large, non-Gaussian fluctuations of the com-
plex field amplitude and long-range correlations in the inten-
sity at different spots or at different frequencies.

Light
Anything translucent scatters light diffusively. Think, for in-
stance, of clouds, fog, white paint, human bones, sea coral,
and white marble. For those and most other naturally disor-
dered optical materials, the scattering strength is far from
that required for 3D Anderson localization. Systems that scat-
ter more strongly can be synthesized, though. For example,
material can be ground into powder, pores etched into solids,
and microspheres suspended in liquids (see figure 5).

For years researchers have worked with titania powder
that is used in paints for its scattering properties. Thanks to
the powder’s high refractive index (about 2.7) and submicron
grain size, mean free paths are on the order of a wavelength.
Experiments reveal clear signs in the breakdown of normal
diffusion. To observe localization the challenge is to maxi-
mize the scattering without introducing absorption. 

One way is to use light whose frequency is less than the
electronic bandgap of a semiconductor so that it cannot be
absorbed but whose refractive index is still high. In 1997, two
of us (Wiersma and Lagendijk) and coworkers ground gal-
lium arsenide into a fine powder and observed nearly com-
plete localization of near- IR light, as deduced from scale-
 dependent diffusion that was measured.12 Two years later

Frank Schuurmans and coworkers etched gallium phosphide
into a porous network. With a mean free path of only 250 nm,
it is, to date, the strongest scatterer of visible light.

The scale dependence of diffusion is also studied using
time- resolved techniques in which the material is excited by
a pulsed femtosecond source. The time evolution of the op-
tical transmission can be measured down to the one- photon
level. As time increases, so does the sample size explored by
the waves. Scale- dependent diffusion may lead to a time-
 dependent diffusion constant. As a result, the transmission
intensity should fall off at a slow, nonexponential rate. In 2006
Maret’s group measured time tails up to 40 ns in titania pow-
ders that had surprisingly large values for the mean free path
(kℓ ≈ 2.5); they found just such a nonexponential time decay
in transmission.13

Microwaves
At the millimeter wavelengths of microwaves, it’s relatively
easy to shape individual particles, such as metal spheres, that
scatter strongly. By randomly placing the spheres in a tubular
waveguide with transverse dimension on the order of a mean
free path (typically 5 cm), one can study the statistics of how
the microwave field fluctuates. The  quasi-1D geometry of 
the system—essentially a thick wire or multimode fiber—is
advantageous because many theoretical predictions become
relevant, mostly from the DMPK theory. That theory owes its
name to its founders—Dorokhov, Mello, Pereyara, and
Kumar—and takes arguments from chaos theory to make
precise predictions about the full statistical properties of a
wire’s transmission when its length exceeds the localization
length.

The onset of localization is again governed by the dimen-
sionless conductance g, which is here essentially equal to the
ratio of the localization length and the sample length. Using
microwaves, Azriel Genack and colleagues have explored a
broad range of g values, including the localized regime g < 1.
Indeed, their observations of anomalous time-dependent
transmission, scale-dependent diffusion, large fluctuations in
transmission, and long-range correlations of both the inten-
sity and the conductance of microwaves have led to a rich
and complete picture of Anderson localization in thick
wires.14 Statistics, their work illustrates, can reveal the onset
of localization even in the presence of optical absorption.

Acoustics
Ultrasound is particularly well-suited for time-dependent lo-
calization studies because of the long times over which energy
can be monitored. As early as 1990, using inhomogeneous 2D

β g( )

β g( ) =

3D

2D

1D

log g

d glog

d Llog

Extended

Quasi-extendedLocalized

Figure 4. According to scaling theory, Anderson localization is a criti-
cal phenomenon, at least in three dimensions. The scaling function β(g)
describes how—or more precisely, with what exponent—the average
conductance g grows with system size L. For a normal ohmic conductor
in D dimensions, the conductance varies as LD − 2; consequently,
β(g) ~ D − 2 for large g. Thus the beta function is positive for three-
 dimensional conductors, zero for two- dimensional conductors, and neg-
ative in one dimension. In the localized regime, g decays exponentially
with sample size so that β(g) is negative. In three dimensions, that leads
to a critical point at which β vanishes for some special value for g associ-
ated with the mobility edge. Lower-dimension systems do not undergo
a genuine phase transition because the conductance always decreases
with system size.  A small 2D conductor, for instance, will look like a
metal in the quasi-extended regime, but all its states are eventually
 localized if the medium is large enough.
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thinking. It took some time before the community grew to realize the significance of

this work. Neville Mott and David Thouless were probably some of the first people to

understand the impact of this work and found its connection to physical realizations

of metal-insulator transitions.

Anderson’s theoretical work at that time was motivated by experiments performed

in George Feher’s group at the Bell Laboratories [2–4]. They were particularly in-

terested in the phenomenon of spin relaxation in phosphorus doped silicon using

electron spin resonance techniques. The electronic wavefunction localized on a phos-

phorus atom in doped silicon has a Bohr radius of ∼ 20 Å. The electron in this state

felt the random environment of Si29 defects in Si28. The relaxation time of the spins

on these donor atoms was of the order of minutes as opposed to milliseconds which

was predicted by theoretical calculations based on Fermi Golden Rule taking into

account phonons and spin-spin interactions.

Figure 1.1: The electron on the donor phosphorus impurities are bound in a hydro-
genic wavefunction with a large Bohr radius. The Si environment is slightly impure
due to the presence of Si29. (Figure from [5])
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body systems are now relevant to experiments, since such systems can be produced

and studied with strongly-interacting ultracold atoms [49]. And they may become rel-

evant for certain systems designed for quantum information processing [50, 51]. Also,

many-body localization may be underlying some highly nonlinear low-temperature

current-voltage characteristics measured in certain thin films [37].

2.1 The model

Many-body localization appears to occur for a wide variety of particle, spin or q-bit

models. Anderson’s original proposal was for a spin system [1]; the specific simple

model we study here is also a spin model, namely the Heisenberg spin-1/2 chain with

random fields along the z-direction [40]:

H =
L
∑

i=1

[hiŜ
z
i + J !̂Si · !̂Si+1] , (2.1)

where the static random fields hi are independent random variables at each site

i, each with a probability distribution that is uniform in [−h, h]. Except when stated

otherwise, we take J = 1. The chains are of length L with periodic boundary con-

ditions. This is one of the simpler models that shows a many-body localization

transition. Since we will be studying the system’s behavior by exact diagonalization,

working with this one-dimensional model that has only two states per site allows us

to probe longer length scales than would be possible for models on higher-dimensional

lattices or with more states per site. We present evidence that at infinite temper-

ature, β = 1/T = 0, and in the thermodynamic limit, L → ∞, the many-body

localization transition at h = hc
∼= 3.5 ± 1.0 does occur in this model. The usual

arguments that forbid phase transitions at nonzero temperature in one dimension do

not apply here, since they rely on equilibrium statistical mechanics, which is exactly

what is failing at the localization transition. We also present indications that this

33

The model we chose to study has a finite band-width. An infinite temperature

limit of such a system is studied by considering states at high energy densities i.e.

eigenstates in the middle of the band. We weigh the observables evaluated from these

states with equal probability in order to study their thermal expectation values. A

practical benifit of working in this limit is the utilization of all the data we acquire

from the full diagonalization of the Hamiltonian which is the most computer time-

consuming part of the calculation.

There are many distinctions between the localized phase at large random field

h > hc and the delocalized phase at h < hc. We call the latter the “ergodic” phase,

although precisely how ergodic it is remains to be fully determined [53]. The dis-

tinctions between the two phases all are due to differences in the properties of the

many-body eigenstates of the Hamiltonian, which of course enter in determining the

dynamics of the isolated system.

Figure 2.1: The phase diagram as a function of relative interaction strength h/J at
T = ∞. The critical point is (h/J)c ≈ 3.5. For h < hc the system is ergodic while
for h > hc, it is many-body localized.

In the ergodic phase (h < hc), the many-body eigenstates are thermal [17, 18,

54, 55], so the isolated quantum system can relax to thermal equilibrium under the
35
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Figure 2.3: The natural logarithm of the mean difference between the local mag-
netizations in adjacent eigenstates (see text). The values of the random field h are
indicated in the legend. In the ergodic phase (small h) where the eigenstates are ther-
mal these differences vanish exponentially in L as L is increased, while they remain
large in the localized phase (large h).

In our figures we show one-standard-deviation error bars. The error bars are

evaluated after a sample-specific average is taken over the different eigenstates and

sites for a particular realization of disorder. Here and in all the data in this work

we restrict our attention to the many-body eigenstates that are in the middle one-

third of the energy-ordered list of states for their sample. Thus we look only at

high energy states and avoid states that represent low temperature. In this energy

range, the difference in energy density between adjacent states n and (n + 1) is of

order
√
L2−L and thus exponentially small in L as L is increased. If the eigenstates

are thermal then adjacent eigenstates represent temperatures that differ only by this

exponentially small amount, so the expectation value of Ŝz
i should be the same in

39

Difference	
  of	
  local	
  magne5za5on	
  between	
  
closest	
  Eigenstates.	
  Check	
  of	
  ETH.	
  	
  

A.	
  Pal,	
  PhD	
  thesis,	
  2012	
  	
  

0.5 2.5 4.5 6.5 8.5 10.5 12.5
0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

[r ! (n
) ]

h
 

 

8
10
12
14
16

Figure 2.8: The ratio of adjacent energy gaps (defined in the text). The sample size L
is indicated in the legend. In the ergodic phase, the system has GOE level statistics,
while in the localized phase the level statistics are Poisson.

which may reverse the direction of the drift and/or reduce the size of the finite-size

effect from the irrelevant operator.

2.5 Spatial correlations

To further explore the finite-size scaling properties of the many-body localization

transition in our model, we next look at spin correlations on length scales of order

the length L of our samples. One of the simplest correlation functions within a

many-body eigenstate |n〉 of the Hamiltonian of sample α is

Czz
nα(i, j) = 〈n|Ŝz

i Ŝ
z
j |n〉α − 〈n|Ŝz

i |n〉α〈n|Ŝz
j |n〉α . (2.13)
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What happens when the systems are not ergodic. 

Chaotic system: rapid 
(exponential) relaxation to 
microcanonical ensemble 

Integrable system: relax to 
constraint equilibrium:  

Quantum language: in both cases relax to the diagonal ensemble 

Integrable systems: generalized Gibbs ensemble (Jaynes 1957, Rigol 2007, J. 
Cardy, F. Essler, P. Calabrese, J.-S. Caux, E. Yuzbashyan …)  
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5. Generalized Gibbs Ensemble

Let Im be local (in space) integrals of motion [Im, In]=[Im, H(h)]=0

In =
�

j

In(j, j + 1, . . . , j + �n)

j j+ln...

in our case
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so-called Zakharov-Kraichnan transformations. They factorize the collision
integral. As a result one can (i) prove directly that Kolmogorov spectra
reduce the collision integral to zero and (ii) find that the Rayleigh-Jeans and
Kolmogorov distributions are the only universal stationary power solutions
of kinetic equation.

3.1.1 Dimensional Estimations and Self-similarity Analysis

This section deals with universal flux distributions corresponding to con-
stant fluxes of integrals of motion in the k-space. In this subsection we shall
show that for scale-invariant media, these solutions may be obtained from
dimensional analysis (see also [3.1,2]).

For complete self-similarity we shall first discuss the possible form of
universal flux distributions n(k) and the corresponding energy spectra
E(k) = (2k)d−1ω(k)n(k). We shall recall how to find the form of the spec-
trum E(k) for the turbulence of an incompressible fluid: in this case here is
only one relevant parameter, the density ρ; and E(k) may be expressed via
ρ, k and the energy flux P . Comparing the dimensions, we obtain

E(k) ! P 2/3k−5/3ρ1/3 (3.1.1)

which is the famous Kolmogorov-Obukhov “5/3 law” [3.3,4].
As we have seen in Sect. 1.1, in the case of wave turbulence there are

always two relevant parameters. We can choose the medium density to be the
first one. In contrast to eddies, waves have frequencies, which may be chosen
as the second parameter. The frequency enables us to arrange dimensionless
parameter

ξ =
Pk5−d

ρω3(k)
,

so E(k) may be determined from dimensional analysis up to an approxima-
tion of the unknown dimensionless function f(ξ):

E(k) = ρω2
kkd−6f

(

Pk5−d/ρω3
k

)

. (3.1.2)

In particular, if we demand that ω(k) be eliminated from (3.1.2), we obtain
f(ξ) ∝ ξ2/3, and (3.1.2) coincides with (3.1.1). In the case of weak wave tur-
bulence the connection between P (k) and n(k) follows from the stationary
kinetic equation:

dP (k)/dk = −(2k)d−1πω(k)I(k) (3.1.3)

which holds in the limit ξ $ 1.
For the three-wave kinetic equation (2.1.12) I(k) ∝ n2(k) and n(k) ∝

P 1/2, and for the four-wave one, n(k) ∝ P 1/3. These expressions may be
unified into one:
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1. Introduction

The theory of wave turbulence studies the stationary states of the statistical classical

(not quantum) system consisting of waves with a small interaction. (on the theory of wave

turbulence see ref. [1] and references therein). Its Hamiltonian can be written down in the

following form

H =
∑

p

ωpa
†
pap +

∑

p1p2p3p4

λp1p2p3p4a
†
p1

a†
p2

ap3ap4 (1.1)

It is just a collection of waves with the energy spectrum ωp and the four wave inter-

action λp1p2p3p4 with the evident properties λp1p2p3p4 = λp2p1p3p4 = λp3p4p1p2 . Let us note

that this Hamiltonian conserves the total wave number

N =
∑

p

a†
pap. (1.2)

The simplest stationary state of this system is a thermodynamic equilibrium and its

probability density is given by the well-known Gibbs distribution exp(−H+µN
T

). The basic

property of thermodynamic equilibrium is that the detailed balance principle is satisfied.

There are as many waves going from the wave-number p1 to p2 as there are ones going

back. However there are other stationary states where that principle is not satisfied, or in

other words, while the total number of waves coming to the given wave number p is zero,

there is a flux of waves through the system. Which state will be chosen by the system

depends on the external conditions. If it interacts with a heat bath satisfying the detailed

balance principle, it will soon settle into the thermodynamic equilibrium. If, on the other

hand, the heat bath is so special that it injects waves to the system at one wave number

and removes them at a different one, then the system will necessarily choose one of those

extra states. A simple example of the latter case is the waves on the surface of water which

are injected by, for example, the ship, at wave lengths of the order of ship length, and are

dissipated at much smaller lengths by viscosity.

The theory of turbulence concerns itself with studying the “flux” states as the thermo-

dynamic equilibrium has already been studied in great details by Statistical Physics. The

standard hydrodynamics turbulence is also the example of the flux states since here we

have a very complicated motion of liquid with a stationary probability distribution which

is characterized by the flux of energy or other conserved quantities through various scales

of vertex motion.
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2. The Probability Distribution

According to the program outlined in the Introduction, first of all we need to study

all possible integrals of motion for the system (1.1). Let us see how one can construct

those integrals. We shall start by assigning the variables ap and a†
p the initial values

ap(t = 0) = a0
p, a†

p(t = 0) = a†0
p . Then by solving the equations of motion one can find

a(t) and a†(t) as functions of a0 and a†0 and time. By inverting those functions, one can

find a0 and a†0 as functions of time, a(t) and a†(t). But by definition a0 and a†0 do not

depend on time. So they are the integrals of motion. If we want to construct something

out of them which can play the role of the density of waves, we should consider the linear

combination

F =
∑

p

fpa
†0
p a0

p (2.1)

where fp are some arbitrary coefficients. After being expressed in terms of a(t), a†(t) and

t it becomes a valid integral of motion. Its explicit time dependence can be eliminated by

passing to the limit t → ∞.

In order to find the explicit form for F we need to solve the equations of motion. The

Hamiltonian (1.1) allows us to solve them perturbatively and we can obtain F in terms of

a series in powers of λ. We can even avoid solving the equations of motion if we use the

following procedure. One should look for F in terms of a power series

F =
∑

p

fpa
†
pap +

∑

Λp1p2p3p4a
†
p1

a†
p2

ap3ap4+

+
∑

Ωp1p2p3p4p5p6a
†
p1

a†
p2

a†
p3

ap4ap5ap6 + . . . .

(2.2)

Here Λ and Ω are some still unknown functions. We impose the condition on F that it is

an integral of motion, or {HF} = 0, { and } being the Poisson brackets. It allows us to

find those functions to get

Λp1p2p3p4 =
fp1 + fp2 − fp3 − fp4

ωp1 + ωp2 − ωp3 − ωp4 − iε
λp1p2p3p4 (2.3)

Ωp1p2p3p4p5p6 = 4
∑

p7

(λp7p1p5p6Λp2p3p4p7 − Λp7p1p5p6λp2p3p4p7)

ωp1 + ωp2 + ωp3 − ωp4 − ωp5 − ωp6 − 2iε
. (2.4)

We can in principle find recursively all the terms in the series (2.2), one after another.

A few words must be said about ε’s which appear in the denominators. Technically,

when we compute Poisson brackets no ε’s appear. But we must introduce them to avoid
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δ′ appears as we have to use (5.12) and (5.13) in giving sense to the expressions we obtained

using the rules discussed above while the convergence of the integrals in (2.11) allows us

not to worry about the boundary terms.

The expression here, when combined with the kinetic equation (2.11), clearly gives

the correction to the frequency in the equation (2.11)

ωp → ωp +

∫

λpqpq

fq
dq (5.15)

While (5.14) is just the first term of the expansion due to (5.15) we can easily prove that

(5.15) can be obtained up to any order if one sums up the diagrams with all possible

tadpole graphs on the external lines. However, more complex diagrams, like the second

one from the fig. 2, can lead to the corrections which cannot be interpreted that easily.

We would like to conclude this section with saying that the technique described here

is more general than the standard field theory approach of the ϕ4 theory. In fact, if we

take the limit of fp → ωp we shall discover that the prefactor computed according to our

rules goes into 1 and the whole expression turns into the standard ϕ4 theory diagram.

This should of course be expected as in this limit F → H. So our Feynman rules should

be treated as the “turbulent” generalization of the standard field theory rules. We believe

many beautiful results are hidden in this new technique.

6. Epsilon Expansion

The kinetic equation (2.11) is in general very difficult to solve (that is, to find such fp

that it is satisfied). However it has long been realized that if both λ and ω are homogeneous

functions of momenta, then we can solve that equation exactly. Namely, following ref. [1]

we choose

ωp = pα, λ"p1"p2"p3"p4 = λ0(p1p2p3p4)
β
4 U(%p1, %p2, %p3, %p4)δ(%p1 + %p2 − %p3 − %p4) (6.1)

where U is a function depending only on the ratio of lengths of the momenta and the

angles between them and λ0 is a small constant. The parameter α is called the energy

spectrum dimension, while β is the interaction dimension. Then the kinetic equation can

be solved with the aid of the so-called Zakharov transformations, to give

fp = pγ , γ =
2

3
β + d or γ =

2

3
β + d −

α

3
(6.2)
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  eigenstate	
  
basis.	
  Delocalized	
  states	
  are	
  always	
  ergodic	
  (irrespec5ve	
  of	
  integrability).	
  

•  Direct	
  analogy	
  between	
  (many-­‐body)	
  Anderson	
  localiza5on	
  and	
  ergodicity.	
  

•  Many-­‐body	
  states	
  are	
  very	
  fragile:	
  5ny	
  perturba5on	
  mixes	
  exponen5ally	
  
many	
  eigenstates.	
  Ensembles	
  are	
  stable.	
  

•  Integrable	
  systems	
  relax	
  to	
  asympto5c	
  states	
  which	
  can	
  be	
  described	
  by	
  the	
  
GGE	
  (generalized	
  Gibbs	
  ensembles)	
  composed	
  of	
  local	
  integrals	
  of	
  mo5on.	
  

•  Weak	
  interac5on	
  can	
  select	
  possible	
  classes	
  of	
  stable	
  GGE	
  state,	
  which	
  
ul5mately	
  thermalize	
  (prethermaliza5on	
  scenario).	
  But	
  s5ll	
  many	
  open	
  
problems	
  remain.	
  



Part	
  II.	
  Applica5ons	
  of	
  ETH	
  to	
  thermodynamics	
  

Thermodynamics	
  (unlike	
  sta5s5cal	
  physics)	
  	
  typically	
  deals	
  with	
  non-­‐equilibrium	
  
processes,	
  which	
  at	
  each	
  stage	
  can	
  be	
  approximated	
  as	
  approximate	
  local	
  equilibrium	
  	
  

Image	
  taken	
  from	
  



Setups	
  considered	
  

1.  Prepare	
  system	
  A	
  in	
  a	
  sta5onary	
  
state	
  (diagonal	
  ensemble)	
  

	
  
	
  
	
  
2.  Apply	
  some	
  5me-­‐dependent	
  

perturba5on	
  (quench)	
  

3.  Let	
  the	
  system	
  relax	
  to	
  a	
  new	
  
steady	
  state	
  

nmnnm δρρ 0)0( =

I.	
  

1.  Prepare	
  systems	
  A	
  and	
  B	
  in	
  	
  
sta5onary	
  states	
  

	
  
	
  
	
  
2.  Connect	
  them	
  by	
  a	
  weak	
  coupling	
  

(quench)	
  for	
  a	
  period	
  of	
  5me	
  .	
  

3.  Disconnect	
  and	
  let	
  the	
  systems	
  
relax	
  to	
  the	
  steady	
  states.	
  (Markov	
  
process).	
  

II.	
  



Fundamental	
  thermodynamic	
  rela5on	
  for	
  open	
  and	
  closed	
  systems	
  

Start	
  from	
  a	
  sta5onary	
  state.	
  Consider	
  some	
  dynamical	
  process	
  

Assume	
  ini5al	
  Gibbs	
  Distribu5on	
  

Combine	
  together	
  

Recover	
  fundamental	
  rela5on	
  with	
  the	
  only	
  assump5on	
  of	
  Gibbs	
  distribu5on	
  	
  

What	
  if	
  we	
  do	
  not	
  have	
  the	
  Gibbs	
  distribu5on?	
  



Imagine	
  we	
  are	
  umping	
  some	
  energy	
  into	
  
an	
  isolated	
  system.	
  Does	
  fundamental	
  
rela5on	
  s5ll	
  apply?	
  	
  	
  

Entropy is a unique function of energy (in the thermodynamic limit) if the 
Hamiltonian is local and density matrix is not (exponentially) sparse. I.e. if 
the system is not localized in the Hilbert space   
Gaussian approximation for W(E), applies even for small systems: 



In	
  delocalized	
  regime,	
  which	
  is	
  always	
  the	
  case	
  if	
  ETH	
  applies	
  

Recover	
  fundamental	
  rela5on	
  +	
  sub-­‐extensive	
  correc5ons	
  from	
  ETH	
  

Integrable	
  	
  systems:	
  sparse	
  distribu5ons	
  

Gives	
  extensive	
  contribu5on	
  comparable	
  to	
  Sm	
  	
  

Can	
  we	
  use	
  GGE	
  density	
  of	
  states?	
  	
  
Integrable	
  Hamiltonian	
  (with	
  L.	
  Santos	
  and	
  M.	
  Rigol)	
  
Filling 1/5, period P=5, quench A 

Solid	
  line	
  Sd	
  
	
  
Dashed	
  lines	
  Sm,	
  SGGE	
  
	
  
GGE	
  is	
  not	
  constraining	
  
enough	
  



Isolated	
  systems.	
  Unitary	
  dynamics.	
  Ini5al	
  sta5onary	
  state.	
  

nmnnm δρρ 0)0( =

Unitarity	
  of	
  the	
  evolu5on:	
  

The	
  only	
  stable	
  distribu5on	
  under	
  these	
  transforma5ons	
  is	
  	
  the	
  infinite	
  temperature	
  
maximum	
  entropy	
  state	
  	
  

Transi5on	
  rates	
  pm->n	
  are	
  non-­‐nega5ve	
  numbers	
  sa5sfying	
  sum	
  rule	
  	
  

1)()( ==∑ ∑ →→
n n

nmmn tptp

In	
  general	
  there	
  is	
  no	
  detailed	
  balance	
  even	
  for	
  cyclic	
  processes	
  (but	
  within	
  the	
  
Fremi-­‐Golden	
  rule	
  or	
  for	
  symmetric	
  protocols	
  there	
  is).	
  



1)()( ==∑ ∑ →→
n n

nmmn tptp

Start	
  from	
  a	
  sta5onary	
  state	
  with	
  monotonically	
  decreasing	
  probability	
  (e.g.	
  Gibbs	
  
distribu5on).	
  Energy	
  can	
  only	
  increase	
  or	
  stay	
  constant,	
  see	
  picture	
  Thirring,	
  Quantum	
  
Mathema5cal	
  Physics,	
  1999,	
  A.	
  E.	
  Allahverdyan,	
  Th.	
  M.	
  Nieuwenhuizen,	
  (2002).	
  	
  

Likewise	
  (diagonal)	
  entropy	
  	
  
sa5sfies	
  the	
  second	
  law:	
  	
  

For	
  any	
  ini5al	
  sta5onary	
  state	
  

)0()0()()(
),0()0()()(

2121 dddd

dnnd

SStStS
SStStS
+≥+

==≥

(thanks	
  to	
  C.	
  Gogolin)	
  

Follows	
  from	
  Araki-­‐Lieb	
  subbadi5vity	
  

Also	
  immediately	
  follows	
  
from	
  the	
  sum	
  rule.	
  

Second	
  law	
  of	
  thermodynamics	
  



Fluctua5on	
  theorems	
  (Bochkov,	
  Kuzovlev,	
  Jarzynski,	
  Crooks)	
  

Ini5al	
  sta5onary	
  state	
  +	
  5me	
  reversability:	
  
Microscopic	
  probabili5es	
  are	
  the	
  same	
  

Eigenstate	
  thermaliza5on	
  hypothesis:	
  microscopic	
  
probabili5es	
  are	
  smooth	
  (independent	
  on	
  m,n)	
  	
  

Bochkov,	
  Kuzivlev,	
  1979,	
  Crooks	
  1998	
  

Probability	
  to	
  do	
  work	
  w	
  

If	
  we	
  assume	
  the	
  Gibbs	
  distribu5on	
  

Crooks	
  equality,	
  C.	
  Crooks,	
  1998,	
  

Jarzynski	
  equality,	
  1997	
  



Jarzynski	
  equality	
  heavily	
  relies	
  on	
  having	
  Gibbs	
  distribu5on,	
  no	
  
equivalence	
  of	
  ensembles.	
  Probe	
  large	
  devia5ons	
  
However,	
  if	
  interested	
  in	
  cumulants	
  can	
  use	
  arbitrary	
  ensembles.	
  
Assume	
  for	
  simplicity	
  a	
  cyclic	
  process	
  Zf=Zi.	
  	
  	
  

It	
  is	
  sufficient	
  to	
  know	
  only	
  the	
  hea5ng	
  rate	
  to	
  find	
  the	
  energy	
  distribu5on!	
  	
  

Fokker-­‐Planck	
  (diffusion)	
  equa5on:	
  

Exercise:	
  expand	
  to	
  the	
  second	
  
order	
  in	
  w.	
  Beat	
  subtle5es	
  

Now	
  can	
  integrate	
  with	
  an	
  arbitrary	
  distribu5on	
  ρ(E).	
  

Second	
  law	
  of	
  thermodynamics.	
  
Einstein-­‐like	
  driw	
  diffusion	
  rela5ons.	
  

Require	
  that	
  high	
  cumulants	
  are	
  small,	
  narrow	
  distribu5on	
  



Simple	
  way	
  to	
  derive	
  the	
  driw	
  diffusion	
  rela5on	
  

For	
  unitary	
  dynamics	
  with	
  arbitrary	
  5me	
  dependent	
  Hamiltonian	
  the	
  avractor	
  is	
  	
  

Plug	
  back	
  to	
  the	
  FP	
  equa5on	
  

Solu5on	
  
The	
  last	
  term	
  is	
  usually	
  suppressed	
  in	
  large	
  systems.	
  It	
  
can	
  be	
  also	
  recovered	
  from	
  the	
  Crooks	
  rela5om	
  

Example	
  (par5cle	
  in	
  a	
  deforming	
  cavity	
  C.	
  Jarzynski	
  ,	
  1992)	
  	
  

Exercise:	
  compute	
  
Equivalent to the 
Lorenz gas 
solvable by  
kinetic equations: 
L. D’Alessio and P. 
Krapivsky. 



Conven5onal	
  hea5ng	
   Nonadiaba5c	
  (microwave)	
  hea5ng	
  

Example:	
  universal	
  energy	
  fluctua5ons	
  for	
  driven	
  thermally	
  isolated	
  
systems	
  (microvawe	
  hea5ng)	
  (G.	
  Bunin,	
  L.	
  D’Alessio,	
  Y.	
  Kafri,	
  A.	
  P.,	
  2011)	
  

Universal	
  non-­‐Gibbs	
  distribu5on	
  
	
  
Dynamical	
  phase	
  transi5ons	
  as	
  a	
  
func5on	
  of	
  the	
  hea5ng	
  protocol	
  (to	
  
the	
  superheated	
  regime).	
  
	
  
Can	
  prepare	
  arbitrarily	
  narrow	
  
distribu5ons.	
  



Open	
  systems	
  (A	
  can	
  be	
  a	
  single	
  spin	
  or	
  macroscopic)	
  

Time	
  reversal	
  symmetry	
  implies	
  Crooks	
  equality:	
  

Sum	
  over	
  eigenstates	
  of	
  B.	
  Use	
  ETH	
  for	
  the	
  system	
  B.	
  

Detailed	
  balance	
  follows	
  from	
  the	
  Crooks	
  	
  equality	
  for	
  the	
  two	
  
systems	
  and	
  ETH	
  for	
  the	
  system	
  B.	
  



Open	
  systems	
  (G.	
  Bunin	
  and	
  Y.	
  Kafri,	
  2011)	
  

Time	
  reversal	
  symmetry	
  implies	
  Crooks	
  equality:	
  

Hence	
  

Jarzynski	
  type	
  rela5on	
  for	
  an	
  open	
  system	
  (require	
  narrow	
  distribu5ons)	
  	
  

Heat	
  flows	
  from	
  hot	
  to	
  cold	
  because	
  of	
  ETH	
  



Example:	
  two	
  coupled	
  black	
  bodies	
  at	
  different	
  temperatures	
  
(with	
  G.	
  Bunin,	
  Y.	
  Kafri,	
  V.	
  Leconte,	
  D.	
  Podolsky)	
  

TA	
   TB	
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Appendix A: Coupled blackbodies

Let’s consider two coupled cavities at different temper-
atures. Each cavity has a thermal gas of photons, and
the photons can leak from one cavity to the other at the
interface between the two. The Hamiltonian is

H =
∑

k,α

!cka†
k,αak,α +

∑

k,α

!ckb†
k,αbk,α +Hint. (16)

Here a, a† and b, b† denote creation and annihilation op-
erators of photons with momentum k and polarization α
in each of the two cavities and k = |k|. We impose reflect-
ing boundary conditions at the surface z = 0 separating
the two cavities, so that kz in the sums is restricted to
positive values. The interaction term

Hint = λ!c
2

∑

α=1

∫

dx dy a†(x,y,0),αb(x,y,0),α + h.c. (17)

effectively converts outgoing a photons from the first cav-
ity into b photons in the second cavity. The prefactor λ
plays the role of the transmission through the barrier sep-
arating the two systems and we assume that the barrier
does not radiate, i.e. it is effectively at zero temperature.
Usual blackbody radiation corresponds to λ = 1.

To calculate the energy transfer between the two sys-
tems we will use Fermi Golden rule treating Hint as
a perturbation. Then, the matrix element squared for
a photon of a given polarization with momentum k =
(kx, ky, kz) in box a to transfer to box b with momentum
k′ = (kx, ky, k′z) is

|λ|2!2c2

L2
n(a)
k

(1 + n(b)
k′ ) (18)

where n(a,b)
k

= 1/(e−βa,b!ck − 1) are the Bose occupation
factors for the two cavities, and L is the linear size of
the cavities along the contact surface. Each such process
leads to an energy transfer !ck. Then, using the Fermi
golden rule and summing over initial and final states, we
find the energy transfer rate from box a to b to be

Wa→b =
|λ|2!c2L2

(2π)3

2
∑

α=1

∫

d3k

∫

dk′z

!ck n(a)
k

(1 + n(b)
k′ )δ(!ck − !ck′).

Taking into account that kz > 0 and k′z > 0, and using
the fact that δ(!ck − !ck′) = kz

!ckδ(kz − k′z), we obtain

Wa→b =
|λ|2!c2L2

4π2

∫ ∞

0
dk k3n(a)

k (1 + n(b)
k ). (19)

This reduces to the usual result for blackbody radiation
when βb = ∞ and λ = 1.

The net energy transfer rate from a to b is then

Aab = Wa→b −Wb→a = |λ|2σ(T 4
a − T 4

b ) (20)

where σ = π2L2

60c2!3 is the Stefan constant. Note that since
the energy density of a blackbody is proportional to T 4

the black body radiation results in a linear A model. We
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et al., Physical Review X 2 011001 (2012)
[12] C. Jarzynski and D. K. Wójcik, Phys. Rev. Lett. 92,
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Appendix A: Coupled blackbodies

Let’s consider two coupled cavities at different temper-
atures. Each cavity has a thermal gas of photons, and
the photons can leak from one cavity to the other at the
interface between the two. The Hamiltonian is

H =
∑

k,α

!cka†
k,αak,α +

∑

k,α

!ckb†
k,αbk,α +Hint. (16)

Here a, a† and b, b† denote creation and annihilation op-
erators of photons with momentum k and polarization α
in each of the two cavities and k = |k|. We impose reflect-
ing boundary conditions at the surface z = 0 separating
the two cavities, so that kz in the sums is restricted to
positive values. The interaction term

Hint = λ!c
2

∑

α=1

∫

dx dy a†(x,y,0),αb(x,y,0),α + h.c. (17)

effectively converts outgoing a photons from the first cav-
ity into b photons in the second cavity. The prefactor λ
plays the role of the transmission through the barrier sep-
arating the two systems and we assume that the barrier
does not radiate, i.e. it is effectively at zero temperature.
Usual blackbody radiation corresponds to λ = 1.

To calculate the energy transfer between the two sys-
tems we will use Fermi Golden rule treating Hint as
a perturbation. Then, the matrix element squared for
a photon of a given polarization with momentum k =
(kx, ky, kz) in box a to transfer to box b with momentum
k′ = (kx, ky, k′z) is

|λ|2!2c2

L2
n(a)
k

(1 + n(b)
k′ ) (18)

where n(a,b)
k

= 1/(e−βa,b!ck − 1) are the Bose occupation
factors for the two cavities, and L is the linear size of
the cavities along the contact surface. Each such process
leads to an energy transfer !ck. Then, using the Fermi
golden rule and summing over initial and final states, we
find the energy transfer rate from box a to b to be

Wa→b =
|λ|2!c2L2

(2π)3

2
∑

α=1

∫

d3k

∫

dk′z

!ck n(a)
k

(1 + n(b)
k′ )δ(!ck − !ck′).

Taking into account that kz > 0 and k′z > 0, and using
the fact that δ(!ck − !ck′) = kz

!ckδ(kz − k′z), we obtain

Wa→b =
|λ|2!c2L2

4π2

∫ ∞

0
dk k3n(a)

k (1 + n(b)
k ). (19)

This reduces to the usual result for blackbody radiation
when βb = ∞ and λ = 1.

The net energy transfer rate from a to b is then

Aab = Wa→b −Wb→a = |λ|2σ(T 4
a − T 4

b ) (20)

where σ = π2L2

60c2!3 is the Stefan constant. Note that since
the energy density of a blackbody is proportional to T 4

the black body radiation results in a linear A model. We

Recoloring	
  operator,	
  	
  
λ	
  –	
  transmission	
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can compute the energy fluctuations in a similar fashion:

Bab =
|λ|2!c2L2

(2π)3

2
∑

α=1

∫

d3k

∫

dk′z (!ck)
2 δ(!ck − !ck′)

×
[

n(a)
k

(1 + n(b)
k′ ) + n(b)

k
(1 + n(a)

k′ )
]

=
|λ|2!2c3L2

(2π)2

∫

dk k4
[

n(a)
k (1 + n(b)

k ) + n(b)
k (1 + n(a)

k )
]

Numerically we find that this expression is well approxi-
mated by

Bab = 8|λ|2σ

[

(TaTb)
5/2 +

45

π4

(

T 5/2
a − T 5/2

b

)2
]

(21)

which satisfies Eq. (4) when Ta ≈ Tb. Applying our for-
malism in a similar fashion to that described in the dis-
cussion of the Fermi gas, we find that the correlations are
always positive.
As a side remark we note that the same result for the

black body radiation can be obtained using a different
type of perturbation

Hint =
λ!c

i

2
∑

α=1

∫

dx dy a†(x,y,0),α∂zb(x,y,z),α

∣

∣

∣

z=0
+ h.c.

(22)
At λ = 1 this perturbation is nothing but the energy
flux operator of photons. The easiest way to check that
this perturbation gives the same result as Eq. (17) is to
discretize the Hamiltonian along the z-direction

Hint = λ
!c

id

2
∑

α=1

∫

dx dy
[

a†(x,y,0),αb(x,y,d),α − h.c.
]

,

(23)
where d is the lattice spacing and and then make the
gauge transformation b → be−iπ/2. This gauge transfor-
mation obviously does not affect H0 while Hint reduces
to Eq. (17) in the continuum limit, using 1/d → δ(z).
Hence we recover the equivalence of the two choices for
the perturbation.

Appendix B: Derivation of Eq. (15)

Here we derive the bound given in Eq. (15). We as-
sume that ∂EiAij > 0 and ∂EjAij < 0, meaning that
the average currents grow when the difference between
Ei and Ej grows. The matrix R is then given by

R =

(

−γ1 − γ2 γ3
γ2 −γ3 − γ4

)

,

where γ1 = −∂E1
A01, γ2 = ∂E1

A12, γ3 = −∂E2
A12, and

γ4 = ∂E2
A23 are all positive numbers. As |Tr (R)| =

|γ1 + γ2 + γ3 + γ4| then max γ ≡ max {γi} ≤ |Tr (R)|.
The correlation is given by

C12 =
B23(γ1 + γ2)γ3 +B01γ2(γ3 + γ4)

2Tr (R) det (R)

−
B12 (γ2γ4 + γ1γ3 + 2γ1γ4)

2Tr (R) det (R)

so that

|C12| ≤
9max (Bij) (max γ)2

2 |Tr (R)| det (R)

≤ 9 〈J〉
|Tr (R)|

det (R)
max

i=0,1,2

(

|βi − βi+1|
−1

)

where in the second equality we used Eq. (4), that at
the steady state 〈J〉 = A01 = A12 = A23, and that
(max γ)2 ≤ [Tr (R)]2. As |Tr (R)| / det (R) = λ−1

1 +
λ−1
2 ≤ 2τ , one obtains Eq. (15)

|C12| ≤ 18 〈J〉 τ max
i=0,1,2

(

|βi − βi+1|
−1

)

.
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atures. Each cavity has a thermal gas of photons, and
the photons can leak from one cavity to the other at the
interface between the two. The Hamiltonian is

H =
∑

k,α

!cka†
k,αak,α +

∑

k,α

!ckb†
k,αbk,α +Hint. (16)

Here a, a† and b, b† denote creation and annihilation op-
erators of photons with momentum k and polarization α
in each of the two cavities and k = |k|. We impose reflect-
ing boundary conditions at the surface z = 0 separating
the two cavities, so that kz in the sums is restricted to
positive values. The interaction term

Hint = λ!c
2

∑

α=1

∫

dx dy a†(x,y,0),αb(x,y,0),α + h.c. (17)

effectively converts outgoing a photons from the first cav-
ity into b photons in the second cavity. The prefactor λ
plays the role of the transmission through the barrier sep-
arating the two systems and we assume that the barrier
does not radiate, i.e. it is effectively at zero temperature.
Usual blackbody radiation corresponds to λ = 1.

To calculate the energy transfer between the two sys-
tems we will use Fermi Golden rule treating Hint as
a perturbation. Then, the matrix element squared for
a photon of a given polarization with momentum k =
(kx, ky, kz) in box a to transfer to box b with momentum
k′ = (kx, ky, k′z) is

|λ|2!2c2

L2
n(a)
k

(1 + n(b)
k′ ) (18)

where n(a,b)
k

= 1/(e−βa,b!ck − 1) are the Bose occupation
factors for the two cavities, and L is the linear size of
the cavities along the contact surface. Each such process
leads to an energy transfer !ck. Then, using the Fermi
golden rule and summing over initial and final states, we
find the energy transfer rate from box a to b to be

Wa→b =
|λ|2!c2L2

(2π)3

2
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α=1

∫

d3k

∫

dk′z

!ck n(a)
k

(1 + n(b)
k′ )δ(!ck − !ck′).

Taking into account that kz > 0 and k′z > 0, and using
the fact that δ(!ck − !ck′) = kz

!ckδ(kz − k′z), we obtain

Wa→b =
|λ|2!c2L2

4π2

∫ ∞

0
dk k3n(a)

k (1 + n(b)
k ). (19)

This reduces to the usual result for blackbody radiation
when βb = ∞ and λ = 1.

The net energy transfer rate from a to b is then

Aab = Wa→b −Wb→a = |λ|2σ(T 4
a − T 4

b ) (20)

where σ = π2L2

60c2!3 is the Stefan constant. Note that since
the energy density of a blackbody is proportional to T 4

the black body radiation results in a linear A model. We
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et al., Physical Review X 2 011001 (2012)
[12] C. Jarzynski and D. K. Wójcik, Phys. Rev. Lett. 92,
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Appendix A: Coupled blackbodies

Let’s consider two coupled cavities at different temper-
atures. Each cavity has a thermal gas of photons, and
the photons can leak from one cavity to the other at the
interface between the two. The Hamiltonian is

H =
∑

k,α

!cka†
k,αak,α +

∑

k,α

!ckb†
k,αbk,α +Hint. (16)

Here a, a† and b, b† denote creation and annihilation op-
erators of photons with momentum k and polarization α
in each of the two cavities and k = |k|. We impose reflect-
ing boundary conditions at the surface z = 0 separating
the two cavities, so that kz in the sums is restricted to
positive values. The interaction term

Hint = λ!c
2

∑

α=1

∫

dx dy a†(x,y,0),αb(x,y,0),α + h.c. (17)

effectively converts outgoing a photons from the first cav-
ity into b photons in the second cavity. The prefactor λ
plays the role of the transmission through the barrier sep-
arating the two systems and we assume that the barrier
does not radiate, i.e. it is effectively at zero temperature.
Usual blackbody radiation corresponds to λ = 1.

To calculate the energy transfer between the two sys-
tems we will use Fermi Golden rule treating Hint as
a perturbation. Then, the matrix element squared for
a photon of a given polarization with momentum k =
(kx, ky, kz) in box a to transfer to box b with momentum
k′ = (kx, ky, k′z) is

|λ|2!2c2

L2
n(a)
k

(1 + n(b)
k′ ) (18)

where n(a,b)
k

= 1/(e−βa,b!ck − 1) are the Bose occupation
factors for the two cavities, and L is the linear size of
the cavities along the contact surface. Each such process
leads to an energy transfer !ck. Then, using the Fermi
golden rule and summing over initial and final states, we
find the energy transfer rate from box a to b to be

Wa→b =
|λ|2!c2L2

(2π)3

2
∑

α=1

∫

d3k

∫

dk′z

!ck n(a)
k

(1 + n(b)
k′ )δ(!ck − !ck′).

Taking into account that kz > 0 and k′z > 0, and using
the fact that δ(!ck − !ck′) = kz

!ckδ(kz − k′z), we obtain

Wa→b =
|λ|2!c2L2

4π2

∫ ∞

0
dk k3n(a)

k (1 + n(b)
k ). (19)

This reduces to the usual result for blackbody radiation
when βb = ∞ and λ = 1.

The net energy transfer rate from a to b is then

Aab = Wa→b −Wb→a = |λ|2σ(T 4
a − T 4

b ) (20)

where σ = π2L2

60c2!3 is the Stefan constant. Note that since
the energy density of a blackbody is proportional to T 4

the black body radiation results in a linear A model. We
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can compute the energy fluctuations in a similar fashion:

Bab =
|λ|2!c2L2

(2π)3

2
∑

α=1

∫

d3k

∫

dk′z (!ck)
2 δ(!ck − !ck′)

×
[

n(a)
k

(1 + n(b)
k′ ) + n(b)

k
(1 + n(a)

k′ )
]

=
|λ|2!2c3L2

(2π)2

∫

dk k4
[

n(a)
k (1 + n(b)

k ) + n(b)
k (1 + n(a)

k )
]

Numerically we find that this expression is well approxi-
mated by

Bab = 8|λ|2σ

[

(TaTb)
5/2 +

45

π4

(

T 5/2
a − T 5/2

b

)2
]

(21)

which satisfies Eq. (4) when Ta ≈ Tb. Applying our for-
malism in a similar fashion to that described in the dis-
cussion of the Fermi gas, we find that the correlations are
always positive.
As a side remark we note that the same result for the

black body radiation can be obtained using a different
type of perturbation

Hint =
λ!c

i

2
∑

α=1

∫

dx dy a†(x,y,0),α∂zb(x,y,z),α

∣

∣

∣

z=0
+ h.c.

(22)
At λ = 1 this perturbation is nothing but the energy
flux operator of photons. The easiest way to check that
this perturbation gives the same result as Eq. (17) is to
discretize the Hamiltonian along the z-direction

Hint = λ
!c

id

2
∑

α=1

∫

dx dy
[

a†(x,y,0),αb(x,y,d),α − h.c.
]

,

(23)
where d is the lattice spacing and and then make the
gauge transformation b → be−iπ/2. This gauge transfor-
mation obviously does not affect H0 while Hint reduces
to Eq. (17) in the continuum limit, using 1/d → δ(z).
Hence we recover the equivalence of the two choices for
the perturbation.

Appendix B: Derivation of Eq. (15)

Here we derive the bound given in Eq. (15). We as-
sume that ∂EiAij > 0 and ∂EjAij < 0, meaning that
the average currents grow when the difference between
Ei and Ej grows. The matrix R is then given by

R =

(

−γ1 − γ2 γ3
γ2 −γ3 − γ4

)

,

where γ1 = −∂E1
A01, γ2 = ∂E1

A12, γ3 = −∂E2
A12, and

γ4 = ∂E2
A23 are all positive numbers. As |Tr (R)| =

|γ1 + γ2 + γ3 + γ4| then max γ ≡ max {γi} ≤ |Tr (R)|.
The correlation is given by

C12 =
B23(γ1 + γ2)γ3 +B01γ2(γ3 + γ4)

2Tr (R) det (R)

−
B12 (γ2γ4 + γ1γ3 + 2γ1γ4)

2Tr (R) det (R)

so that

|C12| ≤
9max (Bij) (max γ)2

2 |Tr (R)| det (R)

≤ 9 〈J〉
|Tr (R)|

det (R)
max

i=0,1,2

(

|βi − βi+1|
−1

)

where in the second equality we used Eq. (4), that at
the steady state 〈J〉 = A01 = A12 = A23, and that
(max γ)2 ≤ [Tr (R)]2. As |Tr (R)| / det (R) = λ−1

1 +
λ−1
2 ≤ 2τ , one obtains Eq. (15)

|C12| ≤ 18 〈J〉 τ max
i=0,1,2

(

|βi − βi+1|
−1

)

.
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can compute the energy fluctuations in a similar fashion:

Bab =
|λ|2!c2L2

(2π)3

2
∑
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d3k

∫

dk′z (!ck)
2 δ(!ck − !ck′)

×
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(2π)2

∫

dk k4
[

n(a)
k (1 + n(b)

k ) + n(b)
k (1 + n(a)

k )
]

Numerically we find that this expression is well approxi-
mated by

Bab = 8|λ|2σ

[

(TaTb)
5/2 +

45

π4

(

T 5/2
a − T 5/2

b

)2
]

(21)

which satisfies Eq. (4) when Ta ≈ Tb. Applying our for-
malism in a similar fashion to that described in the dis-
cussion of the Fermi gas, we find that the correlations are
always positive.
As a side remark we note that the same result for the

black body radiation can be obtained using a different
type of perturbation

Hint =
λ!c

i

2
∑

α=1

∫

dx dy a†(x,y,0),α∂zb(x,y,z),α

∣

∣

∣

z=0
+ h.c.

(22)
At λ = 1 this perturbation is nothing but the energy
flux operator of photons. The easiest way to check that
this perturbation gives the same result as Eq. (17) is to
discretize the Hamiltonian along the z-direction

Hint = λ
!c

id

2
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α=1

∫

dx dy
[

a†(x,y,0),αb(x,y,d),α − h.c.
]

,

(23)
where d is the lattice spacing and and then make the
gauge transformation b → be−iπ/2. This gauge transfor-
mation obviously does not affect H0 while Hint reduces
to Eq. (17) in the continuum limit, using 1/d → δ(z).
Hence we recover the equivalence of the two choices for
the perturbation.

Appendix B: Derivation of Eq. (15)

Here we derive the bound given in Eq. (15). We as-
sume that ∂EiAij > 0 and ∂EjAij < 0, meaning that
the average currents grow when the difference between
Ei and Ej grows. The matrix R is then given by

R =

(

−γ1 − γ2 γ3
γ2 −γ3 − γ4

)

,

where γ1 = −∂E1
A01, γ2 = ∂E1

A12, γ3 = −∂E2
A12, and

γ4 = ∂E2
A23 are all positive numbers. As |Tr (R)| =

|γ1 + γ2 + γ3 + γ4| then max γ ≡ max {γi} ≤ |Tr (R)|.
The correlation is given by

C12 =
B23(γ1 + γ2)γ3 +B01γ2(γ3 + γ4)

2Tr (R) det (R)

−
B12 (γ2γ4 + γ1γ3 + 2γ1γ4)

2Tr (R) det (R)

so that

|C12| ≤
9max (Bij) (max γ)2

2 |Tr (R)| det (R)

≤ 9 〈J〉
|Tr (R)|

det (R)
max

i=0,1,2

(

|βi − βi+1|
−1

)

where in the second equality we used Eq. (4), that at
the steady state 〈J〉 = A01 = A12 = A23, and that
(max γ)2 ≤ [Tr (R)]2. As |Tr (R)| / det (R) = λ−1

1 +
λ−1
2 ≤ 2τ , one obtains Eq. (15)

|C12| ≤ 18 〈J〉 τ max
i=0,1,2

(

|βi − βi+1|
−1

)

.
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can compute the energy fluctuations in a similar fashion:

Bab =
|λ|2!c2L2

(2π)3

2
∑

α=1

∫

d3k

∫

dk′z (!ck)
2 δ(!ck − !ck′)

×
[
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k
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k′ ) + n(b)
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]

=
|λ|2!2c3L2

(2π)2

∫

dk k4
[

n(a)
k (1 + n(b)

k ) + n(b)
k (1 + n(a)

k )
]

Numerically we find that this expression is well approxi-
mated by

Bab = 8|λ|2σ

[

(TaTb)
5/2 +

45

π4

(
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a − T 5/2
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)2
]
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which satisfies Eq. (4) when Ta ≈ Tb. Applying our for-
malism in a similar fashion to that described in the dis-
cussion of the Fermi gas, we find that the correlations are
always positive.
As a side remark we note that the same result for the

black body radiation can be obtained using a different
type of perturbation

Hint =
λ!c

i

2
∑

α=1

∫

dx dy a†(x,y,0),α∂zb(x,y,z),α

∣

∣

∣

z=0
+ h.c.

(22)
At λ = 1 this perturbation is nothing but the energy
flux operator of photons. The easiest way to check that
this perturbation gives the same result as Eq. (17) is to
discretize the Hamiltonian along the z-direction

Hint = λ
!c

id

2
∑

α=1

∫

dx dy
[

a†(x,y,0),αb(x,y,d),α − h.c.
]

,

(23)
where d is the lattice spacing and and then make the
gauge transformation b → be−iπ/2. This gauge transfor-
mation obviously does not affect H0 while Hint reduces
to Eq. (17) in the continuum limit, using 1/d → δ(z).
Hence we recover the equivalence of the two choices for
the perturbation.

Appendix B: Derivation of Eq. (15)

Here we derive the bound given in Eq. (15). We as-
sume that ∂EiAij > 0 and ∂EjAij < 0, meaning that
the average currents grow when the difference between
Ei and Ej grows. The matrix R is then given by

R =

(

−γ1 − γ2 γ3
γ2 −γ3 − γ4

)

,

where γ1 = −∂E1
A01, γ2 = ∂E1

A12, γ3 = −∂E2
A12, and

γ4 = ∂E2
A23 are all positive numbers. As |Tr (R)| =

|γ1 + γ2 + γ3 + γ4| then max γ ≡ max {γi} ≤ |Tr (R)|.
The correlation is given by

C12 =
B23(γ1 + γ2)γ3 +B01γ2(γ3 + γ4)

2Tr (R) det (R)

−
B12 (γ2γ4 + γ1γ3 + 2γ1γ4)

2Tr (R) det (R)

so that

|C12| ≤
9max (Bij) (max γ)2

2 |Tr (R)| det (R)

≤ 9 〈J〉
|Tr (R)|

det (R)
max

i=0,1,2

(

|βi − βi+1|
−1

)

where in the second equality we used Eq. (4), that at
the steady state 〈J〉 = A01 = A12 = A23, and that
(max γ)2 ≤ [Tr (R)]2. As |Tr (R)| / det (R) = λ−1

1 +
λ−1
2 ≤ 2τ , one obtains Eq. (15)

|C12| ≤ 18 〈J〉 τ max
i=0,1,2

(

|βi − βi+1|
−1

)

.

(approximate	
  expression)	
  

A-­‐B	
  rela5on	
  is	
  sa5sfied	
  when	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  otherwise	
  high	
  third	
  order	
  cumulant	
  	
  



(Non-­‐equilibrium)	
  Onsager	
  	
  rela5ons.	
  	
  
Two	
  or	
  more	
  conserved	
  quan55es.	
  

in	
  progress	
  with	
  L.	
  D’Alessio,	
  G.	
  Bunin,	
  Y.	
  Kafri,	
  also	
  P.	
  Gaspard	
  and	
  D.	
  Andrieux	
  (2011)	
  

Time	
  reversibility	
  and	
  
ETH	
  imply	
  the	
  Crooks	
  
rela5on	
  

Onsager	
  rela5ons	
  (cumulant	
  expansion)	
  	
  

This	
  is	
  not	
  a	
  gradient	
  expansion.	
  E.g.	
  temperatures	
  can	
  but	
  need	
  not	
  be	
  close!	
  
Two	
  currents	
  and	
  one	
  current	
  fluctua5on	
  set	
  the	
  other	
  fluctua5on	
  and	
  the	
  cross-­‐
correla5on.	
  Possible	
  applica5ons	
  from	
  spintronics	
  to	
  black	
  hole	
  radia5on.	
  

Two	
  independent	
  Jarzynski	
  rela5ons:	
  



Energy	
  localiza5on	
  transi5on	
  in	
  periodically	
  driven	
  systems	
  	
  
(with	
  L.	
  D’Alessio)	
  

Instead	
  of	
  a	
  single	
  quench	
  consider	
  a	
  periodic	
  sequence	
  of	
  pulses:	
  

What	
  is	
  the	
  long	
  5me	
  limit	
  in	
  
this	
  system?	
  

Fermi-­‐Ulam	
  problem	
  (prototype	
  of	
  
the	
  Fermi	
  accelera5on	
  problem).	
  

7

Fermi Acceleration

The so-called Fermi acceleration – the acceleration of a particle through col-
lision with an oscillating wall – is one of the most famous model systems for
understanding nonlinear Hamiltonian dynamics. The problem was introduced
by Fermi [1] in connection with studies of the acceleration mechanism of cos-
mic particles through fluctuating magnetic fields. Similar mechanisms have
been studied for accelerating cosmic rockets by planetary or stellar gravita-
tional fields. One of the most interesting aspects of such models is the deter-
mination of criteria for stochastic (statistical) behavior, despite the strictly
deterministic dynamics.

Here, we study the simplest example of a Fermi acceleration model, which
was originally studied by Ulam [2] : a point mass moving between a fixed
and oscillating wall (see Fig. 7.1). Since then, this model system has been
investigated by many authors, e.g., Zaslavskii and Chirikov [3], Brahic [4],
Lichtenberg, Lieberman, and their coworkers [5]–[8], and it is certainly one of
the first examples of the variety of kicked systems which appear in numerous
studies of nonlinear dynamics.

!
!
v

!

"

L

!
"2a

fixed wall

oscillating wall

Fig. 7.1. Model for Fermi acceleration.
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Fig. 7.2. Different wall oscillations.

(G.	
  M.	
  Zaslavskii	
  and	
  B.	
  V.	
  Chirikov,	
  1964	
  
M.	
  A.	
  Liberman	
  and	
  J.	
  Lichenberg	
  1972)	
  

M =
L

16a

7.3 Computer Experiments 149

Fig. 7.14. Poincaré phase space sec-
tion for a harmonic wall oscillation with
M = 20. Iterations of several selected
trajectories.

Fig. 7.15. Poincaré phase space sec-
tion for a harmonic wall oscillation with
M = 40. Iterations of several selected
trajectories.

For the absolute barrier, one finds the simple approximate expression [6]

ub ≈ 2.8
√

M , (7.17)

which is supported by the double logarithmic plot in Fig. 7.13 (taken from
Ref. [5] ). These data agree, of course, with the values ub = 12.9 and 27.5
obtained numerically in the above experiments.

Equation (7.17), however, describes only the overall features of the growth
of the stochastic sea with increasing M and does not account for the finer
details. When we compare the Poincaré phase space sections for M = 10
(Fig. 7.6) and M = 100 (Fig. 7.5), we observe the highest period-one fixed
point at u = M/m, with m = 1 in the first case and m = 4 in the second.
Therefore, the three fixed points with m = 1, 2, and 3 disappear from the
chaotic sea when M is increased from 10 to 100. Here, we study this mechanism
in some more detail.

Figures 7.14 and 7.15 show Poincaré sections for M = 20 and 40. Locating
the fixed points in the centers of the large stability islands embedded in the
chaotic sea at u = 10 or 13.3, respectively, we readily identify them as m = 2
or m = 3 fixed points. The maximum values of the velocity accessible for
acceleration from small velocities is given by ub = 12.5 and 15.8, respectively.

The fixed points with lower m are located above these ub values and a
KAM curve separates these higher fixed points from the lower ones. It should
also be noted that the value of ub = 12.5 for M = 20 is smaller than that
that of ub = 12.9 for M = 10, despite the overall increase predicted in
(7.17) and shown in Fig. 7.13. This justifies a more detailed numerical study

Small	
  energies:	
  chaos	
  
and	
  diffusion.	
  Large	
  
energies	
  –	
  periodic	
  
mo5on.	
  Energy	
  stays	
  
localized	
  within	
  the	
  
chao5c	
  region.	
  	
  
	
  
	
  
Stochas5c	
  mo5on	
  –	
  
infinite	
  accelera5on.	
  

g

g0

g1

time
T1 T2



Kicked	
  rotor	
  (realiza5on	
  of	
  standard	
  Chirikov	
  map)	
  
Transi5on	
  from	
  regular	
  (localized)	
  to	
  chao5c	
  
(delocalized)	
  mo5on	
  as	
  K	
  increases.	
  Chirikov,	
  1971	
  

K=0.5	
   K=Kg=0.971635	
   K=5	
   (images	
  taken	
  from	
  
scholarpedia.org)	
  

Delocaliza5on	
  transi5on	
  at	
  Kc≅1.2	
  (B.	
  Chirikov	
  (1979)).	
  

Quantum	
  systems:	
  (dynamical)	
  localiza5on	
  due	
  to	
  interference	
  even	
  
in	
  the	
  chao5c	
  regime	
  (F.	
  Izrailev,	
  B.	
  Chirikov,	
  …	
  1979).	
  

What	
  about	
  periodically	
  driven	
  ergodic	
  systems	
  in	
  thermodynamic	
  limit?	
  



Example:	
  Kapitza	
  pendulum	
  (emerged	
  from	
  par5cle	
  accelerators,	
  1951)	
  

The equation of motion of the Kapitza pendulum reads

θ̈ = −
�
ω2
0 +

a

l
γ2 cos (γt)

�
sin θ (1)

where θ is the angle measured from the downward position (see Fig. 1),

ω0 =

�
g
l is the frequency of small oscillations and a, γ are the amplitude and

frequency of the driving of the point of suspension: yc = −a cos (γt). This

dynamical system has an extremely rich behavior containing both regions

of chaotic and regular motion (see Ref. [14] and references therein). For

our purposes we consider the limit of small driving amplitude a/l � 1 and

describe how the dynamical behavior qualitatively changes as a function of

the driving frequency.

For a small amplitude drive the lower equilibrium at θ = 0 remains stable

unless particular parametric resonance conditions
γ
ω0

≈ 2
n with n = integer,

are met [22]. As we increase the frequency of the external drive from γ ≈ 2ω0

we observe qualitatively different regimes. First the motion in phase space

is completely chaotic and both the lower and upper equilibrium (θ = 0,π)
are unstable, then the lower equilibrium becomes stable while the upper

equilibrium remains unstable, finally when
a
l

γ
ω0

>
√
2 both the upper and

lower equilibrium are stable. The surprising phenomenon that the upper

position becomes stable (and the pendulum performs oscillations around

this inverted position) is known in the literature as dynamical stabilization

and was first explained by Kapitza. He showed that for small amplitude

and high frequency driving the dynamic of the driven pendulum can be

accurately described by a time-independent effective Hamiltonian, moreover

the effective potential energy develops a local minimum at θ = π when
a
l

γ
ω0

>
√
2 explaining the oscillations around the inverted position.

Usually the dynamical stabilization is obtained by splitting the degrees of

freedom into fast and slow modes, eliminating the fast modes, and obtaining

the effective potential for the slow modes [22]. This procedure has a limi-

tation that it can not be easily extended to either interacting systems or to

the quantum domain. It is also unclear whether averaging over fast degrees

of freedom will lead to the Hamiltonian equation of motion in each order of

the expansion. Here we show that the dynamical stabilization phenomenon

can be understood through the Magnus expansion of the quantum evolution

operator in powers of the inverse frequency (a relate perturbative analysis in

powers of the inverse frequency was studied in [20, 21]) . The advantage of

this method is that allows us to analyze behavior of the periodically driven

interacting systems.
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Figure 1: Schematic representation of the Kapitza pendulum, i.e. a rigid pendulum
with vertically oscillating point of suspension, and its phase portraits. (a) The Kapitza
pendulum. (b) Non-driven regime: the pendulum performs small oscillations around the
stable lower equilibrium which are represented by the red line in the phase portrait. (c)
Dynamical stabilization regime: the pendulum performs small oscillations around the
stable upper equilibrium which are represented by the red line in the phase portrait. In
the phase portraits the green lines correspond to rotations, the black lines to oscillations,
the blue lines are the separatrices and the points represent the region of chaotic motion.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

with the recent experimental findings on a AC-driven electron glass [19]. In
this experiment, the energy absorbed by the electrons from the AC-driving,
is related to the variation in the conductance which can be directly mea-
sured and it is convincingly shown that at high frequency (short period) the
electron glass does not absorb energy. Moreover, it is shown that the criti-
cal frequency is set by the electron-phonon interactions and it is much lower
than the maximum rate of energy exchange which is set by electron-electron
interactions. Finally, we will show a strong evidence for this transition using
examples of classical and quantum interacting spin systems.

2. The Kapitza pendulum

Before addressing the many-particle problem we will discuss a much
simpler example of a periodically driven system, the so called Kapitza pen-
dulum [13] and show how the Magnus expansion can be used to derive the
effective potential. The Kapitza pendulum is a classical rigid pendulum with
a vertically oscillating point of suspension (see Fig. 1).

4

Stable	
  inverted	
  equilibrium	
  for	
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θ̈ = −
�
ω2
0 +

a

l
γ2 cos (γt)

�
sin θ (1)

where θ is the angle measured from the downward position (see Fig. 1),

ω0 =

�
g
l is the frequency of small oscillations and a, γ are the amplitude and

frequency of the driving of the point of suspension: yc = −a cos (γt). This

dynamical system has an extremely rich behavior containing both regions

of chaotic and regular motion (see Ref. [14] and references therein). For

our purposes we consider the limit of small driving amplitude a/l � 1 and

describe how the dynamical behavior qualitatively changes as a function of

the driving frequency.

For a small amplitude drive the lower equilibrium at θ = 0 remains stable

unless particular parametric resonance conditions
γ
ω0

≈ 2
n with n = integer,

are met [22]. As we increase the frequency of the external drive from γ ≈ 2ω0

we observe qualitatively different regimes. First the motion in phase space

is completely chaotic and both the lower and upper equilibrium (θ = 0,π)
are unstable, then the lower equilibrium becomes stable while the upper

equilibrium remains unstable, finally when
a
l

γ
ω0

>
√
2 both the upper and

lower equilibrium are stable. The surprising phenomenon that the upper

position becomes stable (and the pendulum performs oscillations around

this inverted position) is known in the literature as dynamical stabilization

and was first explained by Kapitza. He showed that for small amplitude

and high frequency driving the dynamic of the driven pendulum can be

accurately described by a time-independent effective Hamiltonian, moreover

the effective potential energy develops a local minimum at θ = π when
a
l

γ
ω0

>
√
2 explaining the oscillations around the inverted position.

Usually the dynamical stabilization is obtained by splitting the degrees of

freedom into fast and slow modes, eliminating the fast modes, and obtaining

the effective potential for the slow modes [22]. This procedure has a limi-

tation that it can not be easily extended to either interacting systems or to

the quantum domain. It is also unclear whether averaging over fast degrees

of freedom will lead to the Hamiltonian equation of motion in each order of

the expansion. Here we show that the dynamical stabilization phenomenon

can be understood through the Magnus expansion of the quantum evolution

operator in powers of the inverse frequency (a relate perturbative analysis in

powers of the inverse frequency was studied in [20, 21]) . The advantage of

this method is that allows us to analyze behavior of the periodically driven

interacting systems.
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New	
  non-­‐equilibrium	
  phases	
  and	
  phase	
  transi5ons	
  

Stability:	
  experimentally	
  proven	
  by	
  Kapitsa	
  using	
  
Singer	
  sewing	
  machine	
  and	
  by	
  Arnold	
  using	
  razor.	
  	
  
	
  
Theore5cally	
  proven	
  by	
  Arnold	
  using	
  KAM	
  
theorem	
  



Light	
  induced	
  Superconduc5vity	
  in	
  a	
  
Stripe-­‐ordered	
  Cuprate	
  

D.	
  Faus5,	
  et	
  all,	
  Science	
  331,	
  189	
  (2011)	
  

Image	
  taken	
  from	
  A.	
  Cavalleri	
  web	
  page	
  

Further	
  experimental	
  progress	
  

Exciton-­‐Polariton	
  condensates	
  in	
  driven-­‐
dissipia5ve	
  system	
  	
  

J.	
  Kasprzak	
  et.	
  al,	
  Nature,	
  443,	
  409	
  (2006)	
  	
  

Interes5ng	
  unpublished	
  results	
  from	
  R.	
  
Averiv	
  group	
  in	
  VO2	
  driven	
  by	
  THz	
  pump.	
  



Periodic	
  drive:	
  wave	
  func5on	
  (density	
  matrix)	
  awer	
  n-­‐periods	
  

Magnus	
  expansion:	
  

•  Each	
  term	
  in	
  the	
  expansion	
  is	
  extensive	
  and	
  local	
  (like	
  in	
  high	
  temperature	
  expansion)	
  
•  Higher	
  order	
  terms	
  are	
  suppressed	
  by	
  the	
  period	
  T	
  but	
  become	
  more	
  and	
  more	
  non-­‐local.	
  
•  Compe55on	
  between	
  suppression	
  of	
  higher	
  order	
  term	
  and	
  their	
  non-­‐locality	
  –	
  similar	
  to	
  

many-­‐body	
  localiza5on.	
  
•  The	
  expansion	
  is	
  well	
  defined	
  classically	
  if	
  we	
  change	
  commutators	
  to	
  the	
  Poisson	
  brackets.	
  

Time	
  evolu5on	
  is	
  like	
  a	
  single	
  
quench	
  to	
  the	
  Floquet	
  Hamiltonian	
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FIG. 2: Two equivalent description of the driving protocol: (left) sequence of sudden quenches between H0

and H1 and (right) single quench from H0 to the effective Floquet Hamiltonian Heff and back to H0.

external magnetic field and the Hamiltonian H1 to be interacting and ergodic:

H0 = BxHBx, H1 = JzHz + J
�
zH

�
z + J�H� + J

�
�H

�
� (7)

where, we have defined the shorthand notations::

HBx =
�

n s
x
n, Hz =

�
n

�
s
z
ns

z
n+1

�
, H� =

�
n

�
s
x
ns

x
n+1 + s

y
ns

y
n+1

�

H
�
z =

�
n

�
s
z
ns

z
n+2

�
, H

�
� =

�
i

�
s
x
ns

x
n+2 + s

y
ns

y
n+2

�

Let us point that this system is invariant under space translation and π − rotation around the

x − axis (sxn → s
x
n, s

y
n → −s

y
n, szn → −s

z
n). For numerical calculations we choose the following

parameters: Bx = 1, Jz = −J
�
� = 1

2 , J
�
z = 1

40 , J� = −1
4 . We checked that our results are not tied

to any particular choice of couplings.

As pointed out earlier, we can expect two qualitatively different regimes depending on the

period of the driving. At long periods the system has enough time to relax to the stationary state

between the pulses and thus is expected to constantly absorb energy until it reaches the infinite

temperature. This situation is similar to what happens for driving with random periods26. On the

contrary if the period is very short we can expect that the Floquet Hamiltonian converges to the

time averaged Hamiltonian. Since the whole time evolution can be viewed as a single quench to

the Floquet Hamiltonian (right panel in Fig. 2) we expect that the energy will be localized even in

the infinite time limit as long as the Floquet Hamiltonian is well defined and local. Noticing that

the commutator of two local extensive operators is local and extensive we see from Eq. (5) that

the Floquet Hamiltonian is local an extensive in each order of ME. Thus the question of whether

the energy of the system is localized in the infinite time limit or reaches the maximum possible



Magnus	
  (short-­‐period)	
  expansion	
  for	
  the	
  Kapitza	
  pendulum	
  
L.	
  D’Alessio	
  and	
  A.P.	
  2013	
  (original	
  explana5on,	
  Kapitza	
  1951)	
  

dynamical stabilization condition, first obtained by Kapitza. The quantum

time-dependent Hamiltonian for the Kapitza pendulum is:

Ĥ(t) =
1

2m
p̂
2
θ + f(t) cos θ̂ (A.1)

where f(t) = −m
�
ω
2
0 +

a
l γ

2
cos (γt)

�
and θ̂, p̂θ are quantum operators with

canonical commutation relations

�
θ̂; p̂θ

�
= i�. The explicit form of the first

three terms in the ME are (see the review article [24]):

Ĥ
(1)
eff =

1
T

�
Ĥ(t1)

Ĥ
(2)
eff =

1
2T (i�)

�� �
Ĥ(t1); Ĥ(t2)

�

Ĥ
(3)
eff =

1
6T (i�)2

��� ��
Ĥ(t1);

�
Ĥ(t2); Ĥ(t3)

��
+

�
Ĥ(t3);

�
Ĥ(t2); Ĥ(t1)

���

(A.2)

where the time integration domains are ordered, i.e. 0 < tn < tn−1 < ... <

t1 < T . Recalling that the period of the driving is T =
2π
γ after some simple

algebra we obtain:

Ĥ
(1)
eff =

1
2m p̂

2
θ −mω

2
0 cos θ̂

Ĥ
(2)
eff = 0

Ĥ
(3)
eff = −

�
1
4m

a
l

� [p̂2θ;[p̂2θ;cos θ̂]]
(i�)2 +

m
2

�
a
l ω

2
0 −

�γa
2l

�2� [cos θ̂;[p̂2θ;cos θ̂]]

(i�)2

(A.3)

Substituting the explicit value for the commutators in Ĥ
(3)
eff we obtain:

Ĥ
(3)
eff =

�
1

4m

a

l

��
p̂
2
θ cos θ̂ + 2p̂θ cos θ̂p̂θ + cos θ̂p̂

2
θ

�
+m

��
aγ

2l

�2
− a

l
ω
2
0

�
sin

2
θ̂

(A.4)

Combining Eqs. (A.3) and Eq. (A.4) we obtain the first three terms in ME

for the quantum Kapitza pendulum. Up to this order, the classical ME (see

Eq. (6) in the main text) can be obtained from the quantum counterpart by

substituting the quantum operators with classical variables. This is not true

in general and a more rigorous approach is necessary to derive the classical

limit of the ME.

Before showing the general approach to obtain the classical limit of the

ME we note that the first three terms in the ME suffice to explain the

dynamical stabilization of the classical Kapitza pendulum. Let us assume

that
a
l ω

2
0 �

�aγ
2l

�2
(we will check this assumption a posteriori) then by

collecting the terms in H
(1)
eff and H

(3)
eff that involve only the coordinates we
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Ĥ
(3)
eff =

1
6T (i�)2

��� ��
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Ĥ
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where the time integration domains are ordered, i.e. 0 < tn < tn−1 < ... <

t1 < T . Recalling that the period of the driving is T =
2π
γ after some simple

algebra we obtain:
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Substituting the explicit value for the commutators in Ĥ
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eff we obtain:
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Combining Eqs. (A.3) and Eq. (A.4) we obtain the first three terms in ME

for the quantum Kapitza pendulum. Up to this order, the classical ME (see

Eq. (6) in the main text) can be obtained from the quantum counterpart by

substituting the quantum operators with classical variables. This is not true

in general and a more rigorous approach is necessary to derive the classical

limit of the ME.

Before showing the general approach to obtain the classical limit of the

ME we note that the first three terms in the ME suffice to explain the

dynamical stabilization of the classical Kapitza pendulum. Let us assume

that
a
l ω

2
0 �

�aγ
2l

�2
(we will check this assumption a posteriori) then by

collecting the terms in H
(1)
eff and H

(3)
eff that involve only the coordinates we
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Ĥ(t3);

�
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Combining Eqs. (A.3) and Eq. (A.4) we obtain the first three terms in ME

for the quantum Kapitza pendulum. Up to this order, the classical ME (see

Eq. (6) in the main text) can be obtained from the quantum counterpart by

substituting the quantum operators with classical variables. This is not true

in general and a more rigorous approach is necessary to derive the classical

limit of the ME.

Before showing the general approach to obtain the classical limit of the

ME we note that the first three terms in the ME suffice to explain the

dynamical stabilization of the classical Kapitza pendulum. Let us assume

that
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FIG. 3: (Color online) Excess energy of the quantum spin chain in the long time limit: Q =

�ψ(t)|H0|ψ(t)�t→∞ − Egs, where Egs is the ground state energy of the Hamiltonian H0, as a function

of the pulse times T0 and T1 in units of �/Bx. Blue (orange) regions correspond to small (large) excess

energy. The data is obtained by the exact diagonalization of a spin-
1
2 chain with N = 15 spins.

of �/Bx) no matter how small T1 or the coupling constants in H1 (the Js) are. The location of

the singularity is also manifestly independent of the system size. As it is seen from the numerical

simulations (Fig. 3), the singularity in the effective Hamiltonian is also manifested in the excess

energy of the system in the infinite time limit. We point out that, in the limit of small T1, our

system directly extends the kicked rotor model to the many-spin domain. Indeed most of the time

the spins precess around the magnetic field Bx getting periodically short kicks by the interacting

Hamiltonian H1. Thus in this limit the many-body localization transition directly generalizes the

well known kicked rotor localization transition
11,12

.

Away from the T0 − axis, nested commutators of order T
n
1 for n > 1 need to be included in

the effective Hamiltonian. These commutators become difficult to compute analytically at high n.

Like in the high temperature expansion in statistical physics they involve multiple spin interactions

and become non-local in space. Therefore we have to rely on numerics. In Fig. 4 we analyze the

long time limit of the excess energy along the generic direction T1 = T0 − 2 for 2 ≤ T0 ≤ 3 (pink

arrow in Fig. 3).

In Fig. 5 we show the error between the exact asymptotic value of the normalized excess energy

(see Fig. 4) and the corresponding excess energies obtained by truncating the ME. From the left

panel we see that, as expected, for short periods the ME becomes asymptotically exact. From the
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FIG. 2: (Color online) Long time absorbed energy, �ψ(t =
∞)|H0|ψ(t = ∞)�, as a function of the parameters, T0 and
T1, of the driving protocol. Blue (orange) regions corresponds
to little (large) absorbed energy. The data are obtained by
exact diagonalization (in the k = 0 momentum sector) of a
quantum spin- 12 chain with N = 15 spins.

can be computed to first order in T1 using the Hausdorff-

Baker-Campbell formula (HBC) [14]. For the present

problem, due to the simple form of the H0, it is pos-

sible to resum this series and obtain the following non-

perturbative expression in T0 (see Appendix):

Heff = Hav−
T1

2T

�
1− λ cot

�
λ

2

�
+ λ cot(λ)

�
M+O(T

2
1 )

(9)

where Hav ≡
1
T (H0T0 +H1T1) is the time-averaged

Hamiltonian, M is a simple operator that couples

nearest-neighbor and next-nearest-neighbor spins and

λ ≡
BxT0

� . The effective Hamiltonian above is singu-

lar for λ = nπ with n = integer which corresponds to

T0 = nπ (we have set � = 1 and Bx = 1). Since the

time-evolution for the time-dependent problem can be

obtained by a single quench from H0 to Heff (see Fig.

1) we expect that any singularity in Heff will show up

as a singularity in the dynamical behavior of the sys-

tem. This is clearly shown in Fig. 2. We stress that

the location of the singularity, Tc, is determined by the

single particle energy scale (Bx) and it is independent on

the system size. Before moving forward we note that for

T1 → 0, in each cycle of the driving the spins precess

independently around the x − axis (under the action of

H0) and are “δ-kicked” by switching on the spin interac-

tions (H1) for an infinitesimal time. It seems plausible

that the transition we have just described is the exten-

sion to coupled-systems of the well known kicked rotor

localization transition [15].

Away from the T0−axis, nested commutators of order

T
n
1 for n > 1 need to be included in the effective Hamil-

tonian. These commutators becomes difficult to compute

very quickly and the effective Hamiltonian becomes non-

local (this is similar to what happens in the HTE where
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FIG. 3: (Color online) Normalized asymptotic value of the

energy, 2
�H0�(t=∞)−Egs

(Emax−Egs)
where Egs and Emax are the lowest

and highest eigenvalues of H0, along the line pink line of Fig.
2. The exact results for different system sizes are compared
with the predictions obtained by truncating the Magnus Ex-
pansion to different orders (see main text).
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of the ME (right panel). The horizontal dotted lines are a
guide for the eye.

larger cluster are generated at each order of perturba-

tion theory). Thus away from the T0 − axis we rely on

the numerics. In Fig. 3 we study the behaviour along

the line-cut T1 = T0 − 2 for 2 ≤ T0 ≤ 3 (pink line in

Fig. 2). In Fig. 3 the exact results for different system

sizes, L = 10, ..., 17, are shown together with the predic-

tions obtained by truncating the ME at different orders:

Heff (k) contains terms of order T
m
0 T

n
1 with m+ n ≤ k.

In particular Heff (1) is the time averaged Hamiltonian

and Heff (∞+5) contains the not-perturbative result Eq.

9 together with all the terms T
m
0 T

n
1 with m+ n ≤ 5. In

Fig. 4 we study the error between the exact asymptotic

value and the one obtained by truncating the ME. In

particular, in the left panel it is shown the error for fixed

system size, L = 15, and different approximations of the

ME. We note that by adding more terms in the ME the

Energy	
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III. BEHAVIOR OF THE DIAGONAL ENTROPY ACROSS THE LOCALIZATION

TRANSITION FOR THE INTERACTING QUANTUM SPIN CHAIN
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FIG. 1: (Color online) (Color online) Asymptotic value of the normalized diagonal entropy, Sd/Smax where

Smax is the logarithm of the total number of the microstates. The exact results for different system sizes are

compared with the predictions obtained by truncating the Magnus Expansion to different orders: Heff (k)

contains terms of order T
m
0 T

n
1 with m+ n ≤ k and Heff (∞+ 5) denotes the non-perturbative result in T0

(Eq. (8) in the main text) together with all the other terms T
m
0 T

n
1 with m + n ≤ 5. The results from the

Magnus Expansion for different system sizes are identical within the image resolution.

In this Section we show our numerical results for the behavior of the diagonal entropy across the

localization transition. The diagonal entropy [6] is defined as Sd(t) = −
�

k p
k
0(t) log p

k
0(t) where

p
k
0(t) is the occupation probability at time t of the k − th eigenstate of H0. The diagonal entropy

serves as a measure of the occupation in the Hilbert space. As in Fig. 4 in the main text we study

the behavior along the generic line T1 = T0− 2 for 2 ≤ T0 ≤ 3. In particular, in Fig. 1 we show the

asymptotic value the diagonal entropy for different system sizes and we compare it to the values

obtained by truncating the ME to different orders. The asymptotic values have been computed

by projecting the initial state to the eigenstates of Heff and then back to H0. This procedure is

equivalent to the assumption of infinite time averaging with respect to Heff and the asymptotic

values obtained correspond to the prediction of the diagonal ensemble of Heff . Fig. 1 shows that

the energy increase observed in Fig. 4 of the main text is indeed caused by a delocalization of

Entropy	
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7.3 Computer Experiments 149

Fig. 7.14. Poincaré phase space sec-
tion for a harmonic wall oscillation with
M = 20. Iterations of several selected
trajectories.

Fig. 7.15. Poincaré phase space sec-
tion for a harmonic wall oscillation with
M = 40. Iterations of several selected
trajectories.

For the absolute barrier, one finds the simple approximate expression [6]

ub ≈ 2.8
√

M , (7.17)

which is supported by the double logarithmic plot in Fig. 7.13 (taken from
Ref. [5] ). These data agree, of course, with the values ub = 12.9 and 27.5
obtained numerically in the above experiments.

Equation (7.17), however, describes only the overall features of the growth
of the stochastic sea with increasing M and does not account for the finer
details. When we compare the Poincaré phase space sections for M = 10
(Fig. 7.6) and M = 100 (Fig. 7.5), we observe the highest period-one fixed
point at u = M/m, with m = 1 in the first case and m = 4 in the second.
Therefore, the three fixed points with m = 1, 2, and 3 disappear from the
chaotic sea when M is increased from 10 to 100. Here, we study this mechanism
in some more detail.

Figures 7.14 and 7.15 show Poincaré sections for M = 20 and 40. Locating
the fixed points in the centers of the large stability islands embedded in the
chaotic sea at u = 10 or 13.3, respectively, we readily identify them as m = 2
or m = 3 fixed points. The maximum values of the velocity accessible for
acceleration from small velocities is given by ub = 12.5 and 15.8, respectively.

The fixed points with lower m are located above these ub values and a
KAM curve separates these higher fixed points from the lower ones. It should
also be noted that the value of ub = 12.5 for M = 20 is smaller than that
that of ub = 12.9 for M = 10, despite the overall increase predicted in
(7.17) and shown in Fig. 7.13. This justifies a more detailed numerical study
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Standard heat engine: two reservoirs hot an cold 

More common heat engines: only one reservoir like atmosphere. 



Ergodic and non-ergodic single reservoir engines 
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FIG. 2: Comparison of Carnot engines and single-heat bath engines (A) Carnot engines function by using two heat reservoirs,
a hot reservoir that serves as a source of energy and a cold reservoir that serves as an entropy sink. (B) In the ergodic
regime, energy is injected into the engine. The gas within the engine quickly equilibrates with itself. The gas then performs
mechanical work and then relaxes to back to its initial state. (C). In the non-ergodic regime, the system thermalizes on time
scales much slower than time scales on which work is performed. (D). (blue) Maximum efficiency as a function of excess energy
(ratio of injected energy to initial energy), τ , for Carnot engine, ηc, (red) true thermodynamic bound, ηmt, (magenta) actual
efficiency of a non-ergodic engine which acts as an effective one-dimensional gas, η3 (see the text), and (green) actual efficiency
of three-dimensional ideal gas Lenoir engine, η5/3.

external parameter λ from λ1 to λ2. In this case,

ηmne =
T0

�
Sr(q||p(2))− Sr(p(1)||p(2))

�

∆Q
, (8)

where p(1) and p(2) stand for equilibrium Gibbs distributions corresponding to the couplings λ1 and λ2 at the beginning
and the end of the process I respectively. Since the second term is negative, changing the external parameter during
the first stage can only reduce the engine efficiency, though this may be desirable for other practical reasons unrelated
to thermodynamics.

A. Efficiency of Ergodic Engines

An important special case of our bound is the limit where the the relaxation of particles within the engine is
fast compared to the time scale on which the engine preforms work (see Figure 2). This is the normal situation in
mechanical engines based on compressing gases and liquids. In this case, after the injection of energy the particles
in the engine quickly thermalize and can be described by a gas at an effective temperature T (E) ≡ (dS/dE)−1 that
depends on the energy of the gas. It is shown in Sec. V, that in this case, (7) reduces to

ηmt = 1− T0∆SI

∆Q
=

1

∆Q

� E+∆Q

E
dE�

�
1− T0

T (E�)

�
. (9)

Ergodic engine 
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FIG. 2: Comparison of Carnot engines and single-heat bath engines (A) Carnot engines function by using two heat reservoirs,
a hot reservoir that serves as a source of energy and a cold reservoir that serves as an entropy sink. (B) In the ergodic
regime, energy is injected into the engine. The gas within the engine quickly equilibrates with itself. The gas then performs
mechanical work and then relaxes to back to its initial state. (C). In the non-ergodic regime, the system thermalizes on time
scales much slower than time scales on which work is performed. (D). (blue) Maximum efficiency as a function of excess energy
(ratio of injected energy to initial energy), τ , for Carnot engine, ηc, (red) true thermodynamic bound, ηmt, (magenta) actual
efficiency of a non-ergodic engine which acts as an effective one-dimensional gas, η3 (see the text), and (green) actual efficiency
of three-dimensional ideal gas Lenoir engine, η5/3.

external parameter λ from λ1 to λ2. In this case,

ηmne =
T0

�
Sr(q||p(2))− Sr(p(1)||p(2))

�

∆Q
, (8)

where p(1) and p(2) stand for equilibrium Gibbs distributions corresponding to the couplings λ1 and λ2 at the beginning
and the end of the process I respectively. Since the second term is negative, changing the external parameter during
the first stage can only reduce the engine efficiency, though this may be desirable for other practical reasons unrelated
to thermodynamics.

A. Efficiency of Ergodic Engines

An important special case of our bound is the limit where the the relaxation of particles within the engine is
fast compared to the time scale on which the engine preforms work (see Figure 2). This is the normal situation in
mechanical engines based on compressing gases and liquids. In this case, after the injection of energy the particles
in the engine quickly thermalize and can be described by a gas at an effective temperature T (E) ≡ (dS/dE)−1 that
depends on the energy of the gas. It is shown in Sec. V, that in this case, (7) reduces to

ηmt = 1− T0∆SI
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=
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Non-ergodic engine 

What does second law tell us about maximum efficiency? 



Application to heat engines (with P. Mehta). 

Consider cyclic process. Small perturbation:  

Large perturbations. Can write inequalities 
3

Equilibrium (1) Nonequilibrium

I

Equilibrium (2)

II
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Energy
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Relaxation

T T T
εn
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(2)q

n

λ(1)
λ(2) λ(2)

p
n
(2)εn

(2),

FIG. 1: Generalized nonequilibrium quenches. A system parameterized by λ is coupled to an external bath at temperature T .
Initially, λ = λ(1) and the system is in equilibrium and is described by the Boltzmann distribution p(1)n . I, energy is suddenly
injected into the system while changing λ from λ(1) to λ(2). The system is now described by possibly nonthermal distribution,
qn. During stage II of the process, the system relaxes and equilibrates with the external bath after which it is described by a
Boltzmann distribution p(2)n with λ = λ(2).

The importance of relative entropy for describing relaxation of nonequilibrium distributions has been discussed in

previous for different setups both in quantum and classical systems10,12–15. Taken together, (4), (5), and (6) constitute

the nonequilibrium identities that will be exploited next to calculate bounds for the efficiency of engines that operate

with a single heat bath.

II. MAXIMUM EFFICIENCY OF ENGINES

Figure 2 summarizes the single-reservoir engines analyzed in this work and compares them with Carnot engines (1).

The engine is initially in equilibrium with the environment (bath) at a temperature T0 and the system is described

by the equilibrium probability distribution peq. In the first stage, excess energy, ∆Q, is suddenly deposited into the

system. This can be a pulse electromagnetic wave, burst of gasoline, current discharge etc. In second stage, the

engine converts the excess energy into work and reaches mechanical equilibrium with the bath . Finally, the system

relaxes back to the initial equilibrium state. Of course splitting the cycle into three stages is rather schematic but it

is convenient for the analysis of the work of the engine. Such an engine will only work if the relaxation time of the

system and environment is slow compared to the time required to perform the work. Otherwise the energy will be

simply dissipated to the environment and no work will be done (see discussion in Ref. [16]).

The initial injection of energy, ∆Q results in the corresponding entropy increase ∆SI = S(q)−S(peq) of the system,

where S is the diagonal entropy and q describes the system immediately after the addition of energy. Because by

assumption the environment is not affected during this initial stage, the total entropy change of the system and

environment is also just ∆SI . By the end of the cycle, the entropy of the system returns to its initial value. Thus,

from the second law of thermodynamics, the increase in entropy of the environment must be greater than equal to

∆SI . This implies that the minimal amount of heat that must be dissipated into the environment during the cycle is

T0∆SI . An engine will work optimally if no extra entropy beyond ∆SI is produced during the system-bath relaxation

since then all of the remaining energy injected into the system is converted to work. Thus, the maximal work that

can be performed by the engine during a cycle is Wm = ∆Q−T0∆SI . For a cyclic process such as the one considered

here, substituting (5) into the expression for Wm implies that the maximum efficiency of a nonequilibrium engine,

ηnme, is given by
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∆Q
= 1− TO∆SI

∆Q
=

T0Sr(q||p)
∆Q

. (7)

Equation (7) is the main result of this paper. It relates the maximum efficiency of an engine to the relative entropy of

the intermediate nonequilibrium distribution and the equilibrium distribution. We next consider various limits and

applications of this result. We point that Eq. (5) also allows us to extend the maximum efficiency bound to a more

general class of engines, like Otto engines, where during the first stage of the cycle one simultaneously changes the

The second inequality implies that the free energy can only 
decrease during the relaxation; the first inequality is less known. 
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applications of this result. We point that Eq. (5) also allows us to extend the maximum efficiency bound to a more

general class of engines, like Otto engines, where during the first stage of the cycle one simultaneously changes the

Define microscopic heat 
and adiabatic work: 

Main results (also Deffner, Lutz, 2010). Proofs are straightforward calculus.  

All inequalities follow from non-negativity of the relative entropy. 



Ergodic engines. 

Assume that the energy is first deposited without change of 
external couplings. 
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The initial injection of energy, ∆Q results in the corresponding entropy increase ∆SI = S(q)−S(peq) of the system,

where S is the diagonal entropy and q describes the system immediately after the addition of energy. Because by

assumption the environment is not affected during this initial stage, the total entropy change of the system and
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Maximum efficiency is given 
by the relative entropy 



Magnetic gas engine. 

B 

I) Flip spins with 
probability 0<R<1. 

Ergodic engine: allow to thermalize with kinetic degrees of freedom and then 
push the piston.  

Non-ergodic engine: for inverted spin population (R>1/2) first perform the 
work on B by rotating around x-axis  
and then use the residual energy to push the piston. 



Ergodic engine: allow to thermalize with 
kinetic degrees of freedom and then push 
the piston.  

Non-ergodic engine: for inverted spin 
population (R>1/2) use macroscopic 
magnetic energy to extract work 

B 
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B. Magnetic Gas Engine

It is possible exceed the thermodynamic efficiency ηmt by considering more complicated engines with an additional

magnetic degree of freedom. Then as we show below one can create a non-ergodic engine with efficiency higher than

the thermodynamic bound and which can be arbitrarily close to 100%. Assume that we have a gas composed of N
atoms which have an additional magnetic degree of freedom like a spin. For simplicity we assume that the spin is

equal to 1/2, i.e. there are two magnetic states per each atom. As will be clear from the discussion, this assumption

is not needed for the main conclusion and the calculations can easily be generalized to the case where we consider

electric dipole moments or some other discrete or continuous internal degree of freedom instead of the spin.
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FIG. 3: Efficiency of magnetic engine with initial temperature equal to 10% of the Zeeman energy: T0 = 0.1hz as a function
of the spin flipping rate (see Sec. III). (black) ηmne, maximum non-ergodic efficiency, (red) ηmt, maximum ergodic efficiency,
(pink) ηmgne, efficiency of magnetic gas engine in non-ergodic regime, (green) η5/3, efficiency of ergodic ideal gas engine,(blue)
ηmge, efficiency of ergodic magnetic gas engine.

The Hamiltonian of the system is then

H0 =

�

j

mv2j
2

− hzσ
z
j , (25)

where σz
j are the Pauli matrices. To simplify notations we absorbed the Bohr magneton and the g factor into the

magnetic field. The first term in the Hamiltonian is just the usual kinetic energy and the second term is due to the

interaction of the spin degrees of freedom with an external field in the z-direction. Initially the system is in equilibrium

at a temperature T and a fixed magnetic field hz.

Now let us assume that via some external pulse we pump energy to the atoms by flipping their spins with some

probability. This can be done by a resonant laser pulse or by e.g. a Landau-Zener process where we adiabatically turn

on a large magnetic field in x-direction then suddenly switch its sign and slowly decrease it back to zero. Ideally this

process creates a perfectly inverse population of atoms (i.e. number of spin up and spin down particles is exchanged)

but in practice there will be always some imperfections. In general unitary process the new occupation numbers can

be obtained from a single parameter describing the flipping rate: R ∈ [0, 1], with

q↑ = p↑(1−R) + p↓R, q↓ = p↓(1−R) + p↑R (26)

Can beat maximum 
equilibrium efficiency 
by using non-ergodic 
setup. 
 
Possible applications in 
small systems? 


