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Part	  I.	  Quantum	  ergodicity	  and	  the	  eigenstate	  
theramiza5on	  hypothesis	  (ETH).	  
	  
	  
	  
Part	  II.	  Applica5ons	  of	  ETH	  to	  equilibrium	  and	  non-‐
equilibrium	  thermodynamics.	  



Three	  different	  approaches	  describing	  isolated	  systems	  of	  par5cles	  
(systems	  with	  sta5onary	  Hamiltonian).	  

I. 	  Microscopic	  based	  on	  studying	  long	  5me	  limit	  of	  Hamiltonian	  dynamics	  	  

Works	  for	  small	  few-‐par5cle	  systems.	  Can	  
be	  prohibi5vely	  (exponen5ally)	  expensive	  
in	  chao5c	  systems.	  	  

II. 	  Sta5s5cal.	  Start	  from	  equilibrium	  sta5s5cal	  descrip5on	  (system	  is	  in	  the	  
most	  random	  state	  sa5sfying	  constraints).	  Use	  Hamiltonian	  (Lindblad)	  dynamics	  
perturba5vely:	  linear	  response	  (Kubo)	  	  

Chao5c	  	   Regular	  

III. 	  Mixed:	  kine5c	  equa5ons,	  Master	  equa5on,	  Fokker	  Planck	  equa5on,…:	  use	  
sta5s5cal	  informa5on	  and	  Hamiltonian	  dynamics	  to	  construct	  rate	  equa5ons	  for	  
the	  probability	  distribu5on:	  



What	  is	  the	  fundamental	  problem	  with	  the	  first	  microscopic	  approach?	  
Imagine	  Universe	  consis5ng	  of	  three	  par5cles	  (classical	  or	  quantum)	  

Can	  this	  universe	  describe	  itself?	  –	  No.	  There	  is	  no	  place	  to	  
store	  informa5on.	  	  

Increase	  number	  of	  par5cles:	  can	  simulate	  three	  par5cle	  
dynamics.	  Complexity	  of	  the	  total	  system	  grows	  exponen5ally,	  
much	  faster	  than	  its	  ability	  to	  simulate	  itself.	  

It	  is	  fundamentally	  impossible	  to	  get	  a	  complete	  microsopic	  
descrip5on	  of	  large	  interac5ng	  systems.	  	  



How	  do	  we	  connect	  these	  three	  approaches?	  

Classical	  ergodicity:	  over	  long	  periods	  of	  5me,	  the	  5me	  spent	  by	  an	  ensemble	  of	  
par5cles	  in	  some	  region	  of	  the	  phase	  space	  the	  same	  energy	  (and	  other	  conserved	  
integrals)	  is	  propor5onal	  to	  the	  volume	  of	  this	  region.	  
	  
In	  simple	  words	  classical	  ergodicity	  is	  delocaliza5on	  in	  phase	  space	  

Most	  interac5ng	  many-‐par5cle	  systems	  are	  chao5c	  even	  with	  
regular	  interac5ons	  (no	  disorder)	  	  

Intergrable	  (non-‐ergodic).	  Number	  of	  
conserved	  quan55es	  =	  number	  of	  
degrees	  of	  freedom	  

Chao5c	  (ergodic)	  
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as an effective thermal bath? And if this is not possible,
are there some observable effects on the system dynam-
ics? While these questions are definitely connected to
quantum ergodicity (Goldstein et al., 2010), a topic with
a long history dating back to the early days of quantum
mechanics (Deutsch, 1991; Mazur, 1968; von Neumann,
1929; Pauli and Fierz, 1937; Peres, 1984; Srednicki, 1994;
Suzuki, 1971), the past few years have brought a great
deal of progress in the context of closed many-body sys-
tems. The main motivation came from recent experi-
ments on low dimensional cold atomic gases described
in some detail in Sec. IV in this Colloquium (Greiner
et al., 2002b; Kinoshita et al., 2006). The experimental
availability of essentially closed (on the time scales of ex-
periments) strongly correlated systems together with the
awareness of the conceptual importance of these issues
in a number of areas (e.g. transport problems, many-
body localization, integrable and non-integrable dynam-
ics) have stimulated a lot of interest on quantum ther-
malization. Below we will give a synthetic view on a
number of recent important developments on this sub-
ject, starting with the discussions of the general concepts
of ergodicity and thermalization, and then moving to the
discussion of many-body systems and integrability.

A. Quantum and classical ergodicity.

While the idea of ergodicity is well defined in classical
mechanics, the concept of quantum ergodicity is some-
what less precise and intuitive. Classically, an interacting
system of N particles in d dimensions is described by a
point X in a (2 d N)-dimensional phase space. The intu-
itive content of the word ”ergodic”, i.e. the equivalence of
phase space and time averages, can be then formalized by
requiring that if we select an initial condition X0 having
initial energy H(X0) = E, where H is the Hamiltonian
of the system, then

δ(X −X(t)) ≡ lim
T→∞

1

T

� T

0
dt δ(X −X(t)) = ρmc(E),

(13)
where ρmc(E) is the microcanonical density of the system
on the hyper-surface of the phase space of constant en-
ergy E, andX(t) is the phase space trajectory with initial
conditionX0. Of course if this condition is satisfied by all
trajectories, then it is also true for every observable. We
immediately see that in order to have ergodicity, the dy-
namics cannot be arbitrary: the trajectories X(t) have
to cover uniformly the energy hyper-surface for almost
every initial condition X0.

The most obvious quantum generalization of this no-
tion of ergodicity is arduous (von Neumann, 1929). Let
us first of all define a quantum microcanonical density
matrix: given a Hamiltonian with eigenstates | Ψα� of
energies Eα, a viable definition of the microcanonical
ensemble is obtained by coarse graining the spectrum
on energy shells of width δE, sufficiently big to con-
tain many states but small on macroscopic scales. De-

noting by H(E) the set of eigenstates of H having en-
ergies between E and E + δE, we define ρ̂mc(E) =�

α∈H(E) 1/N | Ψα��Ψα |, where N is the total num-
ber of states in the micro-canonical shell. Let us now
ask the most obvious question: given a generic initial
condition made out of states in a microcanonical shell,
| Ψ0� =

�
α∈H(E) cα | Ψα�, is the long time average

of the density matrix of the system given by the micro-
canonical density matrix? The answer to this question
for a quantum system is, unlike in the classical case, al-
most always no, as J. von Neumann realized already in
1929 (von Neumann, 1929). More precisely, if we assume
the eigenstates of the system not to be degenerate, the
time average is

| Ψ(t)��Ψ(t) | =
�

α

| cα |
2
| Ψα��Ψα |= ρ̂diag, (14)

where | Ψ(t)� is the time evolved of | Ψ0�. This object is
known in the modern literature as the diagonal ensem-
ble (Rigol, 2009; Rigol et al., 2008, 2007). Notice now
that the most obvious definition of ergodicity, i.e. the
requirement ρmc = ρdiag, implies that | cα |2= 1/N for
every α, a condition that can be satisfied only for a very
special class of states. Quantum ergodicity in the strict
sense above is therefore almost never realizable (Gold-
stein et al., 2010; von Neumann, 1929).
Our common sense and expectations, which very fre-

quently fail miserably in the quantum realm, make us
nevertheless believe that, in contrast with the arguments
above, macroscopic many-body systems should behave
ergodically almost always, unless some very special con-
ditions are met (e.g. integrability). The key to under-
stand ergodicity in therefore to look at quantum systems
in a different way, shifting the focus on observables rather
than on the states themselves (Mazur, 1968; von Neu-
mann, 1929; Peres, 1984). Given a set of macroscopic
observables {Mβ} a natural expectation from an ergodic
system would be for every | Ψ0� on a microcanonical shell
H(E)

�Ψ(t) | Mβ(t) | Ψ(t)� →t→+∞ Tr[Mβ ρ̂mc] ≡ �Mβ�mc,(15)

i.e. that looking at macroscopic observables long after the
time evolution started makes the system appear ergodic
for every initial condition we may choose in H(E). One
needs a certain care in defining the infinite time limit
here, since literally speaking it does not exist in finite
systems because of quantum revivals. A proper way to
understand this limit is to require that Eq. (15) holds in
the long time limit at almost all times. Mathematically
this means that the mean square difference between the
LHS and RHS of Eq. (15) averaged over long times is
vanishingly small for large systems (Reimann, 2008). To
avoid dealing with these issues ergodicity can be defined
using the time average, i.e. requiring that

�Ψ(t) | Mβ(t) | Ψ(t)� = Tr[Mβ ρ̂diag] = �Mβ�mc. (16)

Notice that if the expectation value of Mβ relaxes to a
well defined state in the sense described above, this state



Famous	  counter	  example:	  Fermi-‐Pasta	  Ulam	  problem.	  First	  numerical	  
study	  of	  ergodicity	  (thermaliza5on)	  in	  an	  interac5ng	  many-‐body	  system.	  

.	  	  	  .	  	  	  .	  	  	  .	  	  
1	   2	   3	   n-‐2	   n-‐1	   n	  

Slow	  variables	  

1.  Excite	  single	  normal	  mode	  
2.  Follow	  dynamics	  of	  energies	  	  
3.  Eventual	  energy	  equipar55on	  

Expecta5on:	  

Found:	  
1.  Quasiperiodic	  mo5on	  
2.  Energy	  localiza5on	  in	  q-‐space	  
3.  Revivals	  of	  ini5al	  state	  
4.  No	  thermaliza5on!	  



Onset	  of	  chaos	  and	  thermaliza5on	  	  in	  classical	  systems	  

Integrable	  system	  of	  N	  degrees	  of	  freedom	  has	  N	  integrals	  of	  mo5on	  

N	  constraints	  	  in	  2N	  dimensional	  phase	  space:	  

corresponds	  to	  the	  hyper-‐surface	  in	  phase	  space	  each	  	  

Trajectories	  are	  confined	  to	  intersec(on	  of	  all	  these	  surfaces	  forming	  	  	  

N-‐dimensional	  invariant	  tori.	  	  

KAM	  theorem:	  	  weak	  perturba5on	  
preserves	  `almost	  all’	  tori	  under	  
the	  condi5on:	  

Thermaliza5on	  (chaos)	  occurs	  though	  destruc5on	  of	  KAM	  tori	  



Similar	  scenario	  for	  the	  FPU	  problem	  
F.	  M.	  Izrailev	  and	  B.	  V.	  Chirikov,	  Soviet	  Physics	  Doklady	  11	  ,1	  (1966)	  

Parametric	  resonance	  width	  matches	  resonance	  in	  1st	  order	  perturba5on	  theory:	  

Spectral	  Entropy:	  (Livi	  et.	  al,	  PRA	  31,	  2,	  1985)	  

Effec5ve	  `Reynolds’	  number	  

Strong	  stochas5city	  threshold:	  

Spectral	  entropy:	  

where	  



Setup:	  isolated	  quantum	  systems.	  Arbitrary	  ini5al	  state.	  
Hamiltonian	  dynamics.	  

Easiest	  interpreta5on	  of	  density	  matrix:	  start	  from	  some	  ensemble	  of	  pure	  states	  

Look	  into	  expecta5on	  value	  of	  some	  observable	  O	  at	  5me	  t.	  

In	  order	  to	  measure	  the	  expecta5on	  value	  need	  to	  perform	  many	  measurements	  
unless	  ψ(t)	  is	  an	  eigenstate	  of	  O.	  	  
	  
Each	  measurement	  corresponds	  to	  a	  new	  wave	  func5on	  due	  to	  sta5s5cal	  
fluctua5ons.	  So	  unless	  we	  can	  prepare	  iden5cal	  states	  we	  can	  only	  measure	  

If	  	  Hamiltonian	  is	  fluctua5ng	  need	  to	  average	  over	  the	  Hamiltonians	  -‐>	  non-‐unitary	  evolu5on.	  	  



Ergodicity	  in	  Quantum	  Systems	  
Classical	  system:	  5me	  average	  of	  the	  probability	  distribu5on	  becomes	  equivalent	  to	  
the	  microcanonical	  ensemble.	  Implies	  thermaliza5on	  of	  all	  observables.	  
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as an effective thermal bath? And if this is not possible,
are there some observable effects on the system dynam-
ics? While these questions are definitely connected to
quantum ergodicity (Goldstein et al., 2010), a topic with
a long history dating back to the early days of quantum
mechanics (Deutsch, 1991; Mazur, 1968; von Neumann,
1929; Pauli and Fierz, 1937; Peres, 1984; Srednicki, 1994;
Suzuki, 1971), the past few years have brought a great
deal of progress in the context of closed many-body sys-
tems. The main motivation came from recent experi-
ments on low dimensional cold atomic gases described
in some detail in Sec. IV in this Colloquium (Greiner
et al., 2002b; Kinoshita et al., 2006). The experimental
availability of essentially closed (on the time scales of ex-
periments) strongly correlated systems together with the
awareness of the conceptual importance of these issues
in a number of areas (e.g. transport problems, many-
body localization, integrable and non-integrable dynam-
ics) have stimulated a lot of interest on quantum ther-
malization. Below we will give a synthetic view on a
number of recent important developments on this sub-
ject, starting with the discussions of the general concepts
of ergodicity and thermalization, and then moving to the
discussion of many-body systems and integrability.

A. Quantum and classical ergodicity.

While the idea of ergodicity is well defined in classical
mechanics, the concept of quantum ergodicity is some-
what less precise and intuitive. Classically, an interacting
system of N particles in d dimensions is described by a
point X in a (2 d N)-dimensional phase space. The intu-
itive content of the word ”ergodic”, i.e. the equivalence of
phase space and time averages, can be then formalized by
requiring that if we select an initial condition X0 having
initial energy H(X0) = E, where H is the Hamiltonian
of the system, then

δ(X −X(t)) ≡ lim
T→∞

1

T

� T

0
dt δ(X −X(t)) = ρmc(E),

(13)
where ρmc(E) is the microcanonical density of the system
on the hyper-surface of the phase space of constant en-
ergy E, andX(t) is the phase space trajectory with initial
conditionX0. Of course if this condition is satisfied by all
trajectories, then it is also true for every observable. We
immediately see that in order to have ergodicity, the dy-
namics cannot be arbitrary: the trajectories X(t) have
to cover uniformly the energy hyper-surface for almost
every initial condition X0.

The most obvious quantum generalization of this no-
tion of ergodicity is arduous (von Neumann, 1929). Let
us first of all define a quantum microcanonical density
matrix: given a Hamiltonian with eigenstates | Ψα� of
energies Eα, a viable definition of the microcanonical
ensemble is obtained by coarse graining the spectrum
on energy shells of width δE, sufficiently big to con-
tain many states but small on macroscopic scales. De-

noting by H(E) the set of eigenstates of H having en-
ergies between E and E + δE, we define ρ̂mc(E) =�

α∈H(E) 1/N | Ψα��Ψα |, where N is the total num-
ber of states in the micro-canonical shell. Let us now
ask the most obvious question: given a generic initial
condition made out of states in a microcanonical shell,
| Ψ0� =

�
α∈H(E) cα | Ψα�, is the long time average

of the density matrix of the system given by the micro-
canonical density matrix? The answer to this question
for a quantum system is, unlike in the classical case, al-
most always no, as J. von Neumann realized already in
1929 (von Neumann, 1929). More precisely, if we assume
the eigenstates of the system not to be degenerate, the
time average is

| Ψ(t)��Ψ(t) | =
�

α

| cα |
2
| Ψα��Ψα |= ρ̂diag, (14)

where | Ψ(t)� is the time evolved of | Ψ0�. This object is
known in the modern literature as the diagonal ensem-
ble (Rigol, 2009; Rigol et al., 2008, 2007). Notice now
that the most obvious definition of ergodicity, i.e. the
requirement ρmc = ρdiag, implies that | cα |2= 1/N for
every α, a condition that can be satisfied only for a very
special class of states. Quantum ergodicity in the strict
sense above is therefore almost never realizable (Gold-
stein et al., 2010; von Neumann, 1929).
Our common sense and expectations, which very fre-

quently fail miserably in the quantum realm, make us
nevertheless believe that, in contrast with the arguments
above, macroscopic many-body systems should behave
ergodically almost always, unless some very special con-
ditions are met (e.g. integrability). The key to under-
stand ergodicity in therefore to look at quantum systems
in a different way, shifting the focus on observables rather
than on the states themselves (Mazur, 1968; von Neu-
mann, 1929; Peres, 1984). Given a set of macroscopic
observables {Mβ} a natural expectation from an ergodic
system would be for every | Ψ0� on a microcanonical shell
H(E)

�Ψ(t) | Mβ(t) | Ψ(t)� →t→+∞ Tr[Mβ ρ̂mc] ≡ �Mβ�mc,(15)

i.e. that looking at macroscopic observables long after the
time evolution started makes the system appear ergodic
for every initial condition we may choose in H(E). One
needs a certain care in defining the infinite time limit
here, since literally speaking it does not exist in finite
systems because of quantum revivals. A proper way to
understand this limit is to require that Eq. (15) holds in
the long time limit at almost all times. Mathematically
this means that the mean square difference between the
LHS and RHS of Eq. (15) averaged over long times is
vanishingly small for large systems (Reimann, 2008). To
avoid dealing with these issues ergodicity can be defined
using the time average, i.e. requiring that

�Ψ(t) | Mβ(t) | Ψ(t)� = Tr[Mβ ρ̂diag] = �Mβ�mc. (16)

Notice that if the expectation value of Mβ relaxes to a
well defined state in the sense described above, this state

Quantum	  systems	  (quantum	  language?)	  –	  no	  relaxa5on	  of	  the	  density	  matrix	  to	  the	  
microcanonical	  ensemble	  (von	  Neumann,	  1929).	  
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as an effective thermal bath? And if this is not possible,
are there some observable effects on the system dynam-
ics? While these questions are definitely connected to
quantum ergodicity (Goldstein et al., 2010), a topic with
a long history dating back to the early days of quantum
mechanics (Deutsch, 1991; Mazur, 1968; von Neumann,
1929; Pauli and Fierz, 1937; Peres, 1984; Srednicki, 1994;
Suzuki, 1971), the past few years have brought a great
deal of progress in the context of closed many-body sys-
tems. The main motivation came from recent experi-
ments on low dimensional cold atomic gases described
in some detail in Sec. IV in this Colloquium (Greiner
et al., 2002b; Kinoshita et al., 2006). The experimental
availability of essentially closed (on the time scales of ex-
periments) strongly correlated systems together with the
awareness of the conceptual importance of these issues
in a number of areas (e.g. transport problems, many-
body localization, integrable and non-integrable dynam-
ics) have stimulated a lot of interest on quantum ther-
malization. Below we will give a synthetic view on a
number of recent important developments on this sub-
ject, starting with the discussions of the general concepts
of ergodicity and thermalization, and then moving to the
discussion of many-body systems and integrability.

A. Quantum and classical ergodicity.

While the idea of ergodicity is well defined in classical
mechanics, the concept of quantum ergodicity is some-
what less precise and intuitive. Classically, an interacting
system of N particles in d dimensions is described by a
point X in a (2 d N)-dimensional phase space. The intu-
itive content of the word ”ergodic”, i.e. the equivalence of
phase space and time averages, can be then formalized by
requiring that if we select an initial condition X0 having
initial energy H(X0) = E, where H is the Hamiltonian
of the system, then

δ(X −X(t)) ≡ lim
T→∞

1

T

� T

0
dt δ(X −X(t)) = ρmc(E),

(13)
where ρmc(E) is the microcanonical density of the system
on the hyper-surface of the phase space of constant en-
ergy E, andX(t) is the phase space trajectory with initial
conditionX0. Of course if this condition is satisfied by all
trajectories, then it is also true for every observable. We
immediately see that in order to have ergodicity, the dy-
namics cannot be arbitrary: the trajectories X(t) have
to cover uniformly the energy hyper-surface for almost
every initial condition X0.

The most obvious quantum generalization of this no-
tion of ergodicity is arduous (von Neumann, 1929). Let
us first of all define a quantum microcanonical density
matrix: given a Hamiltonian with eigenstates | Ψα� of
energies Eα, a viable definition of the microcanonical
ensemble is obtained by coarse graining the spectrum
on energy shells of width δE, sufficiently big to con-
tain many states but small on macroscopic scales. De-

noting by H(E) the set of eigenstates of H having en-
ergies between E and E + δE, we define ρ̂mc(E) =�

α∈H(E) 1/N | Ψα��Ψα |, where N is the total num-
ber of states in the micro-canonical shell. Let us now
ask the most obvious question: given a generic initial
condition made out of states in a microcanonical shell,
| Ψ0� =

�
α∈H(E) cα | Ψα�, is the long time average

of the density matrix of the system given by the micro-
canonical density matrix? The answer to this question
for a quantum system is, unlike in the classical case, al-
most always no, as J. von Neumann realized already in
1929 (von Neumann, 1929). More precisely, if we assume
the eigenstates of the system not to be degenerate, the
time average is

| Ψ(t)��Ψ(t) | =
�

α

| cα |
2
| Ψα��Ψα |= ρ̂diag, (14)

where | Ψ(t)� is the time evolved of | Ψ0�. This object is
known in the modern literature as the diagonal ensem-
ble (Rigol, 2009; Rigol et al., 2008, 2007). Notice now
that the most obvious definition of ergodicity, i.e. the
requirement ρmc = ρdiag, implies that | cα |2= 1/N for
every α, a condition that can be satisfied only for a very
special class of states. Quantum ergodicity in the strict
sense above is therefore almost never realizable (Gold-
stein et al., 2010; von Neumann, 1929).
Our common sense and expectations, which very fre-

quently fail miserably in the quantum realm, make us
nevertheless believe that, in contrast with the arguments
above, macroscopic many-body systems should behave
ergodically almost always, unless some very special con-
ditions are met (e.g. integrability). The key to under-
stand ergodicity in therefore to look at quantum systems
in a different way, shifting the focus on observables rather
than on the states themselves (Mazur, 1968; von Neu-
mann, 1929; Peres, 1984). Given a set of macroscopic
observables {Mβ} a natural expectation from an ergodic
system would be for every | Ψ0� on a microcanonical shell
H(E)

�Ψ(t) | Mβ(t) | Ψ(t)� →t→+∞ Tr[Mβ ρ̂mc] ≡ �Mβ�mc,(15)

i.e. that looking at macroscopic observables long after the
time evolution started makes the system appear ergodic
for every initial condition we may choose in H(E). One
needs a certain care in defining the infinite time limit
here, since literally speaking it does not exist in finite
systems because of quantum revivals. A proper way to
understand this limit is to require that Eq. (15) holds in
the long time limit at almost all times. Mathematically
this means that the mean square difference between the
LHS and RHS of Eq. (15) averaged over long times is
vanishingly small for large systems (Reimann, 2008). To
avoid dealing with these issues ergodicity can be defined
using the time average, i.e. requiring that

�Ψ(t) | Mβ(t) | Ψ(t)� = Tr[Mβ ρ̂diag] = �Mβ�mc. (16)

Notice that if the expectation value of Mβ relaxes to a
well defined state in the sense described above, this state

Thermaliza5on	  must	  be	  built	  in	  to	  the	  structure	  of	  Eigenstates	  and	  revealed	  through	  
observables	  (von	  Neuman,	  1929;	  Mazur,	  1968;	  Sredniki,	  1994;	  Rigol	  et.	  al.	  2008,	  Riemann	  
2008,	  …)	  
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as an effective thermal bath? And if this is not possible,
are there some observable effects on the system dynam-
ics? While these questions are definitely connected to
quantum ergodicity (Goldstein et al., 2010), a topic with
a long history dating back to the early days of quantum
mechanics (Deutsch, 1991; Mazur, 1968; von Neumann,
1929; Pauli and Fierz, 1937; Peres, 1984; Srednicki, 1994;
Suzuki, 1971), the past few years have brought a great
deal of progress in the context of closed many-body sys-
tems. The main motivation came from recent experi-
ments on low dimensional cold atomic gases described
in some detail in Sec. IV in this Colloquium (Greiner
et al., 2002b; Kinoshita et al., 2006). The experimental
availability of essentially closed (on the time scales of ex-
periments) strongly correlated systems together with the
awareness of the conceptual importance of these issues
in a number of areas (e.g. transport problems, many-
body localization, integrable and non-integrable dynam-
ics) have stimulated a lot of interest on quantum ther-
malization. Below we will give a synthetic view on a
number of recent important developments on this sub-
ject, starting with the discussions of the general concepts
of ergodicity and thermalization, and then moving to the
discussion of many-body systems and integrability.

A. Quantum and classical ergodicity.

While the idea of ergodicity is well defined in classical
mechanics, the concept of quantum ergodicity is some-
what less precise and intuitive. Classically, an interacting
system of N particles in d dimensions is described by a
point X in a (2 d N)-dimensional phase space. The intu-
itive content of the word ”ergodic”, i.e. the equivalence of
phase space and time averages, can be then formalized by
requiring that if we select an initial condition X0 having
initial energy H(X0) = E, where H is the Hamiltonian
of the system, then

δ(X −X(t)) ≡ lim
T→∞

1

T

� T

0
dt δ(X −X(t)) = ρmc(E),

(13)
where ρmc(E) is the microcanonical density of the system
on the hyper-surface of the phase space of constant en-
ergy E, andX(t) is the phase space trajectory with initial
conditionX0. Of course if this condition is satisfied by all
trajectories, then it is also true for every observable. We
immediately see that in order to have ergodicity, the dy-
namics cannot be arbitrary: the trajectories X(t) have
to cover uniformly the energy hyper-surface for almost
every initial condition X0.

The most obvious quantum generalization of this no-
tion of ergodicity is arduous (von Neumann, 1929). Let
us first of all define a quantum microcanonical density
matrix: given a Hamiltonian with eigenstates | Ψα� of
energies Eα, a viable definition of the microcanonical
ensemble is obtained by coarse graining the spectrum
on energy shells of width δE, sufficiently big to con-
tain many states but small on macroscopic scales. De-

noting by H(E) the set of eigenstates of H having en-
ergies between E and E + δE, we define ρ̂mc(E) =�

α∈H(E) 1/N | Ψα��Ψα |, where N is the total num-
ber of states in the micro-canonical shell. Let us now
ask the most obvious question: given a generic initial
condition made out of states in a microcanonical shell,
| Ψ0� =

�
α∈H(E) cα | Ψα�, is the long time average

of the density matrix of the system given by the micro-
canonical density matrix? The answer to this question
for a quantum system is, unlike in the classical case, al-
most always no, as J. von Neumann realized already in
1929 (von Neumann, 1929). More precisely, if we assume
the eigenstates of the system not to be degenerate, the
time average is

| Ψ(t)��Ψ(t) | =
�

α

| cα |
2
| Ψα��Ψα |= ρ̂diag, (14)

where | Ψ(t)� is the time evolved of | Ψ0�. This object is
known in the modern literature as the diagonal ensem-
ble (Rigol, 2009; Rigol et al., 2008, 2007). Notice now
that the most obvious definition of ergodicity, i.e. the
requirement ρmc = ρdiag, implies that | cα |2= 1/N for
every α, a condition that can be satisfied only for a very
special class of states. Quantum ergodicity in the strict
sense above is therefore almost never realizable (Gold-
stein et al., 2010; von Neumann, 1929).
Our common sense and expectations, which very fre-

quently fail miserably in the quantum realm, make us
nevertheless believe that, in contrast with the arguments
above, macroscopic many-body systems should behave
ergodically almost always, unless some very special con-
ditions are met (e.g. integrability). The key to under-
stand ergodicity in therefore to look at quantum systems
in a different way, shifting the focus on observables rather
than on the states themselves (Mazur, 1968; von Neu-
mann, 1929; Peres, 1984). Given a set of macroscopic
observables {Mβ} a natural expectation from an ergodic
system would be for every | Ψ0� on a microcanonical shell
H(E)

�Ψ(t) | Mβ(t) | Ψ(t)� →t→+∞ Tr[Mβ ρ̂mc] ≡ �Mβ�mc,(15)

i.e. that looking at macroscopic observables long after the
time evolution started makes the system appear ergodic
for every initial condition we may choose in H(E). One
needs a certain care in defining the infinite time limit
here, since literally speaking it does not exist in finite
systems because of quantum revivals. A proper way to
understand this limit is to require that Eq. (15) holds in
the long time limit at almost all times. Mathematically
this means that the mean square difference between the
LHS and RHS of Eq. (15) averaged over long times is
vanishingly small for large systems (Reimann, 2008). To
avoid dealing with these issues ergodicity can be defined
using the time average, i.e. requiring that

�Ψ(t) | Mβ(t) | Ψ(t)� = Tr[Mβ ρ̂diag] = �Mβ�mc. (16)

Notice that if the expectation value of Mβ relaxes to a
well defined state in the sense described above, this state

The	  limit	  is	  understood	  as	  at	  long	  5mes	  at	  almost	  all	  5mes.	  In	  a	  way	  in	  quantum	  language	  
thermaliza5on	  is	  prebuilt	  in	  the	  system.	  Time	  evolu5on	  is	  just	  dephasing.	  	  



Berry	  conjecture,	  semiclassical	  limit	  (M.V.	  Berry,	  1977)	  

In many problems of physical interest, it is necessary to abandon a search for the exact

solution, and to turn instead to a statistical approach. This involves mentally replacing the

answer which we seek, with an ensemble of possibilities, then adopting the attitude that each

member of the ensemble is an equally likely candidate for the true solution. The choice of

ensemble then becomes centrally important, and here information theory provides a reliable

guiding principle. The principle instructs us to choose the least biased ensemble (the one

which minimizes information content), subject to some relevant constraints. A well-known

illustration arises in classical statistical mechanics: the least biased distribution in phase

space, subject to a fixed normalization and average energy, is the canonical ensemble of Gibbs

[1]. Another example appears in random matrix theory: by minimizing the information

content of an ensemble of matrices, subject to various simple constraints, one obtains the

standard random matrix ensembles [2]. The purpose of this paper is to point out that

Berry’s conjecture [3] regarding the energy eigenstates of chaotic systems, also emerges

naturally from this principle of least bias.

Berry’s conjecture makes two assertions regarding the high-lying energy eigenstates ψE of

quantal systems whose classical counterparts are chaotic and ergodic1: (1) Such eigenstates

appear to be random Gaussian functions ψ(x) on configuration space, (2) with two-point

correlations given by

ψ∗

(

x −
s

2

)

ψ

(

x +
s

2

)

=
1

Σ

∫

dp eip·s/h̄δ[E − H(x,p)] (1)

Here, E is the energy of the eigenstate, H(x,p) is the classical Hamiltonian describing

the system, and Σ ≡
∫

dx
∫

dp δ[E −H(x,p)]; if the Hamiltonian is time-reversal-invariant,

then ψ(x) is a real random Gaussian function, otherwise ψ(x) is a complex random Gaussian

function. Berry’s conjecture thus uniquely specifies, for a given energy E, an ensemble ME

of wavefunctions ψ(x) (i.e. ME is the Gaussian ensemble with two-point correlations given

1 By “chaotic and ergodic”, we mean that all trajectories, except a set of measure zero, chaotically

and ergodically explore the surface of constant energy in phase space.

2

Average	  is	  taken	  over	  the	  energy	  shall	  vanishing	  in	  the	  limit	  	  	  	  	  	  	  	  	  	  	  	  	  but	  containing	  many	  
states.	  Equivalently	  

� → 0

by Eq.1), and states that an eigenstate ψE at energy E will look as if it were chosen randomly

from this ensemble.

The correlations given by Eq.1 are motivated by considering the Wigner function [4]

corresponding to the eigenstate ψE ,

WE(x,p) ≡ (2πh̄)−D
∫

dsψ∗

E

(

x −
s

2

)

ψE

(

x +
s

2

)

e−ip·s/h̄, (2)

where D is the dimensionality of the system. For high-lying states ψE , this Wigner func-

tion, after local smoothing in the x variable, is expected to converge to the microcanonical

distribution in phase space [3,5–7]:

W sm

E (x,p) ≈
1

Σ
δ[E − H(x,p)]. (3)

By taking the Fourier transform of both sides of Eq.1, and then smoothing locally in the

x-variable2 rather than averaging over the ensemble ME, it is straightforward to show that

the correlations given by Eq.1 produce the desired result, Eq.3.

The assertion that ψE(x) is a Gaussian random function is most easily motivated by

viewing ψE(x), locally, as a superposition of de Broglie waves with random phases [3].

When the number of these waves becomes infinite, the central limit theorem tells us that

ψE(x) will look like a Gaussian random function.

We can interpret Berry’s conjecture as making a specific prediction about the eigenstate

ψE : once we compute ψE(x) by solving the Schrödinger equation, we can subject it to

various tests (see e.g. Ref. [8]), and we will observe that, yes, ψE(x) really behaves as a

Gaussian random function with two-point correlations given by Eq.1. Alternatively, we can

interpret Berry’s conjecture as providing us with the appropriate ensemble of wavefunctions

from which to choose a surrogate for the true eigenstate ψE , if we cannot (or do not care

2This smoothing is performed on a scale which is large compared with the local correlation length

of ψ(x), but small compared with a classically relevant distance scale (see e.g. equations 3.29 and

3.30 of Ref. [7]). This allows us to replace ensemble averaging with local smoothing.
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For	  non-‐rela5vis5c	  par5cles	  Berry	  
conjecture	  implies	  Maxwell-‐
Bolzmann	  distribu5on	  
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limit the momentum distribution function is

�f(p)� =

�
dp2dp3 . . . �| Ψα(p,p2, . . . ) |2�

=
e−

p2

2mkT

(2πmkT )3/2
= fMB(p), (27)

where the temperature is set by the equipartition law as
Eα = 3/2NkT . Notice that this is expected to happen
for every eigenstate of energy close to Eα, as required by
the ETH. Hence thermal behavior will follow for every
initial condition sufficiently narrow in energy.

For generic many-body systems, such as Hubbard-like
models and spin chains, the close relation between break-
ing of integrability and quantum chaotic behavior is a
known fact (Poilblanc et al., 1993). In particular, finite
size many-body integrable systems are characterized by
the Poisson spectral statistics while the gradual breaking
of integrability by a perturbation leads to a crossover to
the Wigner-Dyson statistics. The latter is typically asso-
ciated, in mesoscopic systems or billiards, with diffusive
behavior and can be taken as a signature of quantum
chaos (Imry, 1997). In many-body disordered systems
the emergence of the Wigner-Dyson statistics was ar-
gued to be an indicator of the transition between metallic
(ergodic) and insulating (non-ergodic) phases (Mukerjee
et al., 2006; Oganesyan and Huse, 2007). Inspired by
these close analogies, recent studies gave a boost to our
understanding of the crossover from non-ergodic to ther-
mal behavior as integrability is gradually broken and of
the origin of ergodicity/thermalization in systems suffi-
ciently far from integrability (Biroli et al., 2010; Kollath
et al., 2007; Manmana et al., 2007; Rigol, 2009; Rigol
et al., 2008). In particular, a careful study of the asymp-
totics of density-density correlators and momentum dis-
tribution function for hard-core bosons in 1d showed that
the transition from non-thermal to thermal behavior in
finite size systems takes the form of a crossover con-
trolled by the strength of the integrability breaking per-
turbation and the system size (Rigol, 2009). Moreover
there is a universality in state to state fluctuations of
simple observables in this crossover regime (Neuenhahn
and Marquardt, 2010), which goes hand-by-hand with
an analogous transition from Poisson to Wigner-Dyson
level statistics (Rigol and Santos, 2010; Santos and Rigol,
2010a). When integrability is broken by sufficiently
strong perturbation ergodic behavior emerges (Neuen-
hahn and Marquardt, 2010; Rigol, 2009; Rigol and San-
tos, 2010), which in turn appears to be related to the
validity of the ETH (Rigol et al., 2008). In this con-
text, the anomalous, non-ergodic behavior of integrable
models has been reinterpreted as originating from wide
fluctuations of the expectation value of natural observ-
ables around the microcanonical average (Biroli et al.,
2010).

All these statements apply to the asymptotic (or time
averaged) state. So far the relaxation in time, in par-
ticular in the thermodynamic limit, has received much

less attention. In a series of studies of relaxation in
fermionic Hubbard models subject to quenches in the
interactions strength it has been argued that for suffi-
ciently rapid quenches relaxation towards thermal equi-
librium occurs through a pre-thermalized phase (Moeckel
and Kehrein, 2008, 2010). Similar two step dynamics oc-
curs in quenches of coupled superfluids where initial fast
“light cone” dynamics leads to a pre-thermalized steady
state, which then slowly decays to the thermal equilib-
rium through the vortex-antivortex unbinding (Mathey
and Polkovnikov, 2010). In Ref. (Burkov et al., 2007) a
very unusual sub-exponential in time decay of correlation
functions was predicted and later observed experimen-
tally (Hofferberth et al., 2007) for relaxational dynamics
of decoupled 1d bosonic systems.

D. Outlook and open problems: quantum KAM threshold

as a many-body delocalization transition ?

The arguments above clearly pointed to the connection
between thermalization in strongly correlated systems
and in chaotic billiards. This analogy however , rather
than being the end of a quest, opens an entire new kind
of questions, which are a current focus of both theoreti-
cal and experimental research. In particular, we do know
that in a number of models of strongly correlated parti-
cles eigenstate thermalization is at the root of thermal
behavior (Rigol et al., 2008). What is the cause of eigen-
state thermalization in a generic many-body system, i.e.
the analogue of the diffusive eigenstates in phase space
of Berry’s conjecture ? And most importantly, while in a
finite size system the transition from non-ergodic to er-
godic behavior takes the form of a crossover, what hap-
pens in the thermodynamic limit ? Is the transition from
ergodic to non-ergodic behavior still a crossover or it is
sharp (a quantum KAM threshold ) ?
At present, research on these questions has just

started. An interesting idea that has recently emerged is
that the study of the transition from integrability to non-
integrability in quantum many-body systems is deeply
connected to another important problem at the frontier
of condensed matter physics: the concept of many-body
localization (Altshuler et al., 1997; Basko et al., 2006),
which extends the original work of Anderson on single-
particle localization (Anderson, 1958). We note that re-
lated ideas were put forward in studying energy transfer
in interacting harmonic systems in the context of large or-
ganic molecules (Leitner and Wolynes, 1996; Logan and
Wolynes, 1990). More specifically, it has been noticed
that a transition from localized to delocalized states ei-
ther in real space (Pal and Huse, 2010) or more gener-
ally in quasi-particle space (Canovi et al., 2011) is closely
connected to a corresponding transition from thermal to
non-thermal behavior in the asymptotics of significant
observables. For weakly perturbed integrable models,
the main characteristic of the observables to display such
transition appears to be again their locality with respect

This	  follows	  from	  	  



Thermaliza5on	  through	  eigenstates	  
(J.	  Deutsch,	  1991,	  M.	  Srednicki	  1994,	  M.	  Rigol	  et.	  al.	  2008)	  

Main	  idea:	  thermaliza5on	  is	  encoded	  in	  eigenstates	  of	  the	  Hamiltonian.	  
Dynamics	  is	  just	  dephasing	  between	  the	  eigenstates.	  	  

Prepare	  a	  quantum	  system	  in	  some	  state,	  characterized	  by	  the	  density	  matrix	  ρ0	  
and	  let	  it	  evolve	  with	  the	  Hamiltonian	  H.	  

Look	  into	  the	  long	  5me	  limit	  of	  the	  expecta5on	  value	  sta5c	  observable,	  O	  

In	  typical	  situa5ons	  (both	  equilibrium	  and	  not)	  energy	  is	  extensive	  and	  energy	  
fluctua5ons	  are	  sub-‐extensive	  (consequence	  of	  locality	  of	  the	  Hamiltonian).	  If	  all	  
eigenstates	  within	  a	  subextensive	  energy	  shell	  are	  similar	  then	  

The	  long	  5me	  limit	  of	  an	  observable	  does	  not	  depend	  on	  the	  details	  of	  the	  ini5al	  state.	  	  



M. Rigol, V. Dunjko & M. Olshanii, 
Nature 452, 854 (2008) 

a, Two-dimensional lattice on which 
five hard-core bosons propagate in 
time.  
 
b, The corresponding relaxation 
dynamics of the central component n
(kx = 0) of the marginal momentum 
distribution, compared with the 
predictions of the three ensembles 
 
 c, Full momentum distribution function 
in the initial state, after relaxation, and 
in the different ensembles.  



Fluctua5ons	  of	  the	  observables.	  Off-‐diagonal	  matrix	  elements	  
(M.	  Srednicki,	  1999)	  

Consider	  ul5mate	  microcanonical	  ensemble,	  a	  single	  energy	  eigenstate	  	  

There	  are	  exponen5ally	  many	  terms	  in	  this	  sum	  ~	  exp[S],	  recall	  that	  the	  entropy	  is	  the	  
measure	  of	  the	  density	  of	  states	  (number	  of	  states	  within	  microscopic	  energy	  window)	  

Make	  an	  ansatz	  (M.	  Srednicki,	  1996)	  

Expect	  that	  fO	  is	  a	  slow	  func5on	  of	  E	  (changing	  on	  extensive	  scales)	  but	  fast	  func5on	  of	  
ω,	  on	  inverse	  relaxa5on	  5me	  scale,	  σ	  is	  a	  random	  variable	  with	  a	  unit	  variance	  .	  	  

The	  func5on	  fO(ω)	  should	  decay	  faster	  than	  exponen5ally	  on	  intensive	  energy	  
scales.	  



Let	  us	  look	  into	  non-‐equal	  5me	  correla5on	  func5on	  

Long	  (Markovian)	  5mes	  (small	  frequencies):	  expect	  exponen5al	  decay.	  

Lorentz	  or	  Breit-‐Wigner	  distribu5on	  	  

Short	  (non-‐Markovian)	  5mes	  (large	  frequencies):	  expect	  Gaussian	  decay.	  Also	  follows	  
from	  short	  5me	  perturba5on	  theory	  (Zeno	  effect).	  

Can	  recover	  fluctua5on-‐dissipa5on	  rela5ons	  under	  the	  same	  
condi5ons	  (V.	  Zelevinsky	  1995,	  M.	  Srednicki	  1999,	  E.	  Khatami	  et	  al	  2013)	  



How	  representa5ve	  is	  5me	  average?	  (M.	  Srednicki,	  1999)	  

Using	  that	  

If	  ETH	  applies	  we	  see	  that	  devia5ons	  of	  the	  expecta5on	  value	  
from	  the	  5me	  average	  are	  exponen5ally	  small.	  	  
	  
So	  the	  system	  remains	  expone5ally	  close	  to	  the	  equilibrium	  state	  
at	  almost	  all	  5mes.	  



Quantum	  chaos	  and	  Wigner-‐Dyson	  distribu5on	  	  

Consider	  a	  fully	  chao5c	  random	  NxN	  matrix	  with	  the	  Gaussian	  probability	  distribu5on	  

One	  can	  show	  that	  there	  is	  a	  level	  repulsion	  so	  that	  the	  probability	  of	  the	  level	  spacing	  is:	  	  

Wigner-‐Dyson	  distribu5on	  for	  orthogonal	  ensembles.	  

Level	  spacing	  distribu5on	  in	  heavy	  nuclei	  	  
K.H.	  Böchhoff	  (Ed.),	  Nuclear	  Data	  for	  Science	  and	  
Technology,	  Reidel,	  Dordrecht	  (1983)	  

Level	  spacing	  distribu5on	  in	  Sinai	  billiard	  	  
O.	  Bohigas,	  M.J.	  Giannoni,	  C.	  Schmit	  
Phys.	  Rev.	  Lev.,	  52	  (1984)	  



Hydrogen	  in	  a	  strong	  magne5c	  field	  
D.	  Wintgen,	  H.	  Friedrich	  
Phys.	  Rev.	  A,	  35	  (1987),	  

A	  histogram	  of	  spacings	  between	  bus	  arrival	  5mes	  in	  Cuernavaca	  
(Mexico),	  in	  crosses;	  the	  solid	  line	  is	  the	  predic5on	  from	  random	  
matrix	  theory.	  (Source:	  Krbalek-‐Seba,	  J.	  Phys.	  A.,	  2000)	  

Spacing	  distribu5on	  for	  a	  billion	  zeroes	  of	  the	  Riemann	  zeta	  
func5on,	  and	  the	  corresponding	  predic5on	  from	  random	  matrix	  
theory.	  (Source:	  Andrew	  Odlyzko,	  Contemp.	  Math.	  2001)	  



Many-‐body	  quantum	  systems	  

Integrable	  (in	  a	  compliated	  way)	  bosonic(L.	  Santos	  and	  M.	  Rigol,	  2010)	  

The	  onset	  of	  chaos	  coincides	  with	  the	  
onset	  of	  thermaliza5on	  defined	  through	  
the	  observables.	  

2

bosonic and fermionic systems studied in Refs. [31] and
[32]. These systems are clean and have only two-body in-
teractions; the transition to chaos is achieved by increas-
ing the strength of next-nearest-neighbor (NNN) terms
rather than by adding random parameters to the Hamil-
tonian. Under certain conditions these systems may also
be mapped onto Heisenberg spin-1/2 chains. Several pa-
pers have analyzed spectral statistics of disordered [38–
42] and clean [43–46] 1D Heisenberg spin-1/2 systems.
Mostly, they were limited to sizes smaller than consid-
ered here and, in the case of clean systems, focused on
properties associated with the energy levels, while here
eigenvectors are also analyzed. Our goal is to establish
a direct comparison between indicators of chaoticity and
the results obtained in Refs. [31] and [32] for thermaliza-
tion and the validity of ETH. Our analysis also provides
a way to quantify points (i) and (ii) in the previous para-
graph, which can result in the absence of thermalization
in finite systems.

Overall, the crossover from integrability to chaos,
quantified with spectral observables and delocalization
measures, mirrors various features of the onset of ther-
malization investigated in Refs. [31] and [32], in partic-
ular, the distinct behavior of observables between sys-
tems that are close and far from integrability, and be-
tween eigenstates whose energies are close and far from
the energy of the ground state. We also find that the
contrast between bosons and fermions pointed out in
Ref. [32] is translated here into the requirement of larger
integrability-breaking terms for the onset of chaos in
fermionic systems. Larger system sizes also facilitate the
induction of chaos. In addition, we observe that mea-
sures of the degree of delocalization of eigenstates become
smooth functions of energy only in the chaotic regime, a
behavior that may be used as a signature of chaos.

The paper is organized as follows. Section II describes
the model Hamiltonians studied and their symmetries.
Section III analyzes the integrable-chaos transition based
on various quantities. After a brief review of the unfold-
ing procedure, Sec.III.A focuses on quantities associated
with the energy levels, such as level spacing distribution
and level number variance. Section III.B introduces mea-
sures of state delocalization, namely information entropy
and inverse participation ratio (IPR), showing results for
the former in the mean field basis. Results for the inverse
participation ratio and discussions about representations
are left to the Appendix. Concluding remarks are pre-
sented in Sec. IV.

II. SYSTEM MODEL

We consider both scenarios: hardcore bosons and spin-
less fermions on a periodic one-dimensional lattice in
the presence of nearest-neighbor (NN) and next-nearest-
neighbor (NNN) hopping and interaction. The Hamilto-
nian for bosons HB and for fermions HF are respectively

given by

HB =
L
∑

i=1

[

−t
(

b†i bi+1 + h.c.
)

+ V

(

nb
i −

1

2

)(

nb
i+1 −

1

2

)

− t′
(

b†ibi+2 + h.c.
)

+ V ′

(

nb
i −

1

2

)(

nb
i+2 −

1

2

)]

, (1)

and

HF =
L
∑

i=1

[

−t
(

f †
i fi+1 + h.c.

)

+ V

(

nf
i −

1

2

)(

nf
i+1 −

1

2

)

− t′
(

f †
i fi+2 + h.c.

)

+ V ′

(

nf
i −

1

2

)(

nf
i+2 −

1

2

)]

.(2)

Above, L is the size of the chain, bi and b†i (fi and f †
i )

are bosonic (fermionic) annihilation and creation oper-
ators on site i, and nb

i = b†ibi (nf
i = f †

i fi) is the boson
(fermion) local density operator. Hardcore bosons do not
occupy the same site, i.e., b†2i = b2i , so the operators com-
mute on different sites but can be taken to anti-commute
on the same site. The NN (NNN) hopping and interac-
tion strengths are respectively t (t′) and V (V ′). Here,
we only study repulsive interactions (V, V ′ > 0). We take
! = 1 and t = V = 1 set the energy scale in the remaining
of the paper.
The bosonic (fermionic) Hamiltonian conserves the to-

tal number of particles Nb (Nf ) and is translational in-
variant, being therefore composed of independent blocks
each associated with a total momentum k. In the par-
ticular case of k = 0, parity is also conserved, and at
half-filling, particle-hole symmetry is present, that is, the
bosonic [fermionic] model becomes invariant under the

transformation
∏L

i (b
†
i + bi) [

∏L
i (f

†
i + fi)], which annihi-

lates particles from filled sites and creates them in empty
ones. The latter two symmetries will be avoided here by
selecting k "= 0 and Nb,f = L/3. For even L, we consider
k = 1, 2, . . . , L/2−1 and for odd L, k = 1, 2, . . . (L−1)/2.
The dimension Dk of each symmetry sector studied is
given in Table I.
Exact diagonalization is performed to obtain all eigen-

values and eigenvectors of the systems under investiga-
tion. When t′ = V ′ = 0, models (1) and (2) are integrable
and may be mapped onto one another via the Jordan-
Wigner transformation [47]. A correspondence with the
Heisenberg spin-1/2 chain also holds, in which case the
system may be solved with the Bethe ansatz [48, 49].

III. SIGNATURES OF QUANTUM CHAOS

The concept of exponential divergence, which is at the
heart of classical chaos, has no meaning in the quan-
tum domain. Nevertheless, the correspondence princi-
ple requires that signatures of classical chaos remain in
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TABLE I: Dimensions of subspaces

Bosons
L = 18 k = 1, 5, 7 k = 2, 4, 8 k = 3 k = 6

1026 1035 1028 1038
L = 21 k = 7 other k’s

5538 5537
L = 24 odd k’s k = 2, 6, 10 k = 4 k = 8

30624 30664 30666 30667

Fermions
L = 18 k = 1, 5, 7 k = 2, 4, 8 k = 3 k = 6

1035 1026 1038 1028
L = 21 k = 7 other k’s

5538 5537
L = 24 odd k’s k = 2, 6, 10 k = 4 k = 8

30624 30664 30667 30666

the quantum level. Different quantities exist to identify
the crossover from the integrable to the non-integrable
regime in quantum systems. We consider both spectral
observables associated with the eigenvalues and quanti-
ties used to measure the complexity of the eigenvectors.

A. Spectral observables

Spectral observables, such as level spacing distribution
and level number variance are investigated below. They
are intrinsic indicators of the integrable-chaos transition.
Their analysis are based on the unfolded spectrum of each
symmetry sector separately.

1. Unfolding procedure

The procedure of unfolding consists of locally rescal-
ing the energies as follows. The number of levels with
energy less than or equal to a certain value E is given
by the cumulative spectral function, also known as the
staircase function, N(E) =

∑

n Θ(E − En), where Θ is
the unit step function. N(E) has a smooth part Nsm(E),
which is the cumulative mean level density, and a fluctu-
ating part Nfl(E), that is, N(E) = Nsm(E) + Nfl(E).
Unfolding the spectrum corresponds to mapping the en-
ergies {E1, E2, . . . , ED} onto {ε1, ε2, . . . εD}, where εn =
Nsm(En), so that the mean level density of the new
sequence of energies is 1. Different methods are used
to separate the smooth part from the fluctuating one.
Statistics that measure long-range correlations are usu-
ally very sensitive to the adopted unfolding procedure,
while short-range correlations are less vulnerable [50].
Here, we discard 20% of the energies located at the edges
of the spectrum, where the fluctuations are large, and
obtain Nsm(E) by fitting the staircase function with a
polynomial of degree 15.

2. Level spacing distribution

The distribution of spacings s of neighboring energy
levels [2, 7, 8, 10] is the most frequently used observ-
able to study short-range fluctuations in the spectrum.
Quantum levels of integrable systems are not prohib-
ited from crossing and the distribution is Poissonian,
PP (s) = exp(−s). In non-integrable systems, crossings
are avoided and the level spacing distribution is given by
the Wigner-Dyson distribution, as predicted by random
matrix theory. The form of the Wigner-Dyson distribu-
tion depends on the symmetry properties of the Hamilto-
nian. Ensembles of random matrices with time reversal
invariance, the so-called Gaussian orthogonal ensembles
(GOEs), lead to PWD(s) = (πs/2) exp(−πs2/4). The
same distribution form is achieved for models (1) and (2)
in the chaotic limit, since they are also time reversal in-
variant. However, these systems differ from GOEs in the
sense that they only have two-body interactions and do
not contain random elements. Contrary to GOEs and to
two-body random ensembles [15], the breaking of sym-
metries here is not caused by randomness, but instead
by the addition of frustrating next-nearest-neighbor cou-
plings. Notice also that the analysis of level statistics in
these systems is meaningful only in a particular symme-
try sector; if different subspaces are mixed, level repulsion
may be missed even if the system is chaotic [46, 51].
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FIG. 1: (Color online.) Level spacing distribution for hard-
core bosons averaged over all k’s in Table I, for L = 24, and
t′ = V ′. For comparison purposes, we also present the Poisson
and Wigner-Dyson distributions. Bottom right panel: energy
difference between first excited state E1 and ground state E0

in the full spectrum times L, for L = 18 (circles), L = 21
(squares), and L = 24 (triangles).

In Figs. (1) and (2), we show P (s) across the transi-
tion from integrability to chaos for bosons and fermions,
respectively, in the case of L = 24. An average over all
k’s is performed, but we emphasize that the same be-
havior is verified also for each k-sector separately. As
t′, V ′ increases and symmetries are broken, level repul-

Interac5ng	  spin-‐chain	  with	  a	  single	  impurity	  
	  
(A.	  Gubin	  and	  L.	  Santos,	  2012)	  

2

matrices are pseudo-random vectors; that is, their ampli-
tudes are random variables.20,21 All the eigenstates are
statistically similar, they spread through all basis vectors
with no preferences and are therefore ergodic.
Despite the success of random matrix theory in de-

scribing spectral statistical properties, it cannot capture
the details of real quantum many-body systems. The fact
that random matrices are completely filled with statisti-
cally independent elements implies infinite-range inter-
actions and the simultaneous interaction of many parti-
cles. Real systems have few-body (most commonly only
two-body) interactions which are usually finite range. A
better picture of systems with finite-range interactions
is provided by banded random matrices, which were also
studied byWigner.22 Their off-diagonal elements are ran-
dom and statistically independent, but are non-vanishing
only up to a fixed distance from the diagonal. There are
also ensembles of random matrices that take into account
the restriction to few body interactions, so that only the
elements associated with those interactions are nonzero;
an example is the two-body-random-ensemble23–25 (see
reviews in Refs. 21,26). Other models which describe sys-
tems with short-range and few-body interactions do not
include random elements, such as nuclear shell models,27

and the systems of interacting spins which we consider
in this article.
All the matrices we have mentioned can lead to level re-

pulsion, but differences are observed. For instance, eigen-
states of random matrices are completely spread (delo-
calized) in any basis, whereas the eigenstates of systems
with few-body interactions delocalize only in the middle
of the spectrum.26–30

In this paper we study a one-dimensional system
of interacting spins 1/2. The system involves only
nearest-neighbor interactions, and in some cases, also
next-nearest-neighbor interactions. Depending on the
strength of the couplings, the system may develop chaos,
which is identified by calculating the level spacing distri-
bution. We also compare the level of delocalization of the
eigenstates in the integrable and chaotic domains. It is
significantly larger in the latter case, where the most de-
localized states are found in the middle of the spectrum.
The paper is organized as follows. Section II provides

a detailed description of the Hamiltonian of a spin 1/2
chain. Section III explains how to compute the level
spacing distribution and how to quantify the level of de-
localization of the eigenstates. Section IV shows how
the mixing of symmetries may erase level repulsion even
when the system is chaotic. Final remarks are given in
Sec. V.

II. SPIN-1/2 CHAIN

We study a one-dimensional spin 1/2 system (a spin
1/2 chain) described by the Hamiltonian

H = Hz +HNN, (1a)

where

Hz =
L
∑

i=1

ωiS
z
i =

(

L
∑

i=1

ωSz
i

)

+ εdS
z
d (1b)

HNN =
L−1
∑

i=1

[

Jxy
(

Sx
i S

x
i+1 + Sy

i S
y
i+1

)

+ JzS
z
i S

z
i+1

]

. (1c)

We have set ! equal to 1, L is the number of sites,
Sx,y,z
i = σx,y,z

i /2 are the spin operators at site i, and
σx,y,z
i are the Pauli matrices. The term Hz gives the

Zeeman splitting of each spin i, as determined by a static
magnetic field in the z direction. All sites are assumed
to have the same energy splitting ω, except a single site
d, whose energy splitting ω + εd is caused by a magnetic
field slightly larger than the field applied on the other
sites. This site is referred to as a defect.
A spin in the positive z direction (up) is indicated by

| ↑〉 or by the vector
(

1
0

)

; a spin in the negative z direction

(down) is represented by | ↓〉 or
(

0
1

)

. An up spin on site
i has energy +ωi/2, and a down spin has energy −ωi/2.
A spin up corresponds to an excitation.
The second term, HNN, is known as the XXZ Hamilto-

nian. It describes the couplings between nearest-neighbor
(NN) spins; Jxy is the strength of the flip-flop term
Sx
i S

x
i+1+Sy

i S
y
i+1, and Jz is the strength of the Ising inter-

action Sz
i S

z
i+1. The flip-flop term exchanges the position

of neighboring up and down spins according to

Jxy(S
x
i S

x
i+1 + Sy

i S
y
i+1)| ↑i↓i+1〉 = (Jxy/2)| ↓i↑i+1〉, (2)

or, equivalently, it moves the excitations through the
chain. We have assumed open boundary conditions as
indicated by the sum in HNN which goes from i = 1 to
L−1. Hence, an excitation in site 1 (or L) can move only
to site 2 (or to site L− 1). Closed boundary conditions,
where an excitation in site 1 can move also to site L (and
vice-versa) are mentioned briefly in Sec. IV.
The Ising interaction implies that pairs of parallel spins

have higher energy than pairs of anti-parallel spins, that
is,

JzS
z
i S

z
i+1| ↑i↑i+1〉 = +(Jz/4)| ↑i↑i+1〉, (3)

and

JzS
z
i S

z
i+1| ↑i↓i+1〉 = −(Jz/4)| ↑i↓i+1〉. (4)

For the chain described by Eqs. (1) the total spin in
the z direction, Sz =

∑L
i=1 S

z
i , is conserved, that is,

[H,Sz] = 0. This condition means that the total number
of excitations is fixed; the Hamiltonian cannot create or
annihilate excitations, it can only move them through the
chain.
To write the Hamiltonian in matrix form and diagonal-

ize it to find its eigenvalues and eigenstates, we need to
choose a basis. The natural choice corresponds to arrays
of up and down spins in the z direction, as in Eqs. (2),
(3) and (4). We refer to it as the site basis. In this basis,
Hz and the Ising interaction contribute to the diagonal
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the local density of states is unity. This procedure is the
one we used.35

Given the unfolded spacings of neighboring levels, the
histogram can now be computed. To compare it with the
theoretical curves, the distribution needs to be normal-
ized, so that its total area is equal to 1.
Figure 1 shows the level spacing distribution when the

defect is placed on site 1 and on site !L/2". The first case
corresponds to an integrable model and the distribution
is a Poisson; the second case is a chaotic system, so the
distribution is Wigner-Dyson.

!

FIG. 1: (Color online) Level spacing distribution for the
Hamiltonian in Eqs. (1) with L = 15, 5 spins up, ω = 0,
εd = 0.5, Jxy = 1, and Jz = 0.5 (arbitrary units); bin size =
0.1. (a) Defect on site d = 1;(b) defect on site d = 7. The
dashed lines are the theoretical curves.

B. Number of principal components

We now investigate how the transition from a Poisson
to a Wigner-Dyson distribution affects the structure of
the eigenstates. In particular, we study how delocalized
they are in both regimes.
To determine the spreading of the eigenstates in a par-

ticular basis, we look at their components. Consider
an eigenstate |ψi〉 written in the basis vectors |ξk〉 as
|ψi〉 =

∑D
k=1 cik|ξk〉. It will be localized if it has the par-

ticipation of few basis vectors, that is, if a few |cik|2 make
significant contributions. It will be delocalized if many
|cik|2 participate with similar values. To quantify this cri-
terion, we use the sum of the square of the probabilities,
|cik|4 (the sum of the probabilities would not be a good
choice, because normalization implies

∑D
k=1 |cik|

2 = 1),
and define the number of principal components of eigen-
state i as27,28

ni ≡
1

∑D
k=1 |cik|

4
. (7)

The number of principal components gives the number
of basis vectors which contribute to each eigenstate. It
is small when the state is localized and large when the
state is delocalized.
For Gaussian orthogonal ensembles, the eigenstates are

random vectors, that is, the amplitudes cik are indepen-
dent random variables. These states are completely de-
localized. Complete delocalization does not mean, how-
ever, that the number of principal components is equal to

D. Because the weights |cik|2 fluctuate, the average over
the ensemble gives number of principal components ∼
D/3.27,28

To study the number of principal components for
Eqs. (1), we need to choose a basis. This choice depends
on the question we want to address. We consider two
bases, the site- and mean-field basis. The site-basis is
appropriate when analyzing the spatial delocalization of
the system. To separate regular from chaotic behavior,
a more appropriate basis consists of the eigenstates of
the integrable limit of the model, which is known as the
mean-field basis.27 In our case the integrable limit corre-
sponds to Eqs. (1) with Jxy &= 0, εd &= 0, and Jz = 0.
We start by writing the Hamiltonian in the site-basis.

Let us denote these basis vectors by |φj〉. In the absence
of the Ising interaction, the diagonalization of the Hamil-
tonian leads to the mean-field basis vectors. They are
given by |ξk〉 =

∑D
j=1 bkj |φj〉. The diagonalization of the

complete matrix, including the Ising interaction, gives
the eigenstates in the site-basis, |ψi〉 =

∑D
j=1 aij |φj〉. If

we use the relation between |φj〉 and |ξk〉, we may also
write the eigenstates of the total Hamiltonian in Eqs. (1)
in the mean-field basis as

|ψi〉 =
D
∑

k=1





D
∑

j=1

aijb
∗

kj



 |ξk〉 =
D
∑

k=1

cik|ξk〉. (8)

Figures 2 shows the number of principal components
for the eigenstates in the site-basis [(a), (b)] and in the
mean-field basis [(c), (d)] for the cases where the defect
is placed on site 1 [(a), (c)] and on site !L/2" [(b), (d)].
The level of delocalization increases significantly in the
chaotic regime. However, contrary to random matrices,
the largest values are restricted to the middle of the spec-
trum, the states at the edges being more localized. This
property is a consequence of the Gaussian shape of the
density of states of systems with two-body interactions.
The highest concentration of states appears in the middle
of the spectrum, where the strong mixing of states can
occur leading to widely distributed eigenstates.
An interesting difference between the integrable and

chaotic regimes is the fluctuations of the number of prin-
cipal components. For the regular system the number of
principal components shows large fluctuations. In con-
trast, in the chaotic regime the number of principal com-
ponents approaches a smooth function of energy. Chaotic
eigenstates close in energy have similar structures and
consequently similar values of the number of principal
components.

IV. SYMMETRIES

The presence of a defect breaks symmetries of the sys-
tem. In this section we remove the defect and have a
closer look at the symmetries.
We refer to the system in the absence of a defect

(εd = 0) as defect-free. Contrary to the case where



Quantum	  ergodicity	  and	  localiza5on	  in	  the	  Hilbert	  space	  
Why	  does	  ETH	  work?	  Why	  does	  the	  single	  state	  describe	  equilibrium?	  	  	  

Imagine	  the	  most	  integrable	  many-‐body	  system:	  collec5on	  of	  non-‐interac5ng	  Ising	  
spins.	  The	  dynamics	  is	  very	  simple:	  each	  spin	  is	  conserved.	  

A	  typical	  state	  with	  a	  fixed	  magne5za5on	  is	  thermal.	  This	  is	  how	  we	  derive	  Gibbs	  
distribu5on	  in	  sta5s5cal	  mechanics.	  We	  do	  not	  need	  non-‐integrability.	  	  

More	  sophis5cated	  language:	  quantum	  typicality.	  If	  we	  take	  a	  typical	  many-‐body	  state	  
of	  a	  big	  system	  (Universe)	  and	  look	  into	  a	  small	  subsystem	  then	  it	  will	  look	  like	  the	  Gibbs	  
state	  (von	  Neumann	  1929,	  Popescu	  et.	  al.	  2006,	  Goldstein	  et.	  al.	  2009)	  

Can	  we	  create	  typical	  states	  in	  the	  lab	  doing	  local	  perturba5ons?	  Let	  us	  flip	  10	  spins	  in	  the	  
middle	  doing	  the	  Rabi	  pulse	  

By	  performing	  a	  local	  quench	  we	  create	  a	  very	  atypical	  state,	  which	  is	  not	  thermal,	  whether	  
the	  system	  is	  integrable	  or	  not.	  In	  an	  integrable	  system	  this	  state	  will	  never	  thermalize.	  
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FIG. 1: The Heisenberg equation of motion for an observable

O is solved by transforming to the B =∞ eigenbasis of the in-

teracting Hamiltonian H (forward transformation), where the

time evolution can be computed easily. Time evolution intro-

duces phase shifts, and therefore the form of the observable

in the initial basis B = 0 (after a backward transformation)

changes as a function of time.

the limit of high dimensions [15], but the calculation also
applies to finite dimensions with the same conclusions up
to quantitative details.

We study the above real time evolution problem by
using the approach introduced in [16]. One solves the
Heisenberg equations of motion for the operators that one
is interested in by performing a unitary transformation
to an (approximate) eigenbasis of the interacting Hamil-
tonian. There one can easily work out the time evolution
and then transform back to the original basis where the
initial state is specified. In this manner one induces a
solution of the Heisenberg equations of motion for an op-
erator in the original basis but without secular terms,
which are usually a major problem in other approxima-
tion schemes [17]. Fig. 1 gives a sketch of our approach.
Notice that the same general idea was recently also used
by Cazalilla to study the behavior of the exactly solvable
one-dimensional Luttinger model subject to a quench [8].

Since our model is non-integrable, we implement the
above diagonalizing transformation by the flow equa-
tion method [18, 19], which permits a systematic con-
trolled expansion for many equilibrium and nonequi-
librium quantum many-body problems [19]. One uses
a continuous sequence of infinitesimal unitary transfor-
mations parametrized by a parameter B with dimen-
sion (energy)−2 that connects the eigenbasis of the free
Hamiltonian (B = 0) with the energy diagonal basis of
the interacting Hamiltonian (B = ∞). Each infinites-
imal step of the unitary transformation is defined by
the canonical generator η(B) = [H0(B), Hint(B)], where
H0(B) is the diagonal and Hint(B) the interacting part
of the Hamiltonian. This generator η(B) has the re-
quired property of making H(B) increasingly energy di-
agonal for B → ∞ [18]. All operators O(B) (including
the Hamiltonian itself) flow according to the differen-
tial equation ∂O(B)/∂B = [η(B),O(B)]. Higher order
terms generated by the commutator are truncated af-
ter normal-ordering (denoted by : :) and the flow equa-
tions decompose into a set of ordinary differential equa-
tions resembling scaling equations in a renormalization

approach. However, contrary to conventional renormal-
ization schemes which reduce the size of the effective
Hilbert space, the flow equation approach retains the full
Hilbert space, which makes it particularly appropriate
for nonequilibrium problems (for more details see [19]).

Flow equations for the Hubbard model. First we work
out the diagonalizing flow equation transformation for
the Hubbard Hamiltonian. The expansion parameter is
the (small) interaction U and normal-ordering is with
respect to the zero temperature Fermi-Dirac distribution:

H(B) =
�

kσ=↑,↓
�k :c†kσckσ: (2)

+
�

p�pq�q

Up�pq�q(B) :c†p�↑cp↑c
†
q�↓cq↓:

with Up�pq�q(B = 0) = U . The flow of the one-particle en-
ergies and the generation of higher normal-ordered terms
in the Hamiltonian can be neglected since we are in-
terested in results in second order in U . The flow of
the interaction is to leading order given by Up�pq�q(B) =
U exp(−B∆2

p�pq�q) with an energy difference ∆p�pq�q
def=

�p� − �p + �q� − �q.
Next we work out the flow equation transformation for

the number operator Nk↑(B) = C
†
k↑(B) Ck↑(B), which

can be obtained from the transformation of a single cre-
ation operator C†k↑(B). Under the sequence of unitary
transformations the operator changes its form to describe
dressing by electron-hole pairs. A truncated ansatz reads:

C
†
k↑(B)=hk(B)c†k↑ +

�

p�q�p

M
k
p�q�p(B)δk+p

p�+q� :c†p�↑c
†
q�↓cp↓:

(3)
We introduce the zero temperature momentum distri-
bution function of a free Fermi gas nk, define n

−
k

def=
1 − nk and a phase space factor Qp�pq� [n] def= n

−
p�n

−
q�np +

np�nq�n
−
p . The flow equations for the creation operator

are:

∂hk(B)
∂B

= U

�

p�q�p

M
k
p�q�p(B) ∆kp�pq� e

−B∆2
kp�pq�

Qp�pq� [n]

∂M
k
p�q�p(B)
∂B

= hk(B) U ∆p�pq�ke
−B∆2

p�pq�k (4)

Here and in the ansatz (3) we have only taken into ac-
count the terms that are required to describe the momen-
tum distribution function up to second order in U . The
initial conditions for the above transformation of C†k↑ are
hk(0) = 1 and M

k
p�q�p(0) = 0 (i.e., C†k↑(B = 0) = c

†
k↑),

and we denote the asymptotic values from the solution
of (4) by hk(B = ∞, t = 0) and M

k
p�q�p(B = ∞, t = 0).

Time evolution according to Fig. 1 yields hk(B =∞, t) =
hk(B = ∞, t = 0) e

−i�kt and M
k
p�q�p(B = ∞, t) =

M
k
p�q�p(B = ∞, t = 0) e

−i(�p�+�q�−�p)t, which are then
input as the initial conditions of the system of equations

Start	  from	  U=0.	  Short	  5me	  dynamics	  is	  
approximated	  by	  non-‐interac5ng	  dressed	  
quasi-‐par5cles.	  
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(4) at B = ∞. Integrating back to B = 0 gives the
time evolved creation operator in the original basis, and
it is straightforward to evaluate the time dependent mo-
mentum distribution function with respect to the initial
Fermi gas state [20].

Nonequilibrium momentum distribution function. One
finds the following time-dependent additional term to the
distribution nk of the free Fermi gas in O(U2):

∆N
NEQ
k (t) = N

NEQ
k (t)− nk (5)

= −4U
2

� ∞

−∞
dE

sin2
�

(�k−E)t
2

�

(�k − E)2
Jk(E;n)

The phase space factor Jk(E;n) resembles the quasipar-
ticle collision integral of a quantum Boltzmann equation:

Jk(E;n) =
�

p�q�p

δ
p�+q�

p+k δ
�p�+�q�

�p+E

�
nknpn

−
p�n

−
q� − n

−
k n

−
p np�nq�

�

For computational convenience we use the limit of infi-
nite dimensions, specifically a Gaussian density of states
ρ(�) = exp

�
−(�/t∗)2/2

�
/
√

2πt∗ [15]. In the sequel
ρF = ρ(� = 0) denotes the density of states at the Fermi
level. Results from a numerical evaluation of the above
scheme for three time steps are presented in Fig. 2.

Equilibrium momentum distribution function. Eqs. (4)
can also be used to evaluate the equilibrium distribution
function, which will later be important for comparison.
In fact, the asymptotic value hkF (B = ∞) at the Fermi
energy is directly related to the quasiparticle residue (Z-
factor), ZEQU = [hkF (B = ∞)]2 [19]. It is easy to solve
(4) analytically at the Fermi energy for zero temperature
in O(U2) and one finds for momenta k infinitesimally
above or below the Fermi surface

∆N
EQU
k = −U

2

� ∞

−∞
dE

Jk(E;n)
(�k − E)2

(6)

consistent with a conventional perturbative evaluation.
Short-time correlation buildup. The numerical evalua-

tion of the momentum distribution function depicted in
Fig. 2 shows the initial buildup of a correlated state from
the Fermi gas. For times 0 < t � ρ

−1
F U−2 one observes

a fast reduction of the Fermi surface discontinuity and
1/t oscillations in the momentum distribution function.
This short time regime can be understood as the forma-
tion of quasiparticles from the free electrons of the initial
noninteracting Fermi gas.

Intermediate quasi-steady regime. For times t of or-
der ρ

−1
F U−2 the sinusoidal time dependence in (5) gen-

erates an increasing localization in energy space, which
eventually becomes a δ-function (Fermi’s golden rule).
There are no further changes in the momentum distribu-
tion function for times t � ρ

−1
F U−2 in the present order

of the calculation. For momenta k infinitesimally above

FIG. 2: (a)-(d): Time evolution of NNEQ(�) plotted around
the Fermi energy for ρF U = 0.6. A fast reduction of the dis-
continuity and 1/t-oscillations can be observed. The arrow in
(d) indicates the size of the quasiparticle residue in the quasi-
steady regime. In (e) the universal curves for ∆Nk = Nk−nk

are given for both equilibrium and for the nonequilibrium
quasi-steady state in the weak-coupling limit.

or below the Fermi surface one then finds from (5):

∆N
NEQ
k (t→∞) = −4U

2

� ∞

−∞
dE

1
2

Jk(E;n)
(�k − E)2

= 2 ∆N
EQU
k (7)

since sin2 in (5) yields a factor 1/2 in the long time limit.
In the quasi-steady state the momentum distribution
function is therefore that of a zero temperature Fermi
liquid. However, from (7) one deduces that its Z-factor
is smaller than in equilibrium, 1−ZNEQ = 2(1−ZEQU).
This factor 2 implies a quasiparticle distribution function
in the vicinity of the Fermi surface in the quasi-steady
state equal to the equilibrium distribution function of
the physical electrons, N

QP:NEQ
k = N

EQU
k , as opposed to

its equilibrium distribution, N
QP:EQU
k = Θ(kF − k).

Remarkably, Cazalilla’s findings [8] for the interaction
quench in the Luttinger model mirror these features: the
critical exponent describing the asymptotic behavior of
the electronic Green’s function differs from the equilib-
rium result. As Cazalilla points out this corresponds to a
non-equilibrium distribution for the bosonic modes after
bosonization. A main difference between the Luttinger
liquid and the Fermi liquid cases follows from the inte-
grability of the Luttinger liquid with an infinite number
of conservation laws, which make this regime stable for
t→∞. For the Fermi liquid, on the other hand, on-shell
interactions lead to thermalization as we will see next.

Thermalization. The previous flow equation calcula-
tion of the real time dynamics contains all contributions
to the time evolution for times smaller than ρ

−3
F U−4. For

the long time dynamics one generally expects a quantum

System	  relaxes	  to	  the	  atypical	  state	  with	  wrong	  
quasi-‐par5cle	  residue.	  	  

Simpler	  example:	  take	  
noninterac5ng	  fermions	  and	  
hit	  with	  a	  local	  Hammer.	  

Can	  not	  possibly	  create	  
new	  Fermi-‐Dirac	  
distribu5on,	  too	  much	  
fine	  tuning.	  	  

We	  do	  not	  need	  
ergodicity,	  ETH,	  chaos	  
to	  understand	  
sta5s5cal	  mechanics.	  	  
	  
We	  need	  them	  to	  
understand	  dynamics.	  



There	  are	  always	  atypical	  states.	  These	  are	  the	  states,	  which	  we	  
usually	  excite	  in	  experiments.	  ETH	  says	  that	  there	  are	  no	  atypical	  
sta5onary	  states	  (eigenstates	  of	  the	  Hamiltonian)	  
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lattice. We again found that the ETH holds true (3% relative
standard deviation of eigenstate-to-eigenstate fluctuations).
On the other hand, Figs. 3d-f show how the ETH fails

for an isolated one-dimensional integrable system. The lat-
ter consists of five hard-core bosons initially prepared in their
ground state in an 8-site chain, one of the ends of which we

then link to one of the ends of an adjoining (empty) 13-site
chain to trigger relaxation dynamics. As Fig. 3e shows, n(kx)
as a function of energy is a broad cloud of points, meaning
that the ETH is not valid; Fig. 3f shows that scenario (ii) does
not hold either.

FIG. 3: Eigenstate thermalization hypothesis. a, In our nonintegrable system, the momentum distribution n(kx) for two typical eigenstates
with energies close to E0 is identical to the microcanonical result, in accordance with the ETH. b, Upper panel: n(kx = 0) eigenstate
expectation values as a function of the eigenstate energy resemble a smooth curve. Lower panel: the energy distribution ρ(E) of the three
ensembles considered in this work. c, Detailed view of n(kx = 0) (left labels) and |Cα|2 (right labels) for 20 eigenstates around E0. d, In the
integrable system, n(kx) for two eigenstates with energies close to E0 and for the microcanonical and diagonal ensembles are very different
from each other, i.e., the ETH fails. e, Upper panel: n(kx = 0) eigenstate expectation value considered as a function of the eigenstate energy
gives a thick cloud of points rather than resembling a smooth curve. Lower panel: energy distributions in the integrable system are similar to
the nonintegrable ones depicted in b. f, Correlation between n(kx = 0) and |Cα|

2 for 20 eigenstates around E0. It explains why in d the
microcanonical prediction for n(kx = 0) is larger than the diagonal one.

Nevertheless, one may still wonder if in this case scenario
(i) might hold—if the averages over the diagonal and the
microcanonical energy distributions shown in Fig. 3e might
agree. Figure 3d shows that this does not happen. This is so
because, as shown in Fig. 3f, the values of n(kx = 0) for
the most-occupied states in the diagonal ensemble (the largest
values of eigenstate occupation numbers |Cα|2) are always
smaller than the microcanonical prediction, and those of the
least-occupied states, always larger. Hence, the usual thermal
predictions fail because the correlations between the values
of n(kx = 0) and |Cα|2 preclude unbiased sampling of the
latter by the former. These correlations have their origin in
the nontrivial integrals of motion that make the system inte-

grable and that enter the generalized Gibbs ensemble, which
was introduced in Ref. [3] as appropriate for formulating sta-
tistical mechanics of isolated integrable systems. In the non-
integrable case shown in Fig. 3c, n(kx = 0) is so narrowly
distributed that it does not matter whether or not it is corre-
lated with |Cα|2 (we have in fact seen no correlations in the
nonintegrable case).

The thermalization mechanism outlined thus far explains
why long-time averages converge to their thermal predictions.
A striking aspect of Fig. 1b, however, is that the time fluc-
tuations are so small that after relaxation the thermal predic-
tion works well at every instant of time. Looking at Eq. (1),
one might think this is so because the contribution of the off-

Fluctua5ons	  of	  observable	  between	  eigenstates	  (M.	  Rigol	  et.	  al.	  2008)	  

Nonintegrable	   Integrable	  

All	  eigenstates	  in	  a	  non-‐integrable	  system	  are	  indeed	  typical.	  

Physical	  reason:	  each	  eigenstate	  consists	  of	  (exponen5ally)	  many	  eigenstates	  of	  
other	  local	  Hamiltonians,	  e.g.	  of	  a	  noninterac5ng	  Hamiltonian.	  



Nearly integrable (non-ergodic) Noninterable (ergodic) 
Quantum ergodicity is a delocalization of the initial state in the Hilbert space  
The picture is thus similar to classical. Phase space è Hilbert space. 
 
While each eigenstate is enough to thermalize we always populate many! 

C.	  Neuenhahn,	  F.	  Marquardt	  ,	  2010;	  G.	  Biroli,	  C.	  Kollath,	  A.	  Laeuchli,	  2009	  

Corollary: each energy eigenstate contains (exponentially) many noninteracting states. 
Each non-interacting state is projected to many eigenstates (by a local perturbation) 



Measures	  of	  (de)localiza5on	  in	  the	  Hilbert	  space	  	  
(L.	  Santos	  and	  M.	  Rigol,	  2010)	  
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be considered when computing T . Our results here show
that the differences with considering specific momentum
sectors are small and decreasing with the system size.

2. Results in the mean-field basis

Figures 11 and 12 show the mean-field Shannon en-
tropy vs energy for all the eigenstates of the k = 2 sector.
Notice that the whole spectrum for the k = 2 sector is
presented and not only the energies leading to T ≤ 10
as in Figs. 6 and 7. The typical behavior of banded ma-
trices is observed: larger delocalization appearing away
from the edges of the spectrum, although not as large as
the GOE result SGOE = ln(0.48D) +O(1/D), and lower
complexity at the edges [13, 15, 57].

FIG. 11: (Color online.) Shannon entropy in the mean field
basis vs energy for bosons, L = 24, k = 2, and t′ = V ′. The
dashed line gives the GOE averaged value SGOE ∼ ln(0.48D).

FIG. 12: (Color online.) Same as in Fig. 11 for fermions.

A similar behavior is seen in the plots of the in-
verse participation ratio in the mean-field basis vs en-

ergy (Figs. 13 and 14). The IPR values increase sig-
nificantly with t′, V ′, but do not reach the GOE result
IPR = (D+2)/3 [11, 12]. IPR gives essentially the same
information as S, although the first shows larger fluctua-
tions.

FIG. 13: (Color online.) Inverse participation ratio in the
mean field basis vs energy for bosons, L = 24, k = 2, and
t′ = V ′. The GOE result IPRGOE ∼ D/3 is beyond the
chosen scale.

FIG. 14: (Color online.) Same as in Fig. 13 for fermions.

3. Results in the k−basis

Identifying the mean-field basis may not always be a
simple task. For example, some 1D models may have
more than one integrable point. It may also happen that
one is so far from any integrable point that there is no rea-
son to believe that such a point has any relevance for the
chosen system. The latter case may be particularly ap-
plicable to higher-dimensional systems where integrable
points are, in general, the noninteracting limit or other

Inverse	  
Par5cipa5on	  
Ra5o	  

6

tion measures [11, 12], are not intrinsic indicators of the
integrable-chaos transition since they depend on the ba-
sis in which the computations are performed. The choice
of basis is usually physically motivated. The mean-field
basis is the most appropriate representation to separate
global from local properties, and therefore capture the
transition from regular to chaotic behavior [12]. Here,
this basis corresponds to the eigenstates of the integrable
Hamiltonian (t′, V ′ = 0). Other representations may also
provide relevant information, such as the site basis, which
is meaningful in studies of spatial localization, and the
momentum basis, which can be used to study k-space
localization (see the Appendix for further discussions).
The degree of complexity of individual eigenvectors

may be measured, for example, with the information
(Shannon) entropy S or the inverse participation ratio
(IPR). The latter is also sometimes referred to as number
of principal components. For an eigenstate ψj written in

the basis vectors φk as ψj =
∑D

k=1 c
k
jφk, S and IPR are

respectively given by

Sj ≡ −
D
∑

k=1

|ckj |
2 ln |ckj |

2, (5)

and

IPRj ≡
1

∑D
k=1 |c

k
j |

4
. (6)

The above quantities measure the number of basis vectors
that contribute to each eigenstate, that is, how much
delocalized each state is in the chosen basis.
For the GOE, the amplitudes ckj are independent ran-

dom variables and all eigenstates are completely delocal-
ized. Complete delocalization does not imply, however,
that S = lnD. For a GOE, the weights |ckj |

2 fluctu-
ate around 1/D and the average over the ensemble is
SGOE = ln(0.48D) +O(1/D) [11, 12].
Figures 6 and 7 show the Shannon entropy in the mean

field basis Smf vs the effective temperature for bosons
and fermions, respectively. The effective temperature,
Tj of an eigenstate ψj with energy Ej is defined as

Ej =
1

Z
Tr

{

Ĥe−Ĥ/Tj

}

, (7)

where

Z = Tr
{

e−Ĥ/Tj

}

. (8)

Above, Ĥ is Hamiltonian (1) or (2), Z is the partition
function with the Boltzmann constant kB = 1, and the
trace is performed over the full spectrum as in Refs. [31]
and [32] (see the Appendix for a comparison with effec-
tive temperatures obtained by tracing over exclusively
the sector k = 2). The figures include results only for
Tj ≤ 10; for highEj , the temperatures eventually become
negative. By plotting the Shannon entropy as a function

FIG. 6: (Color online.) Shannon entropy in the mean field
basis vs effective temperature for bosons, L = 24, k = 2,
and t′ = V ′. The dashed line gives the GOE averaged value
SGOE ∼ ln(0.48D).

FIG. 7: (Color online.) As in Fig. 6 for fermions.

of the effective temperature, we allow for a direct com-
parison of our results here and the results presented in
Refs. [31] and [32].
As seen in Figs. 6 and 7, the mixing of basis vectors,

and therefore the complexity of the states, increases with
t′, V ′, but it is only for Tj ! 2 that the eigenstates of our
systems approach the GOE result. Similarly, in plots of
Smf vs energy (see Figs. 11 and 12 in the Appendix), it is
only away from the borders of the spectrum that Smf →
SGOE; in the borders, the states are more localized and
therefore less ergodic. This feature is typical of systems
with a finite range of interactions, such as models (1)
and (2) and also banded, embedded random matrices,
and two-body random ensembles [13, 15, 57].
The analysis of the structure of the eigenstates hints

on what to expect for the dynamics of the system. In
the context of relaxation dynamics, not only the den-
sity of complex states participating in the dynamics is

Shannon	  
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SGOE; in the borders, the states are more localized and
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with a finite range of interactions, such as models (1)
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e−Ĥ/Tj

}

. (8)
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t′, V ′, but it is only for Tj ! 2 that the eigenstates of our
systems approach the GOE result. Similarly, in plots of
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SGOE; in the borders, the states are more localized and
therefore less ergodic. This feature is typical of systems
with a finite range of interactions, such as models (1)
and (2) and also banded, embedded random matrices,
and two-body random ensembles [13, 15, 57].
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on what to expect for the dynamics of the system. In
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sity of complex states participating in the dynamics is

Nonintegrable	  systems	  are	  more	  delocalized	  
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FIG. 1: (Color online) Entropies vs t′ = V ′. Left: bosons; right:
fermions; top: quench from tini = 0.5, Vini = 2.0; bottom: quench
from tini = 2.0, Vini = 0.5. Filled symbols: d entropy (1); empty
symbols: Ss (2); © T = 1.5; ! T = 2.0; " T = 3.0. All panels:
1/3-filling and L = 24; insets of panels (a) and (c) show Sd/Ss for
L = 24, thick (red) line, and L = 21, thin (black) line for T = 3.0.
Solid lines in the insets of panels (b) and (d), from bottom to top:
microcanonical entropy; canonical entropy Sc for eigenstates with
k = 0 and the same parity as the initial state; Sc for eigenstates with
k = 0 and both parities; and Sc for all eigenstates with N = 8.

initial state after the quench. Explicit results for the micro-
canonical entropy with δE determined by the energy uncer-
tainty are in surprisingly good agreement with those of Sd.
Up to a nonextensive constant, the canonical entropy Sc can
also be written in the same form as Sm (2) if we use the canon-
ical width δE2

c = −∂βE. Results for Sc are shown for three
different sets of eigenstates: (i) all the states in the N sec-
tor, (ii) only the states in the N sector with k = 0, (iii) only
the states in the N sector with k = 0 and the same parity as
the initial state. The latter, as expected, is the closest to Sm

(also computed from eigenstates in the same symmetry sec-
tor as |ψini〉) and Sd. In the thermodynamic limit, all three
sets of eigenstates should produce the same leading contribu-
tion to Sc, but for finite systems it is necessary to take into
account discrete symmetries in order to get an accurate ther-
modynamic description of the equilibrium ensemble.

The fact that Sd/Sm → 1 in the chaotic limit and that the
agreement improves with system size provide an important in-
dication that Sf is small and subextensive. Information con-
tained in the fluctuations of the density matrix becomes neg-
ligible in chaotic systems and only the smooth (measurable)
part of the energy distribution contributes to the entropy of
the system. Also, the close agreement between Sd and Sm in
the insets of Fig. 1(b) and 1(d) suggests that Sd is indeed the
proper entropy to characterize isolated quantum systems after
relaxation. Results for the energy distribution W (E) in Fig. 2
further support these findings.

Figure 2 shows W (E) for HCBs for quenches in the in-
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FIG. 2: (Color online) Normalized distribution function of energy.
Bosonic system, L = 24, T = 3.0 and the values of t′ = V ′ are
indicated. Top panels: quench from tini = 0.5, Vini = 2.0; bot-
tom panels: quench from tini = 2.0, Vini = 0.5. Solid smooth line:
best Gaussian fit (

√
2πa)−1e−(E−b)2/(2a2) for parameters a and b;

dashed line: (
√
2πδE)−1e−(E−Eini)

2/(2δE2).

tegrable (left) and chaotic (right) domains. The sparsity
of the density matrix in the integrable limit is reflected
by large and well separated peaks, while for the noninte-
grable case W (E) approaches a Gaussian shape similar to
(
√
2πδE)−1e−(E−Eini)

2/(2δE2), as shown with the fits. The
shape of W (E) is determined by the product of the average
weight of the components of the initial state and the den-
sity of states. The latter is Gaussian and the first depends on
the strength of the interactions that lead to chaos, it becomes
Gaussian for large interactions [15]. A plot of ρnn vs energy,
on the other hand, does not capture so clearly the integrable-
chaos transition [12].
Integrable systems. We consider a 1D HCB model with NN

hopping and an external potential described by,

HS = −t
L−1
∑

j=1

(b†jbj+1 +H.c.)+A
L
∑

j=1

cos

(

2πj

P

)

b†jbj . (5)

This model is exactly solvable as it maps to spinless noninter-
acting fermions (see e.g., Ref. [16]). The period P is taken
to be P = 5, t = 1, and the amplitude A takes the values
4, 8, 12, and 16. We study systems with L = 20, 25 . . .55
at 1/5 filling. For the quench, we start with the ground state
of (5) with A = 0 and evolve the system with a superlattice
(A %= 0) and vice-versa. Open boundary conditions are used
in this case.

We first study how the deviation of Sd from Ss, as quanti-
fied by Sf/Sd, scales with increasing lattice size for different
quenches. As shown in Figs. 3 (a) and (b), Sf/Sd, does not
decrease as L increases, rather, we find indications that Sf/Sd

saturates to a finite value in the thermodynamic limit. Hence,
for these systems Sd is not expected to be equivalent to the
microcanonical entropy.

In the lower panels of Fig. 3, we study the scaling ofSd with
increasing system size for the same quenches. A clear linear
behavior is seen, demonstrating that Sd is indeed additive. In
these panels, we also show the microcanonical (with δE de-
termined as for the interaction quenches [17]) and canonical
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initial state after the quench. Explicit results for the micro-
canonical entropy with δE determined by the energy uncer-
tainty are in surprisingly good agreement with those of Sd.
Up to a nonextensive constant, the canonical entropy Sc can
also be written in the same form as Sm (2) if we use the canon-
ical width δE2

c = −∂βE. Results for Sc are shown for three
different sets of eigenstates: (i) all the states in the N sec-
tor, (ii) only the states in the N sector with k = 0, (iii) only
the states in the N sector with k = 0 and the same parity as
the initial state. The latter, as expected, is the closest to Sm

(also computed from eigenstates in the same symmetry sec-
tor as |ψini〉) and Sd. In the thermodynamic limit, all three
sets of eigenstates should produce the same leading contribu-
tion to Sc, but for finite systems it is necessary to take into
account discrete symmetries in order to get an accurate ther-
modynamic description of the equilibrium ensemble.

The fact that Sd/Sm → 1 in the chaotic limit and that the
agreement improves with system size provide an important in-
dication that Sf is small and subextensive. Information con-
tained in the fluctuations of the density matrix becomes neg-
ligible in chaotic systems and only the smooth (measurable)
part of the energy distribution contributes to the entropy of
the system. Also, the close agreement between Sd and Sm in
the insets of Fig. 1(b) and 1(d) suggests that Sd is indeed the
proper entropy to characterize isolated quantum systems after
relaxation. Results for the energy distribution W (E) in Fig. 2
further support these findings.

Figure 2 shows W (E) for HCBs for quenches in the in-
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tegrable (left) and chaotic (right) domains. The sparsity
of the density matrix in the integrable limit is reflected
by large and well separated peaks, while for the noninte-
grable case W (E) approaches a Gaussian shape similar to
(
√
2πδE)−1e−(E−Eini)

2/(2δE2), as shown with the fits. The
shape of W (E) is determined by the product of the average
weight of the components of the initial state and the den-
sity of states. The latter is Gaussian and the first depends on
the strength of the interactions that lead to chaos, it becomes
Gaussian for large interactions [15]. A plot of ρnn vs energy,
on the other hand, does not capture so clearly the integrable-
chaos transition [12].
Integrable systems. We consider a 1D HCB model with NN

hopping and an external potential described by,

HS = −t
L−1
∑

j=1

(b†jbj+1 +H.c.)+A
L
∑

j=1

cos

(

2πj

P

)

b†jbj . (5)

This model is exactly solvable as it maps to spinless noninter-
acting fermions (see e.g., Ref. [16]). The period P is taken
to be P = 5, t = 1, and the amplitude A takes the values
4, 8, 12, and 16. We study systems with L = 20, 25 . . .55
at 1/5 filling. For the quench, we start with the ground state
of (5) with A = 0 and evolve the system with a superlattice
(A %= 0) and vice-versa. Open boundary conditions are used
in this case.

We first study how the deviation of Sd from Ss, as quanti-
fied by Sf/Sd, scales with increasing lattice size for different
quenches. As shown in Figs. 3 (a) and (b), Sf/Sd, does not
decrease as L increases, rather, we find indications that Sf/Sd

saturates to a finite value in the thermodynamic limit. Hence,
for these systems Sd is not expected to be equivalent to the
microcanonical entropy.

In the lower panels of Fig. 3, we study the scaling ofSd with
increasing system size for the same quenches. A clear linear
behavior is seen, demonstrating that Sd is indeed additive. In
these panels, we also show the microcanonical (with δE de-
termined as for the interaction quenches [17]) and canonical

Bosons	   Fermions	  

Nonintegrable	  systems:	  delocaliza5on	  in	  
the	  energy	  space	  awer	  the	  quench.	  	  
	  
Each	  eigenstate	  is	  thermal	  
	  
Always	  densely	  occupy	  eigenstates	  
	  
Either	  condi5on	  is	  sufficient	  for	  
thermaliza5on.	  



How	  robust	  are	  the	  eigenstates	  against	  small	  perturba5on?	  

Consider	  two	  setups	  preparing	  the	  system	  in	  the	  energy	  eigenstate	  

Setup	  I:	  trace	  out	  few	  spins	  (do	  not	  
touch	  them	  but	  no	  access	  to	  them)	  

A	   B	  

Setup	  II:	  suddenly	  cutoff	  the	  link	  

A	   B	  I	   II	  

In	  both	  cases	  deal	  with	  the	  same	  reduced	  density	  matrix	  (right	  awer	  the	  quench	  in	  case	  II)	  

Quench:	  the	  reduced	  density	  matrix	  evolves	  with	  the	  Hamiltonian	  HA.	  

Define	  two	  relevant	  entropies	  (both	  are	  conserved	  in	  5me	  awer	  quench):	  

Entanglement	  (von	  Neumann’s	  entropy)	  
Diagonal	  (measure	  of	  delocaliza5on),	  entropy	  
of	  5me	  averaged	  density	  matrix	  awer	  quench	  



I	   II	  A	   B	   A	   B	  

B>>A,	  trace	  out	  most	  of	  the	  system.	  Eigenstate	  is	  a	  typical	  state	  so	  expect	  that	  

B<<A,	  trace	  out	  few	  spins,	  perhaps	  only	  one	  (say	  out	  of	  1022).	  What	  happens?	  

Remove	  one	  spin.	  Barely	  excite	  the	  system.	  Density	  matrix	  is	  almost	  diagonal	  (sta5onary)?	  	  

Wrong	  (in	  nonintegrable	  case)	  

Use	  ETH:	  Perform	  quench,	  deposit	  non	  extensive	  energy	  	  δE.	  Occupy	  all	  states	  in	  this	  
energy	  shell.	  

ETH	  tells	  us	  that	  even	  cuzng	  one	  degree	  of	  
freedom	  is	  enough	  to	  recreate	  equilibrium	  
(microcanonical)	  density	  matrix.	  
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for nonintegrable systems, Sd approaches SGC after cutting
off a few (possibly one) sites, i.e., our hypothesis above is
verified. SvN, on the other hand, remains different from Sd

and SGC until a large fraction of the lattice is traced out [9].
This motivates us to distinguish between the conventional (or
strong) typicality SvN ∼= Sd

∼= SGC and a weaker typicality in
the sense that SvN "= Sd

∼= SGC. The latter implies that only
the diagonal part of the density matrix of the reduced system
in the energy eigenbasis exhibits a thermal structure.
Our results then show that the diagonal entropy satisfies the

key thermodynamic relation:

∂SS

∂ES
=

∂SE

∂EE
=

1

T
, (3)

whereES andEE are the energies of the subsystems. This fol-
lows from the fact that Sd coincides with the thermodynamic
entropy for S and E simultaneously. In contrast, SvN cannot
satisfy this equality, as one can see by considering E # S. In
this case, SvN = SS = SE is proportional to the size of S,
while EE is proportional to the size of E , so ∂SE/∂EE → 0.
Another of our main goals in this work is to understand the

description of few-body observables in the mixed states ob-
tained by the two procedures mentioned before. For that, we
study their expectation values as given by the reduced density
matrix, the diagonal ensemble, and the GC ensemble. The
results for the first two are similar even if very few sites are
traced out and the system sizes are small. This suggests that
either tracing out part of the original system or removing the
same number of sites and waiting for the reduced system to
relax leads to the same results, up to non-extensive bound-
ary terms. For all practical purposes both procedures are then
equivalent. The agreement with the GC expectation values is
also good and improves with increasing system size. This im-
plies that, for few-body observables, only weak typicality is
needed to observe thermal behavior in experiments.
System.– We study hard-core bosons in a one-dimensional

lattice with open-boundary conditions described by

Ĥ = ε

(

n̂1 −
1

2

)

(4)

+
L−1
∑

i=1

[

−t
(

b̂†i b̂i+1 + H.c.
)

+ V

(

n̂i −
1

2

)(

n̂i+1 −
1

2

)]

+
L−2
∑

i=1

[

−t′
(

b̂†i b̂i+2 + H.c.
)

+ V ′

(

n̂i −
1

2

)(

n̂i+2 −
1

2

)]

,

where, t and t′ [V and V ′] are nearest-neighbor (NN) and
next-nearest-neighbor (NNN) hopping [interaction], L is the
chain size, and standard notation has been used [10]. Symme-
tries, and therefore degeneracies, are avoided by considering
1/3-filling and by placing an impurity (ε "= 0) on the first site.
In what follows, t = V = 1 sets the energy scale, ε = 1/5,
and t′ = V ′. When t′ = V ′ = 0, the model is integrable [11].
As the ratio between NNN and NN couplings increases, the
system transitions to the chaotic domain [10]. The results be-
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FIG. 1: (Color online) (a),(b) Entropies per site vs temperature for
R = L/3. (c),(d) Entropies per site vs R for a fixed temperature;
T = 4. (a),(c) t′ = V ′ = 0 (integrable); (b),(d) t′ = V ′ = 0.32
(chaotic). All panels: L = 18.

low depend on the regime (integrable vs nonintegrable), but
not on specific values of the parameters.
For our calculations, we select an eigenstate |Ψj〉 of Ĥ (4),

with energy Ej closest to E =
∑

j Eje−Ej/T /
∑

j e
−Ej/T

corresponding to an effective temperature T . Since SvN =
Sd = 0, this can be seen as the most distant choice for a state
with a thermodynamic entropy. We then trace out a certain
number of sites R ≤ 2L/3, on the right side of the chain,
and study the entropies and observables of the reduced sys-
tem. The reduced density matrix ρ̂S describing the remain-
ing system consists of different subspaces each with a number
N ∈ [max(L/3−R, 0), L/3] of particles.
Entropies.– The von Neumann, diagonal, and GC entropies

are given by Eq. (1), Eq. (2), and

SGC = lnΞ+
ES − µNS

TGC
, (5)

respectively. In Eq. (5), Ξ =
∑

n e
(µNn−En)/TGC is the grand

partition function, TGC is the GC temperature, µ is the chem-
ical potential, and ES = Tr[ĤS ρ̂S ] and NS = Tr[N̂S ρ̂S ] are,
respectively, the average energy and number of particles in the
remaining subsystem S.
Results.– In Fig. 1, we show results for SvN, Sd, and SGC in

the integrable [(a),(c)] and chaotic [(b),(d)] domains. Larger
fluctuations are seen in Figs. 1(a) and 1(c) as characteristic of
the integrable regime. Figs. 1(a) and 1(b) show the entropies
vs different eigenstates, which are increasingly away from the
ground state (T increases), when 1/3 of the sites are traced
out. In the chaotic regime, and for all states selected, one can
see that Sd is close to SGC, while SvN is quite far. This hints
a thermal structure in the diagonal part of the reduced density
matrix in the energy eigenbasis.
In Figs. 1(c) and 1(d) we show results for a fixed T as an in-

creasingly larger fraction of the original system is traced out.
One can see again that in the chaotic limit Sd is much closer
to SGC than to SvN, even when very few sites are traced out.

Entanglement,	  diagonal,	  
Grand-‐Canonical	  entropies	  	  
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FIG. 2: (Color online) (a)–(d) Entropies per site vs 1/L for T =
4 and a fixed ratio R/L (indicated). (e),(f) Full (empty) symbols:
SGC − Sd (Smc − Sd) per site vs 1/L for R = 1, 2, and 3. (a),(c),(e)
t′ = V ′ = 0 (integrable); (b),(d),(f) t′ = V ′ = 0.32 (chaotic).

However, in both regimes, all entropies approach each other as
the fraction of sites traced out increases. For the lattice sizes
considered here, we need to trace out more than one half of the
chain for the effects of the off-diagonal elements of the den-
sity matrix to become irrelevant in SvN, leading this entropy
to finally approach Sd and SGC.
The results presented in Fig. 1 were obtained for L = 18,

the largest system size that we can study with full exact di-
agonalization. Figure 2 depicts the scaling of the entropies in
both domains, integrable [(a),(c)] and nonintegrable [(b),(d)],
and for T = 4. In Figs. 2(a) and 2(b), when L/3 sites are
cut off, Sd and SGC approach each other as L increases, up to
a possible non-extensive correction. This trend is seen for all
systems we have studied in the chaotic regime [14], and opens
up a new question: could cutting off an infinitesimal part of
the original system lead Sd and SGC to be equal in the thermo-
dynamic limit? In Figs. 2(e) and 2(f), we show the difference
between SGC and Sd per site vs system size when tracing out
one, two, or three sites. In the chaotic regime [Fig. 2(f)], the
results are consistent with a vanishing difference in the ther-
modynamic limit (even when cutting one site [14]). This find-
ing is reinforced with the empty symbols, which show the dif-
ference between the microcanonical entropy (Smc) and Sd. In
this case, finite size effects are significantly reduced, leading
to a much better agreement between the two entropies, which
further improves with L [15]. Hence, one could argue that
single eigenstates of generic many-body Hamiltonians have a
thermodynamic entropy [9]. In Figs. 2(a) and 2(b), one can
also see that for R = L/3, the von Neumann entropy (per
site) saturates to a different value from Sd and SGC (per site),
as the lattice size increases. As shown in Figs. 2(c) and 2(d), it
is only when R > L/2 that the three entropies become com-
parable. However, for our system sizes, this happens only in
the chaotic regime.
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FIG. 3: (Color online) (a),(b) Kinetic energy per site and (c),(d)
n(k = 0) vs R; L = 18; T = 4. (a),(c) t′ = V ′ = 0 (integrable);
(b),(d) t′ = V ′ = 0.32 (chaotic).

Close to the integrable point [Figs. 2(a), 2(c), and 2(e)],
large fluctuations are observed for different values of T and
t′, V ′, which makes it difficult to draw general conclusions.
Fluctuations are indeed expected to be larger in the integrable
regime than in the chaotic one. In the chaotic regime (and
away from the edges of the spectrum) all eigenstates of the
Hamiltonian that are close in energy have (i) a similar struc-
ture, as reflected by the inverse participation ratio and infor-
mation entropy in different bases [10], and (ii) thermal expec-
tation values of few-body observables [4, 5, 16, 17]. How-
ever, this is not the case close to integrability where most
quantities fluctuate wildly between eigenstates close in energy
[4, 5, 10, 17], and this is affecting our results here.
Observables.–An important question we are left to address

is whether the extra information carried by the off-diagonal el-
ements of the reduced density matrix is of relevance to quan-
tities measured experimentally. We focus our analysis on few-
body observables. Their expectation values from the reduced,
diagonal, and grand canonical density matrices are given by

OvN = Tr[Ôρ̂S ], Od =
∑

n

ρnnOnn, (6)

OGC =
1

Ξ

∑

n

Onne
(µNn−En)/T , (7)

respectively. Here, Onn = 〈ψn|Ô|ψn〉 and |ψn〉’s are the
eigenstates of the Hamiltonian in the reduced system.
Results.– Figure 3 shows results for the kinetic energy
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for an increasingly large fraction of sites traced out. The re-
sults obtained with the three density matrices are comparable,
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FIG. 2: (Color online) (a)–(d) Entropies per site vs 1/L for T =
4 and a fixed ratio R/L (indicated). (e),(f) Full (empty) symbols:
SGC − Sd (Smc − Sd) per site vs 1/L for R = 1, 2, and 3. (a),(c),(e)
t′ = V ′ = 0 (integrable); (b),(d),(f) t′ = V ′ = 0.32 (chaotic).

However, in both regimes, all entropies approach each other as
the fraction of sites traced out increases. For the lattice sizes
considered here, we need to trace out more than one half of the
chain for the effects of the off-diagonal elements of the den-
sity matrix to become irrelevant in SvN, leading this entropy
to finally approach Sd and SGC.
The results presented in Fig. 1 were obtained for L = 18,

the largest system size that we can study with full exact di-
agonalization. Figure 2 depicts the scaling of the entropies in
both domains, integrable [(a),(c)] and nonintegrable [(b),(d)],
and for T = 4. In Figs. 2(a) and 2(b), when L/3 sites are
cut off, Sd and SGC approach each other as L increases, up to
a possible non-extensive correction. This trend is seen for all
systems we have studied in the chaotic regime [14], and opens
up a new question: could cutting off an infinitesimal part of
the original system lead Sd and SGC to be equal in the thermo-
dynamic limit? In Figs. 2(e) and 2(f), we show the difference
between SGC and Sd per site vs system size when tracing out
one, two, or three sites. In the chaotic regime [Fig. 2(f)], the
results are consistent with a vanishing difference in the ther-
modynamic limit (even when cutting one site [14]). This find-
ing is reinforced with the empty symbols, which show the dif-
ference between the microcanonical entropy (Smc) and Sd. In
this case, finite size effects are significantly reduced, leading
to a much better agreement between the two entropies, which
further improves with L [15]. Hence, one could argue that
single eigenstates of generic many-body Hamiltonians have a
thermodynamic entropy [9]. In Figs. 2(a) and 2(b), one can
also see that for R = L/3, the von Neumann entropy (per
site) saturates to a different value from Sd and SGC (per site),
as the lattice size increases. As shown in Figs. 2(c) and 2(d), it
is only when R > L/2 that the three entropies become com-
parable. However, for our system sizes, this happens only in
the chaotic regime.
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Close to the integrable point [Figs. 2(a), 2(c), and 2(e)],
large fluctuations are observed for different values of T and
t′, V ′, which makes it difficult to draw general conclusions.
Fluctuations are indeed expected to be larger in the integrable
regime than in the chaotic one. In the chaotic regime (and
away from the edges of the spectrum) all eigenstates of the
Hamiltonian that are close in energy have (i) a similar struc-
ture, as reflected by the inverse participation ratio and infor-
mation entropy in different bases [10], and (ii) thermal expec-
tation values of few-body observables [4, 5, 16, 17]. How-
ever, this is not the case close to integrability where most
quantities fluctuate wildly between eigenstates close in energy
[4, 5, 10, 17], and this is affecting our results here.
Observables.–An important question we are left to address

is whether the extra information carried by the off-diagonal el-
ements of the reduced density matrix is of relevance to quan-
tities measured experimentally. We focus our analysis on few-
body observables. Their expectation values from the reduced,
diagonal, and grand canonical density matrices are given by

OvN = Tr[Ôρ̂S ], Od =
∑
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ρnnOnn, (6)

OGC =
1

Ξ

∑
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(µNn−En)/T , (7)

respectively. Here, Onn = 〈ψn|Ô|ψn〉 and |ψn〉’s are the
eigenstates of the Hamiltonian in the reduced system.
Results.– Figure 3 shows results for the kinetic energy

K̂ = −t
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1
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for an increasingly large fraction of sites traced out. The re-
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FIG. 2: (Color online) (a)–(d) Entropies per site vs 1/L for T =
4 and a fixed ratio R/L (indicated). (e),(f) Full (empty) symbols:
SGC − Sd (Smc − Sd) per site vs 1/L for R = 1, 2, and 3. (a),(c),(e)
t′ = V ′ = 0 (integrable); (b),(d),(f) t′ = V ′ = 0.32 (chaotic).

However, in both regimes, all entropies approach each other as
the fraction of sites traced out increases. For the lattice sizes
considered here, we need to trace out more than one half of the
chain for the effects of the off-diagonal elements of the den-
sity matrix to become irrelevant in SvN, leading this entropy
to finally approach Sd and SGC.
The results presented in Fig. 1 were obtained for L = 18,

the largest system size that we can study with full exact di-
agonalization. Figure 2 depicts the scaling of the entropies in
both domains, integrable [(a),(c)] and nonintegrable [(b),(d)],
and for T = 4. In Figs. 2(a) and 2(b), when L/3 sites are
cut off, Sd and SGC approach each other as L increases, up to
a possible non-extensive correction. This trend is seen for all
systems we have studied in the chaotic regime [14], and opens
up a new question: could cutting off an infinitesimal part of
the original system lead Sd and SGC to be equal in the thermo-
dynamic limit? In Figs. 2(e) and 2(f), we show the difference
between SGC and Sd per site vs system size when tracing out
one, two, or three sites. In the chaotic regime [Fig. 2(f)], the
results are consistent with a vanishing difference in the ther-
modynamic limit (even when cutting one site [14]). This find-
ing is reinforced with the empty symbols, which show the dif-
ference between the microcanonical entropy (Smc) and Sd. In
this case, finite size effects are significantly reduced, leading
to a much better agreement between the two entropies, which
further improves with L [15]. Hence, one could argue that
single eigenstates of generic many-body Hamiltonians have a
thermodynamic entropy [9]. In Figs. 2(a) and 2(b), one can
also see that for R = L/3, the von Neumann entropy (per
site) saturates to a different value from Sd and SGC (per site),
as the lattice size increases. As shown in Figs. 2(c) and 2(d), it
is only when R > L/2 that the three entropies become com-
parable. However, for our system sizes, this happens only in
the chaotic regime.
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Close to the integrable point [Figs. 2(a), 2(c), and 2(e)],
large fluctuations are observed for different values of T and
t′, V ′, which makes it difficult to draw general conclusions.
Fluctuations are indeed expected to be larger in the integrable
regime than in the chaotic one. In the chaotic regime (and
away from the edges of the spectrum) all eigenstates of the
Hamiltonian that are close in energy have (i) a similar struc-
ture, as reflected by the inverse participation ratio and infor-
mation entropy in different bases [10], and (ii) thermal expec-
tation values of few-body observables [4, 5, 16, 17]. How-
ever, this is not the case close to integrability where most
quantities fluctuate wildly between eigenstates close in energy
[4, 5, 10, 17], and this is affecting our results here.
Observables.–An important question we are left to address

is whether the extra information carried by the off-diagonal el-
ements of the reduced density matrix is of relevance to quan-
tities measured experimentally. We focus our analysis on few-
body observables. Their expectation values from the reduced,
diagonal, and grand canonical density matrices are given by

OvN = Tr[Ôρ̂S ], Od =
∑

n

ρnnOnn, (6)

OGC =
1

Ξ

∑

n

Onne
(µNn−En)/T , (7)

respectively. Here, Onn = 〈ψn|Ô|ψn〉 and |ψn〉’s are the
eigenstates of the Hamiltonian in the reduced system.
Results.– Figure 3 shows results for the kinetic energy

K̂ = −t
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∑
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(

b̂†i b̂i+1 + H.c.
)

−t′
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and the momentum distribution function,

n̂(k) =
1
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∑
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2πk
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(j−l)b̂†j b̂l, (9)

for an increasingly large fraction of sites traced out. The re-
sults obtained with the three density matrices are comparable,
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t′ = V ′ = 0 (integrable); (b),(d),(f) t′ = V ′ = 0.32 (chaotic).

However, in both regimes, all entropies approach each other as
the fraction of sites traced out increases. For the lattice sizes
considered here, we need to trace out more than one half of the
chain for the effects of the off-diagonal elements of the den-
sity matrix to become irrelevant in SvN, leading this entropy
to finally approach Sd and SGC.
The results presented in Fig. 1 were obtained for L = 18,

the largest system size that we can study with full exact di-
agonalization. Figure 2 depicts the scaling of the entropies in
both domains, integrable [(a),(c)] and nonintegrable [(b),(d)],
and for T = 4. In Figs. 2(a) and 2(b), when L/3 sites are
cut off, Sd and SGC approach each other as L increases, up to
a possible non-extensive correction. This trend is seen for all
systems we have studied in the chaotic regime [14], and opens
up a new question: could cutting off an infinitesimal part of
the original system lead Sd and SGC to be equal in the thermo-
dynamic limit? In Figs. 2(e) and 2(f), we show the difference
between SGC and Sd per site vs system size when tracing out
one, two, or three sites. In the chaotic regime [Fig. 2(f)], the
results are consistent with a vanishing difference in the ther-
modynamic limit (even when cutting one site [14]). This find-
ing is reinforced with the empty symbols, which show the dif-
ference between the microcanonical entropy (Smc) and Sd. In
this case, finite size effects are significantly reduced, leading
to a much better agreement between the two entropies, which
further improves with L [15]. Hence, one could argue that
single eigenstates of generic many-body Hamiltonians have a
thermodynamic entropy [9]. In Figs. 2(a) and 2(b), one can
also see that for R = L/3, the von Neumann entropy (per
site) saturates to a different value from Sd and SGC (per site),
as the lattice size increases. As shown in Figs. 2(c) and 2(d), it
is only when R > L/2 that the three entropies become com-
parable. However, for our system sizes, this happens only in
the chaotic regime.

-0.2

-0.15

-0.1

-0.05

K
/(L
-R
)

-0.2

-0.15

-0.1

-0.05

-0.18

-0.16

-0.14

-0.12

-0.1

-0.18

-0.16

-0.14

-0.12

-0.1

3 6 9 12
R

0.3

0.4

0.5

0.6

n(
k=
0)

3 6 9 120.3

0.4

0.5

0.6

GC
d
vN

3 6 9 12
R

0.3

0.4

0.5

0.6

3 6 9 120.3

0.4

0.5

0.6

t’,V’=0.00

t’,V’=0.00

t’,V’=0.32

t’,V’=0.32

(a) (b)

(c) (d)

FIG. 3: (Color online) (a),(b) Kinetic energy per site and (c),(d)
n(k = 0) vs R; L = 18; T = 4. (a),(c) t′ = V ′ = 0 (integrable);
(b),(d) t′ = V ′ = 0.32 (chaotic).

Close to the integrable point [Figs. 2(a), 2(c), and 2(e)],
large fluctuations are observed for different values of T and
t′, V ′, which makes it difficult to draw general conclusions.
Fluctuations are indeed expected to be larger in the integrable
regime than in the chaotic one. In the chaotic regime (and
away from the edges of the spectrum) all eigenstates of the
Hamiltonian that are close in energy have (i) a similar struc-
ture, as reflected by the inverse participation ratio and infor-
mation entropy in different bases [10], and (ii) thermal expec-
tation values of few-body observables [4, 5, 16, 17]. How-
ever, this is not the case close to integrability where most
quantities fluctuate wildly between eigenstates close in energy
[4, 5, 10, 17], and this is affecting our results here.
Observables.–An important question we are left to address

is whether the extra information carried by the off-diagonal el-
ements of the reduced density matrix is of relevance to quan-
tities measured experimentally. We focus our analysis on few-
body observables. Their expectation values from the reduced,
diagonal, and grand canonical density matrices are given by

OvN = Tr[Ôρ̂S ], Od =
∑

n

ρnnOnn, (6)

OGC =
1

Ξ

∑
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Onne
(µNn−En)/T , (7)

respectively. Here, Onn = 〈ψn|Ô|ψn〉 and |ψn〉’s are the
eigenstates of the Hamiltonian in the reduced system.
Results.– Figure 3 shows results for the kinetic energy

K̂ = −t
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)
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and the momentum distribution function,

n̂(k) =
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for an increasingly large fraction of sites traced out. The re-
sults obtained with the three density matrices are comparable,

Corollary:	  entropy	  –	  energy	  uncertainty.	  There	  is	  no	  temperature	  in	  a	  single	  eigenstate.	  In	  order	  
to	  measure	  temperature	  –	  need	  to	  couple	  to	  thermometer,	  e.g.	  a	  calibrated	  two	  level	  system.	  
This	  always	  mixes	  exponen5ally	  many	  states	  by	  ETH.	  	  
	  
Otherwise	  would	  have	  contradic5ons	  with	  fundamental	  rela5on:	  	  	  

R	  L-‐R	  

R=L/3	  



Quantum	  ergodicity	  and	  localiza5on	  in	  real	  space	  
Non-‐interac5ng	  electrons	  in	  a	  disordered	  poten5al.	  Anderson	  localiza5on	  

g	  –	  number	  of	  conduc5ng	  channels	  (number	  of	  energy	  levels	  
within	  the	  Thouless	  energy	  shell,	  which	  behave	  according	  to	  the	  
Wigner-‐Dyson	  sta5s5cs	  	  	  

In	  3D	  and	  above	  there	  is	  a	  transi5on	  between	  localized	  and	  delocalized	  states.	  Hi	  energy	  
states	  are	  typically	  localized.	  Localiza5on	  means	  no	  ergodicity.	  
	  
At	  finite	  temperature	  the	  system	  is	  always	  delocalized	  (ergodic).	  	  

Gang	  of	  four	  scaling	  theory	  (P.W.	  Anderson	  et.	  al.,	  1959)	  
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Classical waves offer certain advantages for studying lo-
calization. Unlike electrons, photons don’t interact with each
other, and wave experiments are easy to control experimen-
tally at room temperature; frequency takes over the role of
electron energy. One drawback of classical waves, however, is
that they do not localize at low frequencies, where the mean
free path becomes large due to weak, Rayleigh, scattering. 

To recognize whether incoming classical waves are local-
ized in a material, one could examine how the transmission
scales with system size. In regular diffusive systems, the
transmission is dictated by Ohm’s law, in which the signal in-
tensity falls off linearly with thickness. In the regime of An-
derson localization, the transmission should decay exponen-
tially with length. However, one should be careful to exclude
absorption effects, which also show up as exponential decay. 

A huge advantage of using classical waves is that other
properties in addition to conductance—for example, the sta-
tistical distribution of the intensity, the complex amplitude of
the waves, and their temporal response—can be measured.
All those properties are expected to be strongly influenced
by localization. In particular, the localized regime is pre-
dicted to exhibit large, non-Gaussian fluctuations of the com-
plex field amplitude and long-range correlations in the inten-
sity at different spots or at different frequencies.

Light
Anything translucent scatters light diffusively. Think, for in-
stance, of clouds, fog, white paint, human bones, sea coral,
and white marble. For those and most other naturally disor-
dered optical materials, the scattering strength is far from
that required for 3D Anderson localization. Systems that scat-
ter more strongly can be synthesized, though. For example,
material can be ground into powder, pores etched into solids,
and microspheres suspended in liquids (see figure 5).

For years researchers have worked with titania powder
that is used in paints for its scattering properties. Thanks to
the powder’s high refractive index (about 2.7) and submicron
grain size, mean free paths are on the order of a wavelength.
Experiments reveal clear signs in the breakdown of normal
diffusion. To observe localization the challenge is to maxi-
mize the scattering without introducing absorption. 

One way is to use light whose frequency is less than the
electronic bandgap of a semiconductor so that it cannot be
absorbed but whose refractive index is still high. In 1997, two
of us (Wiersma and Lagendijk) and coworkers ground gal-
lium arsenide into a fine powder and observed nearly com-
plete localization of near- IR light, as deduced from scale-
 dependent diffusion that was measured.12 Two years later

Frank Schuurmans and coworkers etched gallium phosphide
into a porous network. With a mean free path of only 250 nm,
it is, to date, the strongest scatterer of visible light.

The scale dependence of diffusion is also studied using
time- resolved techniques in which the material is excited by
a pulsed femtosecond source. The time evolution of the op-
tical transmission can be measured down to the one- photon
level. As time increases, so does the sample size explored by
the waves. Scale- dependent diffusion may lead to a time-
 dependent diffusion constant. As a result, the transmission
intensity should fall off at a slow, nonexponential rate. In 2006
Maret’s group measured time tails up to 40 ns in titania pow-
ders that had surprisingly large values for the mean free path
(kℓ ≈ 2.5); they found just such a nonexponential time decay
in transmission.13

Microwaves
At the millimeter wavelengths of microwaves, it’s relatively
easy to shape individual particles, such as metal spheres, that
scatter strongly. By randomly placing the spheres in a tubular
waveguide with transverse dimension on the order of a mean
free path (typically 5 cm), one can study the statistics of how
the microwave field fluctuates. The  quasi-1D geometry of 
the system—essentially a thick wire or multimode fiber—is
advantageous because many theoretical predictions become
relevant, mostly from the DMPK theory. That theory owes its
name to its founders—Dorokhov, Mello, Pereyara, and
Kumar—and takes arguments from chaos theory to make
precise predictions about the full statistical properties of a
wire’s transmission when its length exceeds the localization
length.

The onset of localization is again governed by the dimen-
sionless conductance g, which is here essentially equal to the
ratio of the localization length and the sample length. Using
microwaves, Azriel Genack and colleagues have explored a
broad range of g values, including the localized regime g < 1.
Indeed, their observations of anomalous time-dependent
transmission, scale-dependent diffusion, large fluctuations in
transmission, and long-range correlations of both the inten-
sity and the conductance of microwaves have led to a rich
and complete picture of Anderson localization in thick
wires.14 Statistics, their work illustrates, can reveal the onset
of localization even in the presence of optical absorption.

Acoustics
Ultrasound is particularly well-suited for time-dependent lo-
calization studies because of the long times over which energy
can be monitored. As early as 1990, using inhomogeneous 2D

β g( )

β g( ) =

3D

2D

1D

log g

d glog

d Llog

Extended

Quasi-extendedLocalized

Figure 4. According to scaling theory, Anderson localization is a criti-
cal phenomenon, at least in three dimensions. The scaling function β(g)
describes how—or more precisely, with what exponent—the average
conductance g grows with system size L. For a normal ohmic conductor
in D dimensions, the conductance varies as LD − 2; consequently,
β(g) ~ D − 2 for large g. Thus the beta function is positive for three-
 dimensional conductors, zero for two- dimensional conductors, and neg-
ative in one dimension. In the localized regime, g decays exponentially
with sample size so that β(g) is negative. In three dimensions, that leads
to a critical point at which β vanishes for some special value for g associ-
ated with the mobility edge. Lower-dimension systems do not undergo
a genuine phase transition because the conductance always decreases
with system size.  A small 2D conductor, for instance, will look like a
metal in the quasi-extended regime, but all its states are eventually
 localized if the medium is large enough.
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thinking. It took some time before the community grew to realize the significance of

this work. Neville Mott and David Thouless were probably some of the first people to

understand the impact of this work and found its connection to physical realizations

of metal-insulator transitions.

Anderson’s theoretical work at that time was motivated by experiments performed

in George Feher’s group at the Bell Laboratories [2–4]. They were particularly in-

terested in the phenomenon of spin relaxation in phosphorus doped silicon using

electron spin resonance techniques. The electronic wavefunction localized on a phos-

phorus atom in doped silicon has a Bohr radius of ∼ 20 Å. The electron in this state

felt the random environment of Si29 defects in Si28. The relaxation time of the spins

on these donor atoms was of the order of minutes as opposed to milliseconds which

was predicted by theoretical calculations based on Fermi Golden Rule taking into

account phonons and spin-spin interactions.

Figure 1.1: The electron on the donor phosphorus impurities are bound in a hydro-
genic wavefunction with a large Bohr radius. The Si environment is slightly impure
due to the presence of Si29. (Figure from [5])
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Interac5ng	  were	  thought	  to	  be	  always	  ergodic	  	  
Insulator	  coupled	  to	  phonons.	  All	  states	  are	  localized	  

Ef	  

At	  finite	  T	  can	  always	  hop	  and	  get	  the	  missing	  energy	  from	  the	  
phonons.	  In	  our	  language	  many-‐body	  levels	  are	  ergodic	  (sa5sfy	  ETH).	  

Pure	  two-‐body	  short	  range	  interac5ons	  between	  electrons.	  
Altshuller	  et.	  al.	  (1997),	  Basko,	  Aleiner	  ,	  Altshuller	  (2005)	  

A#2: No way (L. Fleishman. P.W. Anderson (1980))

Q: !"#$%&'$(")*+$,%"-$./$('/#/#&,%++ 0"*)"1,%$*"#2%$
'/(()#2 )#$.'%$+"3%$4"5$"+$('/#/#+$-/ !

A#1: Sure

A#3: Finite temperature Metal-Insulator Transition
(Basko, Aleiner, BA (2006))

insulator

Drude

metal

Anderson	  localiza5on	  in	  N-‐
dimensional	  hypercube	  at	  
small	  interac5ons.	  	  
	  
Many-‐body	  localiza5on	  with	  
the	  ac5va5on	  barrier	  scaling	  as	  
the	  system	  size.	  

B.	  Altshuler,	  
KITP	  talk	  



1D	  disordered	  spin	  chains	  at	  infinite	  temperature	  	  
(A.	  Pal,	  V.	  Oganesyan,	  D.	  Huse,	  2007+)	  

body systems are now relevant to experiments, since such systems can be produced

and studied with strongly-interacting ultracold atoms [49]. And they may become rel-

evant for certain systems designed for quantum information processing [50, 51]. Also,

many-body localization may be underlying some highly nonlinear low-temperature

current-voltage characteristics measured in certain thin films [37].

2.1 The model

Many-body localization appears to occur for a wide variety of particle, spin or q-bit

models. Anderson’s original proposal was for a spin system [1]; the specific simple

model we study here is also a spin model, namely the Heisenberg spin-1/2 chain with

random fields along the z-direction [40]:

H =
L
∑

i=1

[hiŜ
z
i + J !̂Si · !̂Si+1] , (2.1)

where the static random fields hi are independent random variables at each site

i, each with a probability distribution that is uniform in [−h, h]. Except when stated

otherwise, we take J = 1. The chains are of length L with periodic boundary con-

ditions. This is one of the simpler models that shows a many-body localization

transition. Since we will be studying the system’s behavior by exact diagonalization,

working with this one-dimensional model that has only two states per site allows us

to probe longer length scales than would be possible for models on higher-dimensional

lattices or with more states per site. We present evidence that at infinite temper-

ature, β = 1/T = 0, and in the thermodynamic limit, L → ∞, the many-body

localization transition at h = hc
∼= 3.5 ± 1.0 does occur in this model. The usual

arguments that forbid phase transitions at nonzero temperature in one dimension do

not apply here, since they rely on equilibrium statistical mechanics, which is exactly

what is failing at the localization transition. We also present indications that this

33

The model we chose to study has a finite band-width. An infinite temperature

limit of such a system is studied by considering states at high energy densities i.e.

eigenstates in the middle of the band. We weigh the observables evaluated from these

states with equal probability in order to study their thermal expectation values. A

practical benifit of working in this limit is the utilization of all the data we acquire

from the full diagonalization of the Hamiltonian which is the most computer time-

consuming part of the calculation.

There are many distinctions between the localized phase at large random field

h > hc and the delocalized phase at h < hc. We call the latter the “ergodic” phase,

although precisely how ergodic it is remains to be fully determined [53]. The dis-

tinctions between the two phases all are due to differences in the properties of the

many-body eigenstates of the Hamiltonian, which of course enter in determining the

dynamics of the isolated system.

Figure 2.1: The phase diagram as a function of relative interaction strength h/J at
T = ∞. The critical point is (h/J)c ≈ 3.5. For h < hc the system is ergodic while
for h > hc, it is many-body localized.

In the ergodic phase (h < hc), the many-body eigenstates are thermal [17, 18,

54, 55], so the isolated quantum system can relax to thermal equilibrium under the
35
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Figure 2.3: The natural logarithm of the mean difference between the local mag-
netizations in adjacent eigenstates (see text). The values of the random field h are
indicated in the legend. In the ergodic phase (small h) where the eigenstates are ther-
mal these differences vanish exponentially in L as L is increased, while they remain
large in the localized phase (large h).

In our figures we show one-standard-deviation error bars. The error bars are

evaluated after a sample-specific average is taken over the different eigenstates and

sites for a particular realization of disorder. Here and in all the data in this work

we restrict our attention to the many-body eigenstates that are in the middle one-

third of the energy-ordered list of states for their sample. Thus we look only at

high energy states and avoid states that represent low temperature. In this energy

range, the difference in energy density between adjacent states n and (n + 1) is of

order
√
L2−L and thus exponentially small in L as L is increased. If the eigenstates

are thermal then adjacent eigenstates represent temperatures that differ only by this

exponentially small amount, so the expectation value of Ŝz
i should be the same in
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Difference	  of	  local	  magne5za5on	  between	  
closest	  Eigenstates.	  Check	  of	  ETH.	  	  

A.	  Pal,	  PhD	  thesis,	  2012	  	  
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Figure 2.8: The ratio of adjacent energy gaps (defined in the text). The sample size L
is indicated in the legend. In the ergodic phase, the system has GOE level statistics,
while in the localized phase the level statistics are Poisson.

which may reverse the direction of the drift and/or reduce the size of the finite-size

effect from the irrelevant operator.

2.5 Spatial correlations

To further explore the finite-size scaling properties of the many-body localization

transition in our model, we next look at spin correlations on length scales of order

the length L of our samples. One of the simplest correlation functions within a

many-body eigenstate |n〉 of the Hamiltonian of sample α is

Czz
nα(i, j) = 〈n|Ŝz

i Ŝ
z
j |n〉α − 〈n|Ŝz

i |n〉α〈n|Ŝz
j |n〉α . (2.13)
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Many-‐body	  level	  sta5s5cs	  
GOE	  

Poisson	  

Strong	  numerical	  indica5ons	  of	  many-‐body	  localiza5on	  as	  a	  localiza5on	  in	  the	  Hilbert	  space.	  No	  
analy5c	  theory	  yet	  near	  the	  transi5on.	  Ergodicity	  -‐>	  ETH.	  

Strong	  magne5c	  field	  tends	  to	  localize.	  Hopping	  provides	  
transport	  (in	  hardcore	  boson	  language)	  and	  interac5ons.	  
	  	  
Model	  is	  far	  from	  known	  integrability.	  



What happens when the systems are not ergodic. 

Chaotic system: rapid 
(exponential) relaxation to 
microcanonical ensemble 

Integrable system: relax to 
constraint equilibrium:  

Quantum language: in both cases relax to the diagonal ensemble 

Integrable systems: generalized Gibbs ensemble (Jaynes 1957, Rigol 2007, J. 
Cardy, F. Essler, P. Calabrese, J.-S. Caux, E. Yuzbashyan …)  



F.	  Essler,	  talk	  at	  KITP,	  2012	  

Prove	  for	  a	  par5cular	  (transverse	  field	  Ising)	  model	  

Works	  both	  for	  equal	  and	  non-‐equal	  5me	  correla5on	  func5ons.	  
Need	  only	  integrals	  of	  mo5on,	  which	  “fit”	  to	  the	  subsystem	  

5. Generalized Gibbs Ensemble

Let Im be local (in space) integrals of motion [Im, In]=[Im, H(h)]=0

In =
�

j

In(j, j + 1, . . . , j + �n)

j j+ln...

in our case

Tuesday, 28 August 12

If	  we	  can	  not	  measure	  In	  –	  have	  too	  many	  
fizng	  parameters.	  
	  	  
What	  if	  integrability	  is	  slightly	  broken?	  	  



More	  familiar	  example	  of	  GGE:	  Kolmogorov	  turbulence	  	  

A.	  N.	  Kolmogorov	  

Images	  from	  Wikipedia	  

Pump	  energy	  at	  long	  wavelength.	  Dissipate	  at	  short	  wavelength.	  Non-‐equilibrium	  steady	  state	  

Scaling	  solu5on	  of	  the	  Navier	  Stokes	  equa5ons	  	  
∂v	  +	  (v∇)v	  =	  −∇p	  +	  ν	  △v	  
∇v	  =	  0	  

This	  energy	  can	  be	  thought	  of	  as	  the	  
mode	  dependent	  temperature.	  A	  
par5cular	  type	  of	  GGE.	  

302 3 Stationary Spectra of Weak Wave Turbulence

so-called Zakharov-Kraichnan transformations. They factorize the collision
integral. As a result one can (i) prove directly that Kolmogorov spectra
reduce the collision integral to zero and (ii) find that the Rayleigh-Jeans and
Kolmogorov distributions are the only universal stationary power solutions
of kinetic equation.

3.1.1 Dimensional Estimations and Self-similarity Analysis

This section deals with universal flux distributions corresponding to con-
stant fluxes of integrals of motion in the k-space. In this subsection we shall
show that for scale-invariant media, these solutions may be obtained from
dimensional analysis (see also [3.1,2]).

For complete self-similarity we shall first discuss the possible form of
universal flux distributions n(k) and the corresponding energy spectra
E(k) = (2k)d−1ω(k)n(k). We shall recall how to find the form of the spec-
trum E(k) for the turbulence of an incompressible fluid: in this case here is
only one relevant parameter, the density ρ; and E(k) may be expressed via
ρ, k and the energy flux P . Comparing the dimensions, we obtain

E(k) ! P 2/3k−5/3ρ1/3 (3.1.1)

which is the famous Kolmogorov-Obukhov “5/3 law” [3.3,4].
As we have seen in Sect. 1.1, in the case of wave turbulence there are

always two relevant parameters. We can choose the medium density to be the
first one. In contrast to eddies, waves have frequencies, which may be chosen
as the second parameter. The frequency enables us to arrange dimensionless
parameter

ξ =
Pk5−d

ρω3(k)
,

so E(k) may be determined from dimensional analysis up to an approxima-
tion of the unknown dimensionless function f(ξ):

E(k) = ρω2
kkd−6f

(

Pk5−d/ρω3
k

)

. (3.1.2)

In particular, if we demand that ω(k) be eliminated from (3.1.2), we obtain
f(ξ) ∝ ξ2/3, and (3.1.2) coincides with (3.1.1). In the case of weak wave tur-
bulence the connection between P (k) and n(k) follows from the stationary
kinetic equation:

dP (k)/dk = −(2k)d−1πω(k)I(k) (3.1.3)

which holds in the limit ξ $ 1.
For the three-wave kinetic equation (2.1.12) I(k) ∝ n2(k) and n(k) ∝

P 1/2, and for the four-wave one, n(k) ∝ P 1/3. These expressions may be
unified into one:

Zakharov,	  L’vov,	  Fal’kovich:	  derived	  this	  solu5on	  from	  the	  kine5c	  equa5ons	  



Victor	  Gurarie	  (1994):	  Scaling	  solu5on	  from	  as	  the	  GGE	  

Weakly	  interac5ng	  (weakly	  nonintegrable)	  Bose	  gas	  

1. Introduction

The theory of wave turbulence studies the stationary states of the statistical classical

(not quantum) system consisting of waves with a small interaction. (on the theory of wave

turbulence see ref. [1] and references therein). Its Hamiltonian can be written down in the

following form

H =
∑

p

ωpa
†
pap +

∑

p1p2p3p4

λp1p2p3p4a
†
p1

a†
p2

ap3ap4 (1.1)

It is just a collection of waves with the energy spectrum ωp and the four wave inter-

action λp1p2p3p4 with the evident properties λp1p2p3p4 = λp2p1p3p4 = λp3p4p1p2 . Let us note

that this Hamiltonian conserves the total wave number

N =
∑

p

a†
pap. (1.2)

The simplest stationary state of this system is a thermodynamic equilibrium and its

probability density is given by the well-known Gibbs distribution exp(−H+µN
T

). The basic

property of thermodynamic equilibrium is that the detailed balance principle is satisfied.

There are as many waves going from the wave-number p1 to p2 as there are ones going

back. However there are other stationary states where that principle is not satisfied, or in

other words, while the total number of waves coming to the given wave number p is zero,

there is a flux of waves through the system. Which state will be chosen by the system

depends on the external conditions. If it interacts with a heat bath satisfying the detailed

balance principle, it will soon settle into the thermodynamic equilibrium. If, on the other

hand, the heat bath is so special that it injects waves to the system at one wave number

and removes them at a different one, then the system will necessarily choose one of those

extra states. A simple example of the latter case is the waves on the surface of water which

are injected by, for example, the ship, at wave lengths of the order of ship length, and are

dissipated at much smaller lengths by viscosity.

The theory of turbulence concerns itself with studying the “flux” states as the thermo-

dynamic equilibrium has already been studied in great details by Statistical Physics. The

standard hydrodynamics turbulence is also the example of the flux states since here we

have a very complicated motion of liquid with a stationary probability distribution which

is characterized by the flux of energy or other conserved quantities through various scales

of vertex motion.

2

Look	  for	  a	  sta5onary	  probability	  distribu5on	  

Find	  F(1),	  F(2)	  perturba5vely.	  Problem:	  perturba5on	  theory	  is	  very	  
singular	  because	  of	  small	  denominators	  

2. The Probability Distribution

According to the program outlined in the Introduction, first of all we need to study

all possible integrals of motion for the system (1.1). Let us see how one can construct

those integrals. We shall start by assigning the variables ap and a†
p the initial values

ap(t = 0) = a0
p, a†

p(t = 0) = a†0
p . Then by solving the equations of motion one can find

a(t) and a†(t) as functions of a0 and a†0 and time. By inverting those functions, one can

find a0 and a†0 as functions of time, a(t) and a†(t). But by definition a0 and a†0 do not

depend on time. So they are the integrals of motion. If we want to construct something

out of them which can play the role of the density of waves, we should consider the linear

combination

F =
∑

p

fpa
†0
p a0

p (2.1)

where fp are some arbitrary coefficients. After being expressed in terms of a(t), a†(t) and

t it becomes a valid integral of motion. Its explicit time dependence can be eliminated by

passing to the limit t → ∞.

In order to find the explicit form for F we need to solve the equations of motion. The

Hamiltonian (1.1) allows us to solve them perturbatively and we can obtain F in terms of

a series in powers of λ. We can even avoid solving the equations of motion if we use the

following procedure. One should look for F in terms of a power series

F =
∑

p

fpa
†
pap +

∑

Λp1p2p3p4a
†
p1

a†
p2

ap3ap4+

+
∑

Ωp1p2p3p4p5p6a
†
p1

a†
p2

a†
p3

ap4ap5ap6 + . . . .

(2.2)

Here Λ and Ω are some still unknown functions. We impose the condition on F that it is

an integral of motion, or {HF} = 0, { and } being the Poisson brackets. It allows us to

find those functions to get

Λp1p2p3p4 =
fp1 + fp2 − fp3 − fp4

ωp1 + ωp2 − ωp3 − ωp4 − iε
λp1p2p3p4 (2.3)

Ωp1p2p3p4p5p6 = 4
∑

p7

(λp7p1p5p6Λp2p3p4p7 − Λp7p1p5p6λp2p3p4p7)

ωp1 + ωp2 + ωp3 − ωp4 − ωp5 − ωp6 − 2iε
. (2.4)

We can in principle find recursively all the terms in the series (2.2), one after another.

A few words must be said about ε’s which appear in the denominators. Technically,

when we compute Poisson brackets no ε’s appear. But we must introduce them to avoid

5

Possible	  nonsingular	  solu5ons:	  
Thermal	  equilibrium	  with	  chemical	  poten5als.	  	  

With	  addi5onal	  power-‐law	  constraint	  –	  addi5onal	  Kolmogorov	  solu5on	  	  

δ′ appears as we have to use (5.12) and (5.13) in giving sense to the expressions we obtained

using the rules discussed above while the convergence of the integrals in (2.11) allows us

not to worry about the boundary terms.

The expression here, when combined with the kinetic equation (2.11), clearly gives

the correction to the frequency in the equation (2.11)

ωp → ωp +

∫

λpqpq

fq
dq (5.15)

While (5.14) is just the first term of the expansion due to (5.15) we can easily prove that

(5.15) can be obtained up to any order if one sums up the diagrams with all possible

tadpole graphs on the external lines. However, more complex diagrams, like the second

one from the fig. 2, can lead to the corrections which cannot be interpreted that easily.

We would like to conclude this section with saying that the technique described here

is more general than the standard field theory approach of the ϕ4 theory. In fact, if we

take the limit of fp → ωp we shall discover that the prefactor computed according to our

rules goes into 1 and the whole expression turns into the standard ϕ4 theory diagram.

This should of course be expected as in this limit F → H. So our Feynman rules should

be treated as the “turbulent” generalization of the standard field theory rules. We believe

many beautiful results are hidden in this new technique.

6. Epsilon Expansion

The kinetic equation (2.11) is in general very difficult to solve (that is, to find such fp

that it is satisfied). However it has long been realized that if both λ and ω are homogeneous

functions of momenta, then we can solve that equation exactly. Namely, following ref. [1]

we choose

ωp = pα, λ"p1"p2"p3"p4 = λ0(p1p2p3p4)
β
4 U(%p1, %p2, %p3, %p4)δ(%p1 + %p2 − %p3 − %p4) (6.1)

where U is a function depending only on the ratio of lengths of the momenta and the

angles between them and λ0 is a small constant. The parameter α is called the energy

spectrum dimension, while β is the interaction dimension. Then the kinetic equation can

be solved with the aid of the so-called Zakharov transformations, to give

fp = pγ , γ =
2

3
β + d or γ =

2

3
β + d −

α

3
(6.2)
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Weak	  interac5ons	  select	  possible	  GGE!	  	  



Summary	  of	  part	  I	  

•  Ergodic	  quantum	  systems	  sa5sfy	  ETH:	  each	  eigenstate	  of	  the	  Hamiltonian	  
(each	  sta5onary	  state)	  is	  equivalent	  to	  the	  micro-‐canonical	  ensemble.	  	  	  	  

•  Ergodicity	  can	  be	  understood	  as	  a	  process	  of	  delocaliza5on	  in	  the	  eigenstate	  
basis.	  Delocalized	  states	  are	  always	  ergodic	  (irrespec5ve	  of	  integrability).	  

•  Direct	  analogy	  between	  (many-‐body)	  Anderson	  localiza5on	  and	  ergodicity.	  

•  Many-‐body	  states	  are	  very	  fragile:	  5ny	  perturba5on	  mixes	  exponen5ally	  
many	  eigenstates.	  Ensembles	  are	  stable.	  

•  Integrable	  systems	  relax	  to	  asympto5c	  states	  which	  can	  be	  described	  by	  the	  
GGE	  (generalized	  Gibbs	  ensembles)	  composed	  of	  local	  integrals	  of	  mo5on.	  

•  Weak	  interac5on	  can	  select	  possible	  classes	  of	  stable	  GGE	  state,	  which	  
ul5mately	  thermalize	  (prethermaliza5on	  scenario).	  But	  s5ll	  many	  open	  
problems	  remain.	  



Part	  II.	  Applica5ons	  of	  ETH	  to	  thermodynamics	  

Thermodynamics	  (unlike	  sta5s5cal	  physics)	  	  typically	  deals	  with	  non-‐equilibrium	  
processes,	  which	  at	  each	  stage	  can	  be	  approximated	  as	  approximate	  local	  equilibrium	  	  

Image	  taken	  from	  



Setups	  considered	  

1.  Prepare	  system	  A	  in	  a	  sta5onary	  
state	  (diagonal	  ensemble)	  

	  
	  
	  
2.  Apply	  some	  5me-‐dependent	  

perturba5on	  (quench)	  

3.  Let	  the	  system	  relax	  to	  a	  new	  
steady	  state	  

nmnnm δρρ 0)0( =

I.	  

1.  Prepare	  systems	  A	  and	  B	  in	  	  
sta5onary	  states	  

	  
	  
	  
2.  Connect	  them	  by	  a	  weak	  coupling	  

(quench)	  for	  a	  period	  of	  5me	  .	  

3.  Disconnect	  and	  let	  the	  systems	  
relax	  to	  the	  steady	  states.	  (Markov	  
process).	  

II.	  



Fundamental	  thermodynamic	  rela5on	  for	  open	  and	  closed	  systems	  

Start	  from	  a	  sta5onary	  state.	  Consider	  some	  dynamical	  process	  

Assume	  ini5al	  Gibbs	  Distribu5on	  

Combine	  together	  

Recover	  fundamental	  rela5on	  with	  the	  only	  assump5on	  of	  Gibbs	  distribu5on	  	  

What	  if	  we	  do	  not	  have	  the	  Gibbs	  distribu5on?	  



Imagine	  we	  are	  umping	  some	  energy	  into	  
an	  isolated	  system.	  Does	  fundamental	  
rela5on	  s5ll	  apply?	  	  	  

Entropy is a unique function of energy (in the thermodynamic limit) if the 
Hamiltonian is local and density matrix is not (exponentially) sparse. I.e. if 
the system is not localized in the Hilbert space   
Gaussian approximation for W(E), applies even for small systems: 



In	  delocalized	  regime,	  which	  is	  always	  the	  case	  if	  ETH	  applies	  

Recover	  fundamental	  rela5on	  +	  sub-‐extensive	  correc5ons	  from	  ETH	  

Integrable	  	  systems:	  sparse	  distribu5ons	  

Gives	  extensive	  contribu5on	  comparable	  to	  Sm	  	  

Can	  we	  use	  GGE	  density	  of	  states?	  	  
Integrable	  Hamiltonian	  (with	  L.	  Santos	  and	  M.	  Rigol)	  
Filling 1/5, period P=5, quench A 

Solid	  line	  Sd	  
	  
Dashed	  lines	  Sm,	  SGGE	  
	  
GGE	  is	  not	  constraining	  
enough	  



Isolated	  systems.	  Unitary	  dynamics.	  Ini5al	  sta5onary	  state.	  

nmnnm δρρ 0)0( =

Unitarity	  of	  the	  evolu5on:	  

The	  only	  stable	  distribu5on	  under	  these	  transforma5ons	  is	  	  the	  infinite	  temperature	  
maximum	  entropy	  state	  	  

Transi5on	  rates	  pm->n	  are	  non-‐nega5ve	  numbers	  sa5sfying	  sum	  rule	  	  

1)()( ==∑ ∑ →→
n n

nmmn tptp

In	  general	  there	  is	  no	  detailed	  balance	  even	  for	  cyclic	  processes	  (but	  within	  the	  
Fremi-‐Golden	  rule	  or	  for	  symmetric	  protocols	  there	  is).	  



1)()( ==∑ ∑ →→
n n

nmmn tptp

Start	  from	  a	  sta5onary	  state	  with	  monotonically	  decreasing	  probability	  (e.g.	  Gibbs	  
distribu5on).	  Energy	  can	  only	  increase	  or	  stay	  constant,	  see	  picture	  Thirring,	  Quantum	  
Mathema5cal	  Physics,	  1999,	  A.	  E.	  Allahverdyan,	  Th.	  M.	  Nieuwenhuizen,	  (2002).	  	  

Likewise	  (diagonal)	  entropy	  	  
sa5sfies	  the	  second	  law:	  	  

For	  any	  ini5al	  sta5onary	  state	  

)0()0()()(
),0()0()()(

2121 dddd

dnnd

SStStS
SStStS
+≥+

==≥

(thanks	  to	  C.	  Gogolin)	  

Follows	  from	  Araki-‐Lieb	  subbadi5vity	  

Also	  immediately	  follows	  
from	  the	  sum	  rule.	  

Second	  law	  of	  thermodynamics	  



Fluctua5on	  theorems	  (Bochkov,	  Kuzovlev,	  Jarzynski,	  Crooks)	  

Ini5al	  sta5onary	  state	  +	  5me	  reversability:	  
Microscopic	  probabili5es	  are	  the	  same	  

Eigenstate	  thermaliza5on	  hypothesis:	  microscopic	  
probabili5es	  are	  smooth	  (independent	  on	  m,n)	  	  

Bochkov,	  Kuzivlev,	  1979,	  Crooks	  1998	  

Probability	  to	  do	  work	  w	  

If	  we	  assume	  the	  Gibbs	  distribu5on	  

Crooks	  equality,	  C.	  Crooks,	  1998,	  

Jarzynski	  equality,	  1997	  



Jarzynski	  equality	  heavily	  relies	  on	  having	  Gibbs	  distribu5on,	  no	  
equivalence	  of	  ensembles.	  Probe	  large	  devia5ons	  
However,	  if	  interested	  in	  cumulants	  can	  use	  arbitrary	  ensembles.	  
Assume	  for	  simplicity	  a	  cyclic	  process	  Zf=Zi.	  	  	  

It	  is	  sufficient	  to	  know	  only	  the	  hea5ng	  rate	  to	  find	  the	  energy	  distribu5on!	  	  

Fokker-‐Planck	  (diffusion)	  equa5on:	  

Exercise:	  expand	  to	  the	  second	  
order	  in	  w.	  Beat	  subtle5es	  

Now	  can	  integrate	  with	  an	  arbitrary	  distribu5on	  ρ(E).	  

Second	  law	  of	  thermodynamics.	  
Einstein-‐like	  driw	  diffusion	  rela5ons.	  

Require	  that	  high	  cumulants	  are	  small,	  narrow	  distribu5on	  



Simple	  way	  to	  derive	  the	  driw	  diffusion	  rela5on	  

For	  unitary	  dynamics	  with	  arbitrary	  5me	  dependent	  Hamiltonian	  the	  avractor	  is	  	  

Plug	  back	  to	  the	  FP	  equa5on	  

Solu5on	  
The	  last	  term	  is	  usually	  suppressed	  in	  large	  systems.	  It	  
can	  be	  also	  recovered	  from	  the	  Crooks	  rela5om	  

Example	  (par5cle	  in	  a	  deforming	  cavity	  C.	  Jarzynski	  ,	  1992)	  	  

Exercise:	  compute	  
Equivalent to the 
Lorenz gas 
solvable by  
kinetic equations: 
L. D’Alessio and P. 
Krapivsky. 



Conven5onal	  hea5ng	   Nonadiaba5c	  (microwave)	  hea5ng	  

Example:	  universal	  energy	  fluctua5ons	  for	  driven	  thermally	  isolated	  
systems	  (microvawe	  hea5ng)	  (G.	  Bunin,	  L.	  D’Alessio,	  Y.	  Kafri,	  A.	  P.,	  2011)	  

Universal	  non-‐Gibbs	  distribu5on	  
	  
Dynamical	  phase	  transi5ons	  as	  a	  
func5on	  of	  the	  hea5ng	  protocol	  (to	  
the	  superheated	  regime).	  
	  
Can	  prepare	  arbitrarily	  narrow	  
distribu5ons.	  



Open	  systems	  (A	  can	  be	  a	  single	  spin	  or	  macroscopic)	  

Time	  reversal	  symmetry	  implies	  Crooks	  equality:	  

Sum	  over	  eigenstates	  of	  B.	  Use	  ETH	  for	  the	  system	  B.	  

Detailed	  balance	  follows	  from	  the	  Crooks	  	  equality	  for	  the	  two	  
systems	  and	  ETH	  for	  the	  system	  B.	  



Open	  systems	  (G.	  Bunin	  and	  Y.	  Kafri,	  2011)	  

Time	  reversal	  symmetry	  implies	  Crooks	  equality:	  

Hence	  

Jarzynski	  type	  rela5on	  for	  an	  open	  system	  (require	  narrow	  distribu5ons)	  	  

Heat	  flows	  from	  hot	  to	  cold	  because	  of	  ETH	  



Example:	  two	  coupled	  black	  bodies	  at	  different	  temperatures	  
(with	  G.	  Bunin,	  Y.	  Kafri,	  V.	  Leconte,	  D.	  Podolsky)	  

TA	   TB	  
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Appendix A: Coupled blackbodies

Let’s consider two coupled cavities at different temper-
atures. Each cavity has a thermal gas of photons, and
the photons can leak from one cavity to the other at the
interface between the two. The Hamiltonian is

H =
∑

k,α

!cka†
k,αak,α +

∑

k,α

!ckb†
k,αbk,α +Hint. (16)

Here a, a† and b, b† denote creation and annihilation op-
erators of photons with momentum k and polarization α
in each of the two cavities and k = |k|. We impose reflect-
ing boundary conditions at the surface z = 0 separating
the two cavities, so that kz in the sums is restricted to
positive values. The interaction term

Hint = λ!c
2

∑

α=1

∫

dx dy a†(x,y,0),αb(x,y,0),α + h.c. (17)

effectively converts outgoing a photons from the first cav-
ity into b photons in the second cavity. The prefactor λ
plays the role of the transmission through the barrier sep-
arating the two systems and we assume that the barrier
does not radiate, i.e. it is effectively at zero temperature.
Usual blackbody radiation corresponds to λ = 1.

To calculate the energy transfer between the two sys-
tems we will use Fermi Golden rule treating Hint as
a perturbation. Then, the matrix element squared for
a photon of a given polarization with momentum k =
(kx, ky, kz) in box a to transfer to box b with momentum
k′ = (kx, ky, k′z) is

|λ|2!2c2

L2
n(a)
k

(1 + n(b)
k′ ) (18)

where n(a,b)
k

= 1/(e−βa,b!ck − 1) are the Bose occupation
factors for the two cavities, and L is the linear size of
the cavities along the contact surface. Each such process
leads to an energy transfer !ck. Then, using the Fermi
golden rule and summing over initial and final states, we
find the energy transfer rate from box a to b to be

Wa→b =
|λ|2!c2L2

(2π)3

2
∑

α=1

∫

d3k

∫

dk′z

!ck n(a)
k

(1 + n(b)
k′ )δ(!ck − !ck′).

Taking into account that kz > 0 and k′z > 0, and using
the fact that δ(!ck − !ck′) = kz

!ckδ(kz − k′z), we obtain

Wa→b =
|λ|2!c2L2

4π2

∫ ∞

0
dk k3n(a)

k (1 + n(b)
k ). (19)

This reduces to the usual result for blackbody radiation
when βb = ∞ and λ = 1.

The net energy transfer rate from a to b is then

Aab = Wa→b −Wb→a = |λ|2σ(T 4
a − T 4

b ) (20)

where σ = π2L2

60c2!3 is the Stefan constant. Note that since
the energy density of a blackbody is proportional to T 4

the black body radiation results in a linear A model. We
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et al., Physical Review X 2 011001 (2012)
[12] C. Jarzynski and D. K. Wójcik, Phys. Rev. Lett. 92,
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Appendix A: Coupled blackbodies

Let’s consider two coupled cavities at different temper-
atures. Each cavity has a thermal gas of photons, and
the photons can leak from one cavity to the other at the
interface between the two. The Hamiltonian is

H =
∑

k,α

!cka†
k,αak,α +

∑

k,α

!ckb†
k,αbk,α +Hint. (16)

Here a, a† and b, b† denote creation and annihilation op-
erators of photons with momentum k and polarization α
in each of the two cavities and k = |k|. We impose reflect-
ing boundary conditions at the surface z = 0 separating
the two cavities, so that kz in the sums is restricted to
positive values. The interaction term

Hint = λ!c
2

∑

α=1

∫

dx dy a†(x,y,0),αb(x,y,0),α + h.c. (17)

effectively converts outgoing a photons from the first cav-
ity into b photons in the second cavity. The prefactor λ
plays the role of the transmission through the barrier sep-
arating the two systems and we assume that the barrier
does not radiate, i.e. it is effectively at zero temperature.
Usual blackbody radiation corresponds to λ = 1.

To calculate the energy transfer between the two sys-
tems we will use Fermi Golden rule treating Hint as
a perturbation. Then, the matrix element squared for
a photon of a given polarization with momentum k =
(kx, ky, kz) in box a to transfer to box b with momentum
k′ = (kx, ky, k′z) is

|λ|2!2c2

L2
n(a)
k

(1 + n(b)
k′ ) (18)

where n(a,b)
k

= 1/(e−βa,b!ck − 1) are the Bose occupation
factors for the two cavities, and L is the linear size of
the cavities along the contact surface. Each such process
leads to an energy transfer !ck. Then, using the Fermi
golden rule and summing over initial and final states, we
find the energy transfer rate from box a to b to be

Wa→b =
|λ|2!c2L2

(2π)3

2
∑

α=1

∫

d3k

∫

dk′z

!ck n(a)
k

(1 + n(b)
k′ )δ(!ck − !ck′).

Taking into account that kz > 0 and k′z > 0, and using
the fact that δ(!ck − !ck′) = kz

!ckδ(kz − k′z), we obtain

Wa→b =
|λ|2!c2L2

4π2

∫ ∞

0
dk k3n(a)

k (1 + n(b)
k ). (19)

This reduces to the usual result for blackbody radiation
when βb = ∞ and λ = 1.

The net energy transfer rate from a to b is then

Aab = Wa→b −Wb→a = |λ|2σ(T 4
a − T 4

b ) (20)

where σ = π2L2

60c2!3 is the Stefan constant. Note that since
the energy density of a blackbody is proportional to T 4

the black body radiation results in a linear A model. We

Recoloring	  operator,	  	  
λ	  –	  transmission	  amplitude	  

6

can compute the energy fluctuations in a similar fashion:

Bab =
|λ|2!c2L2

(2π)3

2
∑

α=1

∫

d3k

∫

dk′z (!ck)
2 δ(!ck − !ck′)

×
[

n(a)
k

(1 + n(b)
k′ ) + n(b)

k
(1 + n(a)

k′ )
]

=
|λ|2!2c3L2

(2π)2

∫

dk k4
[

n(a)
k (1 + n(b)

k ) + n(b)
k (1 + n(a)

k )
]

Numerically we find that this expression is well approxi-
mated by

Bab = 8|λ|2σ

[

(TaTb)
5/2 +

45

π4

(

T 5/2
a − T 5/2

b

)2
]

(21)

which satisfies Eq. (4) when Ta ≈ Tb. Applying our for-
malism in a similar fashion to that described in the dis-
cussion of the Fermi gas, we find that the correlations are
always positive.
As a side remark we note that the same result for the

black body radiation can be obtained using a different
type of perturbation

Hint =
λ!c

i

2
∑

α=1

∫

dx dy a†(x,y,0),α∂zb(x,y,z),α

∣

∣

∣

z=0
+ h.c.

(22)
At λ = 1 this perturbation is nothing but the energy
flux operator of photons. The easiest way to check that
this perturbation gives the same result as Eq. (17) is to
discretize the Hamiltonian along the z-direction

Hint = λ
!c

id

2
∑

α=1

∫

dx dy
[

a†(x,y,0),αb(x,y,d),α − h.c.
]

,

(23)
where d is the lattice spacing and and then make the
gauge transformation b → be−iπ/2. This gauge transfor-
mation obviously does not affect H0 while Hint reduces
to Eq. (17) in the continuum limit, using 1/d → δ(z).
Hence we recover the equivalence of the two choices for
the perturbation.

Appendix B: Derivation of Eq. (15)

Here we derive the bound given in Eq. (15). We as-
sume that ∂EiAij > 0 and ∂EjAij < 0, meaning that
the average currents grow when the difference between
Ei and Ej grows. The matrix R is then given by

R =

(

−γ1 − γ2 γ3
γ2 −γ3 − γ4

)

,

where γ1 = −∂E1
A01, γ2 = ∂E1

A12, γ3 = −∂E2
A12, and

γ4 = ∂E2
A23 are all positive numbers. As |Tr (R)| =

|γ1 + γ2 + γ3 + γ4| then max γ ≡ max {γi} ≤ |Tr (R)|.
The correlation is given by

C12 =
B23(γ1 + γ2)γ3 +B01γ2(γ3 + γ4)

2Tr (R) det (R)

−
B12 (γ2γ4 + γ1γ3 + 2γ1γ4)

2Tr (R) det (R)

so that

|C12| ≤
9max (Bij) (max γ)2

2 |Tr (R)| det (R)

≤ 9 〈J〉
|Tr (R)|

det (R)
max

i=0,1,2

(

|βi − βi+1|
−1

)

where in the second equality we used Eq. (4), that at
the steady state 〈J〉 = A01 = A12 = A23, and that
(max γ)2 ≤ [Tr (R)]2. As |Tr (R)| / det (R) = λ−1

1 +
λ−1
2 ≤ 2τ , one obtains Eq. (15)

|C12| ≤ 18 〈J〉 τ max
i=0,1,2

(

|βi − βi+1|
−1

)

.
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Appendix A: Coupled blackbodies

Let’s consider two coupled cavities at different temper-
atures. Each cavity has a thermal gas of photons, and
the photons can leak from one cavity to the other at the
interface between the two. The Hamiltonian is

H =
∑

k,α

!cka†
k,αak,α +

∑

k,α

!ckb†
k,αbk,α +Hint. (16)

Here a, a† and b, b† denote creation and annihilation op-
erators of photons with momentum k and polarization α
in each of the two cavities and k = |k|. We impose reflect-
ing boundary conditions at the surface z = 0 separating
the two cavities, so that kz in the sums is restricted to
positive values. The interaction term

Hint = λ!c
2

∑

α=1

∫

dx dy a†(x,y,0),αb(x,y,0),α + h.c. (17)

effectively converts outgoing a photons from the first cav-
ity into b photons in the second cavity. The prefactor λ
plays the role of the transmission through the barrier sep-
arating the two systems and we assume that the barrier
does not radiate, i.e. it is effectively at zero temperature.
Usual blackbody radiation corresponds to λ = 1.

To calculate the energy transfer between the two sys-
tems we will use Fermi Golden rule treating Hint as
a perturbation. Then, the matrix element squared for
a photon of a given polarization with momentum k =
(kx, ky, kz) in box a to transfer to box b with momentum
k′ = (kx, ky, k′z) is

|λ|2!2c2

L2
n(a)
k

(1 + n(b)
k′ ) (18)

where n(a,b)
k

= 1/(e−βa,b!ck − 1) are the Bose occupation
factors for the two cavities, and L is the linear size of
the cavities along the contact surface. Each such process
leads to an energy transfer !ck. Then, using the Fermi
golden rule and summing over initial and final states, we
find the energy transfer rate from box a to b to be

Wa→b =
|λ|2!c2L2

(2π)3

2
∑

α=1

∫

d3k

∫

dk′z

!ck n(a)
k

(1 + n(b)
k′ )δ(!ck − !ck′).

Taking into account that kz > 0 and k′z > 0, and using
the fact that δ(!ck − !ck′) = kz

!ckδ(kz − k′z), we obtain

Wa→b =
|λ|2!c2L2

4π2

∫ ∞

0
dk k3n(a)

k (1 + n(b)
k ). (19)

This reduces to the usual result for blackbody radiation
when βb = ∞ and λ = 1.

The net energy transfer rate from a to b is then

Aab = Wa→b −Wb→a = |λ|2σ(T 4
a − T 4

b ) (20)

where σ = π2L2

60c2!3 is the Stefan constant. Note that since
the energy density of a blackbody is proportional to T 4

the black body radiation results in a linear A model. We
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Appendix A: Coupled blackbodies

Let’s consider two coupled cavities at different temper-
atures. Each cavity has a thermal gas of photons, and
the photons can leak from one cavity to the other at the
interface between the two. The Hamiltonian is

H =
∑

k,α

!cka†
k,αak,α +

∑

k,α

!ckb†
k,αbk,α +Hint. (16)

Here a, a† and b, b† denote creation and annihilation op-
erators of photons with momentum k and polarization α
in each of the two cavities and k = |k|. We impose reflect-
ing boundary conditions at the surface z = 0 separating
the two cavities, so that kz in the sums is restricted to
positive values. The interaction term

Hint = λ!c
2

∑

α=1

∫

dx dy a†(x,y,0),αb(x,y,0),α + h.c. (17)

effectively converts outgoing a photons from the first cav-
ity into b photons in the second cavity. The prefactor λ
plays the role of the transmission through the barrier sep-
arating the two systems and we assume that the barrier
does not radiate, i.e. it is effectively at zero temperature.
Usual blackbody radiation corresponds to λ = 1.

To calculate the energy transfer between the two sys-
tems we will use Fermi Golden rule treating Hint as
a perturbation. Then, the matrix element squared for
a photon of a given polarization with momentum k =
(kx, ky, kz) in box a to transfer to box b with momentum
k′ = (kx, ky, k′z) is

|λ|2!2c2

L2
n(a)
k

(1 + n(b)
k′ ) (18)

where n(a,b)
k

= 1/(e−βa,b!ck − 1) are the Bose occupation
factors for the two cavities, and L is the linear size of
the cavities along the contact surface. Each such process
leads to an energy transfer !ck. Then, using the Fermi
golden rule and summing over initial and final states, we
find the energy transfer rate from box a to b to be

Wa→b =
|λ|2!c2L2

(2π)3

2
∑

α=1

∫

d3k

∫

dk′z

!ck n(a)
k

(1 + n(b)
k′ )δ(!ck − !ck′).

Taking into account that kz > 0 and k′z > 0, and using
the fact that δ(!ck − !ck′) = kz

!ckδ(kz − k′z), we obtain

Wa→b =
|λ|2!c2L2

4π2

∫ ∞

0
dk k3n(a)

k (1 + n(b)
k ). (19)

This reduces to the usual result for blackbody radiation
when βb = ∞ and λ = 1.

The net energy transfer rate from a to b is then

Aab = Wa→b −Wb→a = |λ|2σ(T 4
a − T 4

b ) (20)

where σ = π2L2

60c2!3 is the Stefan constant. Note that since
the energy density of a blackbody is proportional to T 4

the black body radiation results in a linear A model. We
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can compute the energy fluctuations in a similar fashion:

Bab =
|λ|2!c2L2

(2π)3

2
∑

α=1

∫

d3k

∫

dk′z (!ck)
2 δ(!ck − !ck′)

×
[

n(a)
k

(1 + n(b)
k′ ) + n(b)

k
(1 + n(a)

k′ )
]

=
|λ|2!2c3L2

(2π)2

∫

dk k4
[

n(a)
k (1 + n(b)

k ) + n(b)
k (1 + n(a)

k )
]

Numerically we find that this expression is well approxi-
mated by

Bab = 8|λ|2σ

[

(TaTb)
5/2 +

45

π4

(

T 5/2
a − T 5/2

b

)2
]

(21)

which satisfies Eq. (4) when Ta ≈ Tb. Applying our for-
malism in a similar fashion to that described in the dis-
cussion of the Fermi gas, we find that the correlations are
always positive.
As a side remark we note that the same result for the

black body radiation can be obtained using a different
type of perturbation

Hint =
λ!c

i

2
∑

α=1

∫

dx dy a†(x,y,0),α∂zb(x,y,z),α

∣

∣

∣

z=0
+ h.c.

(22)
At λ = 1 this perturbation is nothing but the energy
flux operator of photons. The easiest way to check that
this perturbation gives the same result as Eq. (17) is to
discretize the Hamiltonian along the z-direction

Hint = λ
!c

id

2
∑

α=1

∫

dx dy
[

a†(x,y,0),αb(x,y,d),α − h.c.
]

,

(23)
where d is the lattice spacing and and then make the
gauge transformation b → be−iπ/2. This gauge transfor-
mation obviously does not affect H0 while Hint reduces
to Eq. (17) in the continuum limit, using 1/d → δ(z).
Hence we recover the equivalence of the two choices for
the perturbation.

Appendix B: Derivation of Eq. (15)

Here we derive the bound given in Eq. (15). We as-
sume that ∂EiAij > 0 and ∂EjAij < 0, meaning that
the average currents grow when the difference between
Ei and Ej grows. The matrix R is then given by

R =

(

−γ1 − γ2 γ3
γ2 −γ3 − γ4

)

,

where γ1 = −∂E1
A01, γ2 = ∂E1

A12, γ3 = −∂E2
A12, and

γ4 = ∂E2
A23 are all positive numbers. As |Tr (R)| =

|γ1 + γ2 + γ3 + γ4| then max γ ≡ max {γi} ≤ |Tr (R)|.
The correlation is given by

C12 =
B23(γ1 + γ2)γ3 +B01γ2(γ3 + γ4)

2Tr (R) det (R)

−
B12 (γ2γ4 + γ1γ3 + 2γ1γ4)

2Tr (R) det (R)

so that

|C12| ≤
9max (Bij) (max γ)2

2 |Tr (R)| det (R)

≤ 9 〈J〉
|Tr (R)|

det (R)
max

i=0,1,2

(

|βi − βi+1|
−1

)

where in the second equality we used Eq. (4), that at
the steady state 〈J〉 = A01 = A12 = A23, and that
(max γ)2 ≤ [Tr (R)]2. As |Tr (R)| / det (R) = λ−1

1 +
λ−1
2 ≤ 2τ , one obtains Eq. (15)

|C12| ≤ 18 〈J〉 τ max
i=0,1,2

(

|βi − βi+1|
−1

)

.
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can compute the energy fluctuations in a similar fashion:

Bab =
|λ|2!c2L2

(2π)3

2
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(2π)2

∫

dk k4
[

n(a)
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k ) + n(b)
k (1 + n(a)

k )
]

Numerically we find that this expression is well approxi-
mated by

Bab = 8|λ|2σ

[

(TaTb)
5/2 +

45

π4

(

T 5/2
a − T 5/2

b

)2
]

(21)

which satisfies Eq. (4) when Ta ≈ Tb. Applying our for-
malism in a similar fashion to that described in the dis-
cussion of the Fermi gas, we find that the correlations are
always positive.
As a side remark we note that the same result for the

black body radiation can be obtained using a different
type of perturbation

Hint =
λ!c

i

2
∑

α=1

∫

dx dy a†(x,y,0),α∂zb(x,y,z),α

∣

∣

∣

z=0
+ h.c.

(22)
At λ = 1 this perturbation is nothing but the energy
flux operator of photons. The easiest way to check that
this perturbation gives the same result as Eq. (17) is to
discretize the Hamiltonian along the z-direction

Hint = λ
!c

id

2
∑

α=1

∫

dx dy
[

a†(x,y,0),αb(x,y,d),α − h.c.
]

,

(23)
where d is the lattice spacing and and then make the
gauge transformation b → be−iπ/2. This gauge transfor-
mation obviously does not affect H0 while Hint reduces
to Eq. (17) in the continuum limit, using 1/d → δ(z).
Hence we recover the equivalence of the two choices for
the perturbation.

Appendix B: Derivation of Eq. (15)

Here we derive the bound given in Eq. (15). We as-
sume that ∂EiAij > 0 and ∂EjAij < 0, meaning that
the average currents grow when the difference between
Ei and Ej grows. The matrix R is then given by

R =

(

−γ1 − γ2 γ3
γ2 −γ3 − γ4

)

,

where γ1 = −∂E1
A01, γ2 = ∂E1

A12, γ3 = −∂E2
A12, and

γ4 = ∂E2
A23 are all positive numbers. As |Tr (R)| =

|γ1 + γ2 + γ3 + γ4| then max γ ≡ max {γi} ≤ |Tr (R)|.
The correlation is given by

C12 =
B23(γ1 + γ2)γ3 +B01γ2(γ3 + γ4)

2Tr (R) det (R)

−
B12 (γ2γ4 + γ1γ3 + 2γ1γ4)

2Tr (R) det (R)

so that

|C12| ≤
9max (Bij) (max γ)2

2 |Tr (R)| det (R)

≤ 9 〈J〉
|Tr (R)|

det (R)
max

i=0,1,2

(

|βi − βi+1|
−1

)

where in the second equality we used Eq. (4), that at
the steady state 〈J〉 = A01 = A12 = A23, and that
(max γ)2 ≤ [Tr (R)]2. As |Tr (R)| / det (R) = λ−1

1 +
λ−1
2 ≤ 2τ , one obtains Eq. (15)

|C12| ≤ 18 〈J〉 τ max
i=0,1,2

(

|βi − βi+1|
−1

)

.

6

can compute the energy fluctuations in a similar fashion:

Bab =
|λ|2!c2L2

(2π)3

2
∑

α=1

∫

d3k

∫

dk′z (!ck)
2 δ(!ck − !ck′)

×
[

n(a)
k
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k′ ) + n(b)

k
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]

=
|λ|2!2c3L2

(2π)2

∫

dk k4
[

n(a)
k (1 + n(b)

k ) + n(b)
k (1 + n(a)

k )
]

Numerically we find that this expression is well approxi-
mated by

Bab = 8|λ|2σ

[

(TaTb)
5/2 +

45

π4

(

T 5/2
a − T 5/2
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)2
]

(21)

which satisfies Eq. (4) when Ta ≈ Tb. Applying our for-
malism in a similar fashion to that described in the dis-
cussion of the Fermi gas, we find that the correlations are
always positive.
As a side remark we note that the same result for the

black body radiation can be obtained using a different
type of perturbation

Hint =
λ!c

i

2
∑

α=1

∫

dx dy a†(x,y,0),α∂zb(x,y,z),α

∣

∣

∣

z=0
+ h.c.

(22)
At λ = 1 this perturbation is nothing but the energy
flux operator of photons. The easiest way to check that
this perturbation gives the same result as Eq. (17) is to
discretize the Hamiltonian along the z-direction

Hint = λ
!c

id

2
∑

α=1

∫

dx dy
[

a†(x,y,0),αb(x,y,d),α − h.c.
]

,

(23)
where d is the lattice spacing and and then make the
gauge transformation b → be−iπ/2. This gauge transfor-
mation obviously does not affect H0 while Hint reduces
to Eq. (17) in the continuum limit, using 1/d → δ(z).
Hence we recover the equivalence of the two choices for
the perturbation.

Appendix B: Derivation of Eq. (15)

Here we derive the bound given in Eq. (15). We as-
sume that ∂EiAij > 0 and ∂EjAij < 0, meaning that
the average currents grow when the difference between
Ei and Ej grows. The matrix R is then given by

R =

(

−γ1 − γ2 γ3
γ2 −γ3 − γ4

)

,

where γ1 = −∂E1
A01, γ2 = ∂E1

A12, γ3 = −∂E2
A12, and

γ4 = ∂E2
A23 are all positive numbers. As |Tr (R)| =

|γ1 + γ2 + γ3 + γ4| then max γ ≡ max {γi} ≤ |Tr (R)|.
The correlation is given by

C12 =
B23(γ1 + γ2)γ3 +B01γ2(γ3 + γ4)

2Tr (R) det (R)

−
B12 (γ2γ4 + γ1γ3 + 2γ1γ4)

2Tr (R) det (R)

so that

|C12| ≤
9max (Bij) (max γ)2

2 |Tr (R)| det (R)

≤ 9 〈J〉
|Tr (R)|

det (R)
max

i=0,1,2

(

|βi − βi+1|
−1

)

where in the second equality we used Eq. (4), that at
the steady state 〈J〉 = A01 = A12 = A23, and that
(max γ)2 ≤ [Tr (R)]2. As |Tr (R)| / det (R) = λ−1

1 +
λ−1
2 ≤ 2τ , one obtains Eq. (15)

|C12| ≤ 18 〈J〉 τ max
i=0,1,2

(

|βi − βi+1|
−1

)

.

(approximate	  expression)	  

A-‐B	  rela5on	  is	  sa5sfied	  when	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  otherwise	  high	  third	  order	  cumulant	  	  



(Non-‐equilibrium)	  Onsager	  	  rela5ons.	  	  
Two	  or	  more	  conserved	  quan55es.	  

in	  progress	  with	  L.	  D’Alessio,	  G.	  Bunin,	  Y.	  Kafri,	  also	  P.	  Gaspard	  and	  D.	  Andrieux	  (2011)	  

Time	  reversibility	  and	  
ETH	  imply	  the	  Crooks	  
rela5on	  

Onsager	  rela5ons	  (cumulant	  expansion)	  	  

This	  is	  not	  a	  gradient	  expansion.	  E.g.	  temperatures	  can	  but	  need	  not	  be	  close!	  
Two	  currents	  and	  one	  current	  fluctua5on	  set	  the	  other	  fluctua5on	  and	  the	  cross-‐
correla5on.	  Possible	  applica5ons	  from	  spintronics	  to	  black	  hole	  radia5on.	  

Two	  independent	  Jarzynski	  rela5ons:	  



Energy	  localiza5on	  transi5on	  in	  periodically	  driven	  systems	  	  
(with	  L.	  D’Alessio)	  

Instead	  of	  a	  single	  quench	  consider	  a	  periodic	  sequence	  of	  pulses:	  

What	  is	  the	  long	  5me	  limit	  in	  
this	  system?	  

Fermi-‐Ulam	  problem	  (prototype	  of	  
the	  Fermi	  accelera5on	  problem).	  

7

Fermi Acceleration

The so-called Fermi acceleration – the acceleration of a particle through col-
lision with an oscillating wall – is one of the most famous model systems for
understanding nonlinear Hamiltonian dynamics. The problem was introduced
by Fermi [1] in connection with studies of the acceleration mechanism of cos-
mic particles through fluctuating magnetic fields. Similar mechanisms have
been studied for accelerating cosmic rockets by planetary or stellar gravita-
tional fields. One of the most interesting aspects of such models is the deter-
mination of criteria for stochastic (statistical) behavior, despite the strictly
deterministic dynamics.

Here, we study the simplest example of a Fermi acceleration model, which
was originally studied by Ulam [2] : a point mass moving between a fixed
and oscillating wall (see Fig. 7.1). Since then, this model system has been
investigated by many authors, e.g., Zaslavskii and Chirikov [3], Brahic [4],
Lichtenberg, Lieberman, and their coworkers [5]–[8], and it is certainly one of
the first examples of the variety of kicked systems which appear in numerous
studies of nonlinear dynamics.
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Fig. 7.1. Model for Fermi acceleration.
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Fig. 7.2. Different wall oscillations.

(G.	  M.	  Zaslavskii	  and	  B.	  V.	  Chirikov,	  1964	  
M.	  A.	  Liberman	  and	  J.	  Lichenberg	  1972)	  

M =
L

16a
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Fig. 7.14. Poincaré phase space sec-
tion for a harmonic wall oscillation with
M = 20. Iterations of several selected
trajectories.

Fig. 7.15. Poincaré phase space sec-
tion for a harmonic wall oscillation with
M = 40. Iterations of several selected
trajectories.

For the absolute barrier, one finds the simple approximate expression [6]

ub ≈ 2.8
√

M , (7.17)

which is supported by the double logarithmic plot in Fig. 7.13 (taken from
Ref. [5] ). These data agree, of course, with the values ub = 12.9 and 27.5
obtained numerically in the above experiments.

Equation (7.17), however, describes only the overall features of the growth
of the stochastic sea with increasing M and does not account for the finer
details. When we compare the Poincaré phase space sections for M = 10
(Fig. 7.6) and M = 100 (Fig. 7.5), we observe the highest period-one fixed
point at u = M/m, with m = 1 in the first case and m = 4 in the second.
Therefore, the three fixed points with m = 1, 2, and 3 disappear from the
chaotic sea when M is increased from 10 to 100. Here, we study this mechanism
in some more detail.

Figures 7.14 and 7.15 show Poincaré sections for M = 20 and 40. Locating
the fixed points in the centers of the large stability islands embedded in the
chaotic sea at u = 10 or 13.3, respectively, we readily identify them as m = 2
or m = 3 fixed points. The maximum values of the velocity accessible for
acceleration from small velocities is given by ub = 12.5 and 15.8, respectively.

The fixed points with lower m are located above these ub values and a
KAM curve separates these higher fixed points from the lower ones. It should
also be noted that the value of ub = 12.5 for M = 20 is smaller than that
that of ub = 12.9 for M = 10, despite the overall increase predicted in
(7.17) and shown in Fig. 7.13. This justifies a more detailed numerical study

Small	  energies:	  chaos	  
and	  diffusion.	  Large	  
energies	  –	  periodic	  
mo5on.	  Energy	  stays	  
localized	  within	  the	  
chao5c	  region.	  	  
	  
	  
Stochas5c	  mo5on	  –	  
infinite	  accelera5on.	  

g

g0

g1

time
T1 T2



Kicked	  rotor	  (realiza5on	  of	  standard	  Chirikov	  map)	  
Transi5on	  from	  regular	  (localized)	  to	  chao5c	  
(delocalized)	  mo5on	  as	  K	  increases.	  Chirikov,	  1971	  

K=0.5	   K=Kg=0.971635	   K=5	   (images	  taken	  from	  
scholarpedia.org)	  

Delocaliza5on	  transi5on	  at	  Kc≅1.2	  (B.	  Chirikov	  (1979)).	  

Quantum	  systems:	  (dynamical)	  localiza5on	  due	  to	  interference	  even	  
in	  the	  chao5c	  regime	  (F.	  Izrailev,	  B.	  Chirikov,	  …	  1979).	  

What	  about	  periodically	  driven	  ergodic	  systems	  in	  thermodynamic	  limit?	  



Example:	  Kapitza	  pendulum	  (emerged	  from	  par5cle	  accelerators,	  1951)	  

The equation of motion of the Kapitza pendulum reads

θ̈ = −
�
ω2
0 +

a

l
γ2 cos (γt)

�
sin θ (1)

where θ is the angle measured from the downward position (see Fig. 1),

ω0 =

�
g
l is the frequency of small oscillations and a, γ are the amplitude and

frequency of the driving of the point of suspension: yc = −a cos (γt). This

dynamical system has an extremely rich behavior containing both regions

of chaotic and regular motion (see Ref. [14] and references therein). For

our purposes we consider the limit of small driving amplitude a/l � 1 and

describe how the dynamical behavior qualitatively changes as a function of

the driving frequency.

For a small amplitude drive the lower equilibrium at θ = 0 remains stable

unless particular parametric resonance conditions
γ
ω0

≈ 2
n with n = integer,

are met [22]. As we increase the frequency of the external drive from γ ≈ 2ω0

we observe qualitatively different regimes. First the motion in phase space

is completely chaotic and both the lower and upper equilibrium (θ = 0,π)
are unstable, then the lower equilibrium becomes stable while the upper

equilibrium remains unstable, finally when
a
l

γ
ω0

>
√
2 both the upper and

lower equilibrium are stable. The surprising phenomenon that the upper

position becomes stable (and the pendulum performs oscillations around

this inverted position) is known in the literature as dynamical stabilization

and was first explained by Kapitza. He showed that for small amplitude

and high frequency driving the dynamic of the driven pendulum can be

accurately described by a time-independent effective Hamiltonian, moreover

the effective potential energy develops a local minimum at θ = π when
a
l

γ
ω0

>
√
2 explaining the oscillations around the inverted position.

Usually the dynamical stabilization is obtained by splitting the degrees of

freedom into fast and slow modes, eliminating the fast modes, and obtaining

the effective potential for the slow modes [22]. This procedure has a limi-

tation that it can not be easily extended to either interacting systems or to

the quantum domain. It is also unclear whether averaging over fast degrees

of freedom will lead to the Hamiltonian equation of motion in each order of

the expansion. Here we show that the dynamical stabilization phenomenon

can be understood through the Magnus expansion of the quantum evolution

operator in powers of the inverse frequency (a relate perturbative analysis in

powers of the inverse frequency was studied in [20, 21]) . The advantage of

this method is that allows us to analyze behavior of the periodically driven

interacting systems.

5

Figure 1: Schematic representation of the Kapitza pendulum, i.e. a rigid pendulum
with vertically oscillating point of suspension, and its phase portraits. (a) The Kapitza
pendulum. (b) Non-driven regime: the pendulum performs small oscillations around the
stable lower equilibrium which are represented by the red line in the phase portrait. (c)
Dynamical stabilization regime: the pendulum performs small oscillations around the
stable upper equilibrium which are represented by the red line in the phase portrait. In
the phase portraits the green lines correspond to rotations, the black lines to oscillations,
the blue lines are the separatrices and the points represent the region of chaotic motion.
(For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

with the recent experimental findings on a AC-driven electron glass [19]. In
this experiment, the energy absorbed by the electrons from the AC-driving,
is related to the variation in the conductance which can be directly mea-
sured and it is convincingly shown that at high frequency (short period) the
electron glass does not absorb energy. Moreover, it is shown that the criti-
cal frequency is set by the electron-phonon interactions and it is much lower
than the maximum rate of energy exchange which is set by electron-electron
interactions. Finally, we will show a strong evidence for this transition using
examples of classical and quantum interacting spin systems.

2. The Kapitza pendulum

Before addressing the many-particle problem we will discuss a much
simpler example of a periodically driven system, the so called Kapitza pen-
dulum [13] and show how the Magnus expansion can be used to derive the
effective potential. The Kapitza pendulum is a classical rigid pendulum with
a vertically oscillating point of suspension (see Fig. 1).

4

Stable	  inverted	  equilibrium	  for	  	  

The equation of motion of the Kapitza pendulum reads

θ̈ = −
�
ω2
0 +

a

l
γ2 cos (γt)

�
sin θ (1)

where θ is the angle measured from the downward position (see Fig. 1),

ω0 =

�
g
l is the frequency of small oscillations and a, γ are the amplitude and

frequency of the driving of the point of suspension: yc = −a cos (γt). This

dynamical system has an extremely rich behavior containing both regions

of chaotic and regular motion (see Ref. [14] and references therein). For

our purposes we consider the limit of small driving amplitude a/l � 1 and

describe how the dynamical behavior qualitatively changes as a function of

the driving frequency.

For a small amplitude drive the lower equilibrium at θ = 0 remains stable

unless particular parametric resonance conditions
γ
ω0

≈ 2
n with n = integer,

are met [22]. As we increase the frequency of the external drive from γ ≈ 2ω0

we observe qualitatively different regimes. First the motion in phase space

is completely chaotic and both the lower and upper equilibrium (θ = 0,π)
are unstable, then the lower equilibrium becomes stable while the upper

equilibrium remains unstable, finally when
a
l

γ
ω0

>
√
2 both the upper and

lower equilibrium are stable. The surprising phenomenon that the upper

position becomes stable (and the pendulum performs oscillations around

this inverted position) is known in the literature as dynamical stabilization

and was first explained by Kapitza. He showed that for small amplitude

and high frequency driving the dynamic of the driven pendulum can be

accurately described by a time-independent effective Hamiltonian, moreover

the effective potential energy develops a local minimum at θ = π when
a
l

γ
ω0

>
√
2 explaining the oscillations around the inverted position.

Usually the dynamical stabilization is obtained by splitting the degrees of

freedom into fast and slow modes, eliminating the fast modes, and obtaining

the effective potential for the slow modes [22]. This procedure has a limi-

tation that it can not be easily extended to either interacting systems or to

the quantum domain. It is also unclear whether averaging over fast degrees

of freedom will lead to the Hamiltonian equation of motion in each order of

the expansion. Here we show that the dynamical stabilization phenomenon

can be understood through the Magnus expansion of the quantum evolution

operator in powers of the inverse frequency (a relate perturbative analysis in

powers of the inverse frequency was studied in [20, 21]) . The advantage of

this method is that allows us to analyze behavior of the periodically driven

interacting systems.

5

New	  non-‐equilibrium	  phases	  and	  phase	  transi5ons	  

Stability:	  experimentally	  proven	  by	  Kapitsa	  using	  
Singer	  sewing	  machine	  and	  by	  Arnold	  using	  razor.	  	  
	  
Theore5cally	  proven	  by	  Arnold	  using	  KAM	  
theorem	  



Light	  induced	  Superconduc5vity	  in	  a	  
Stripe-‐ordered	  Cuprate	  

D.	  Faus5,	  et	  all,	  Science	  331,	  189	  (2011)	  

Image	  taken	  from	  A.	  Cavalleri	  web	  page	  

Further	  experimental	  progress	  

Exciton-‐Polariton	  condensates	  in	  driven-‐
dissipia5ve	  system	  	  

J.	  Kasprzak	  et.	  al,	  Nature,	  443,	  409	  (2006)	  	  

Interes5ng	  unpublished	  results	  from	  R.	  
Averiv	  group	  in	  VO2	  driven	  by	  THz	  pump.	  



Periodic	  drive:	  wave	  func5on	  (density	  matrix)	  awer	  n-‐periods	  

Magnus	  expansion:	  

•  Each	  term	  in	  the	  expansion	  is	  extensive	  and	  local	  (like	  in	  high	  temperature	  expansion)	  
•  Higher	  order	  terms	  are	  suppressed	  by	  the	  period	  T	  but	  become	  more	  and	  more	  non-‐local.	  
•  Compe55on	  between	  suppression	  of	  higher	  order	  term	  and	  their	  non-‐locality	  –	  similar	  to	  

many-‐body	  localiza5on.	  
•  The	  expansion	  is	  well	  defined	  classically	  if	  we	  change	  commutators	  to	  the	  Poisson	  brackets.	  

Time	  evolu5on	  is	  like	  a	  single	  
quench	  to	  the	  Floquet	  Hamiltonian	  	  

7

FIG. 2: Two equivalent description of the driving protocol: (left) sequence of sudden quenches between H0

and H1 and (right) single quench from H0 to the effective Floquet Hamiltonian Heff and back to H0.

external magnetic field and the Hamiltonian H1 to be interacting and ergodic:

H0 = BxHBx, H1 = JzHz + J
�
zH

�
z + J�H� + J

�
�H

�
� (7)

where, we have defined the shorthand notations::

HBx =
�

n s
x
n, Hz =

�
n

�
s
z
ns

z
n+1

�
, H� =

�
n

�
s
x
ns

x
n+1 + s

y
ns

y
n+1

�

H
�
z =

�
n

�
s
z
ns

z
n+2

�
, H

�
� =

�
i

�
s
x
ns

x
n+2 + s

y
ns

y
n+2

�

Let us point that this system is invariant under space translation and π − rotation around the

x − axis (sxn → s
x
n, s

y
n → −s

y
n, szn → −s

z
n). For numerical calculations we choose the following

parameters: Bx = 1, Jz = −J
�
� = 1

2 , J
�
z = 1

40 , J� = −1
4 . We checked that our results are not tied

to any particular choice of couplings.

As pointed out earlier, we can expect two qualitatively different regimes depending on the

period of the driving. At long periods the system has enough time to relax to the stationary state

between the pulses and thus is expected to constantly absorb energy until it reaches the infinite

temperature. This situation is similar to what happens for driving with random periods26. On the

contrary if the period is very short we can expect that the Floquet Hamiltonian converges to the

time averaged Hamiltonian. Since the whole time evolution can be viewed as a single quench to

the Floquet Hamiltonian (right panel in Fig. 2) we expect that the energy will be localized even in

the infinite time limit as long as the Floquet Hamiltonian is well defined and local. Noticing that

the commutator of two local extensive operators is local and extensive we see from Eq. (5) that

the Floquet Hamiltonian is local an extensive in each order of ME. Thus the question of whether

the energy of the system is localized in the infinite time limit or reaches the maximum possible



Magnus	  (short-‐period)	  expansion	  for	  the	  Kapitza	  pendulum	  
L.	  D’Alessio	  and	  A.P.	  2013	  (original	  explana5on,	  Kapitza	  1951)	  

dynamical stabilization condition, first obtained by Kapitza. The quantum

time-dependent Hamiltonian for the Kapitza pendulum is:

Ĥ(t) =
1

2m
p̂
2
θ + f(t) cos θ̂ (A.1)

where f(t) = −m
�
ω
2
0 +

a
l γ

2
cos (γt)

�
and θ̂, p̂θ are quantum operators with

canonical commutation relations

�
θ̂; p̂θ

�
= i�. The explicit form of the first

three terms in the ME are (see the review article [24]):

Ĥ
(1)
eff =

1
T

�
Ĥ(t1)

Ĥ
(2)
eff =

1
2T (i�)

�� �
Ĥ(t1); Ĥ(t2)

�

Ĥ
(3)
eff =

1
6T (i�)2

��� ��
Ĥ(t1);

�
Ĥ(t2); Ĥ(t3)

��
+

�
Ĥ(t3);

�
Ĥ(t2); Ĥ(t1)

���

(A.2)

where the time integration domains are ordered, i.e. 0 < tn < tn−1 < ... <

t1 < T . Recalling that the period of the driving is T =
2π
γ after some simple

algebra we obtain:

Ĥ
(1)
eff =

1
2m p̂

2
θ −mω

2
0 cos θ̂

Ĥ
(2)
eff = 0

Ĥ
(3)
eff = −

�
1
4m

a
l

� [p̂2θ;[p̂2θ;cos θ̂]]
(i�)2 +

m
2

�
a
l ω

2
0 −

�γa
2l

�2� [cos θ̂;[p̂2θ;cos θ̂]]

(i�)2

(A.3)

Substituting the explicit value for the commutators in Ĥ
(3)
eff we obtain:

Ĥ
(3)
eff =

�
1

4m

a

l

��
p̂
2
θ cos θ̂ + 2p̂θ cos θ̂p̂θ + cos θ̂p̂

2
θ

�
+m

��
aγ

2l

�2
− a

l
ω
2
0

�
sin

2
θ̂

(A.4)

Combining Eqs. (A.3) and Eq. (A.4) we obtain the first three terms in ME

for the quantum Kapitza pendulum. Up to this order, the classical ME (see

Eq. (6) in the main text) can be obtained from the quantum counterpart by

substituting the quantum operators with classical variables. This is not true

in general and a more rigorous approach is necessary to derive the classical

limit of the ME.

Before showing the general approach to obtain the classical limit of the

ME we note that the first three terms in the ME suffice to explain the

dynamical stabilization of the classical Kapitza pendulum. Let us assume

that
a
l ω

2
0 �

�aγ
2l

�2
(we will check this assumption a posteriori) then by

collecting the terms in H
(1)
eff and H

(3)
eff that involve only the coordinates we
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for the quantum Kapitza pendulum. Up to this order, the classical ME (see

Eq. (6) in the main text) can be obtained from the quantum counterpart by

substituting the quantum operators with classical variables. This is not true
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Ĥ(t2); Ĥ(t3)
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Eq. (6) in the main text) can be obtained from the quantum counterpart by

substituting the quantum operators with classical variables. This is not true

in general and a more rigorous approach is necessary to derive the classical

limit of the ME.

Before showing the general approach to obtain the classical limit of the

ME we note that the first three terms in the ME suffice to explain the

dynamical stabilization of the classical Kapitza pendulum. Let us assume

that
a
l ω

2
0 �

�aγ
2l

�2
(we will check this assumption a posteriori) then by

collecting the terms in H
(1)
eff and H

(3)
eff that involve only the coordinates we
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Theory	  progress:	  no	  general	  framework	  yet	  but	  a	  good	  progress	  

Emergent	  steady	  state	  is	  an	  equilibrium	  for	  effec5ve	  and	  nontrivial	  
Hamiltonian.	  	  
Thermaliza5on	  with	  an	  undriven	  bath?	  Generality?	  

dynamical stabilization condition, first obtained by Kapitza. The quantum

time-dependent Hamiltonian for the Kapitza pendulum is:

Ĥ(t) =
1

2m
p̂
2
θ + f(t) cos θ̂ (A.1)

where f(t) = −m
�
ω
2
0 +

a
l γ

2
cos (γt)

�
and θ̂, p̂θ are quantum operators with

canonical commutation relations

�
θ̂; p̂θ

�
= i�. The explicit form of the first

three terms in the ME are (see the review article [24]):
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�
Ĥ(t1)
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eff =

1
2T (i�)

�� �
Ĥ(t1); Ĥ(t2)

�
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��� ��
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�
Ĥ(t2); Ĥ(t3)

��
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�
Ĥ(t3);

�
Ĥ(t2); Ĥ(t1)

���

(A.2)

where the time integration domains are ordered, i.e. 0 < tn < tn−1 < ... <

t1 < T . Recalling that the period of the driving is T =
2π
γ after some simple

algebra we obtain:
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Substituting the explicit value for the commutators in Ĥ
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Combining Eqs. (A.3) and Eq. (A.4) we obtain the first three terms in ME

for the quantum Kapitza pendulum. Up to this order, the classical ME (see

Eq. (6) in the main text) can be obtained from the quantum counterpart by

substituting the quantum operators with classical variables. This is not true

in general and a more rigorous approach is necessary to derive the classical

limit of the ME.

Before showing the general approach to obtain the classical limit of the

ME we note that the first three terms in the ME suffice to explain the

dynamical stabilization of the classical Kapitza pendulum. Let us assume

that
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Specific	  model:	  classical	  or	  quantum	  spin	  chain	  

timeT1

J Start	  in	  the	  ground	  state	  of	  
the	  noninterac5ng	  system.	  	  
Follow	  the	  noninterac5ng	  
energy.	  

T0

Analy5cally	  tractable	  limit:	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Classical	  limit:	  commutators	  -‐>	  Poisson	  brackets.	  	  T1 → 0

Singularity	  (phase	  transi5on?)	  at	  	  hT0 = π



Two	  different	  regimes.	  Is	  it	  a	  crossover	  or	  a	  transi5on?	  

Quantum	  spin	  chain:	  energy	  in	  the	  infinite	  5me	  limit	  
9

FIG. 3: (Color online) Excess energy of the quantum spin chain in the long time limit: Q =

�ψ(t)|H0|ψ(t)�t→∞ − Egs, where Egs is the ground state energy of the Hamiltonian H0, as a function

of the pulse times T0 and T1 in units of �/Bx. Blue (orange) regions correspond to small (large) excess

energy. The data is obtained by the exact diagonalization of a spin-
1
2 chain with N = 15 spins.

of �/Bx) no matter how small T1 or the coupling constants in H1 (the Js) are. The location of

the singularity is also manifestly independent of the system size. As it is seen from the numerical

simulations (Fig. 3), the singularity in the effective Hamiltonian is also manifested in the excess

energy of the system in the infinite time limit. We point out that, in the limit of small T1, our

system directly extends the kicked rotor model to the many-spin domain. Indeed most of the time

the spins precess around the magnetic field Bx getting periodically short kicks by the interacting

Hamiltonian H1. Thus in this limit the many-body localization transition directly generalizes the

well known kicked rotor localization transition
11,12

.

Away from the T0 − axis, nested commutators of order T
n
1 for n > 1 need to be included in

the effective Hamiltonian. These commutators become difficult to compute analytically at high n.

Like in the high temperature expansion in statistical physics they involve multiple spin interactions

and become non-local in space. Therefore we have to rely on numerics. In Fig. 4 we analyze the

long time limit of the excess energy along the generic direction T1 = T0 − 2 for 2 ≤ T0 ≤ 3 (pink

arrow in Fig. 3).

In Fig. 5 we show the error between the exact asymptotic value of the normalized excess energy

(see Fig. 4) and the corresponding excess energies obtained by truncating the ME. From the left

panel we see that, as expected, for short periods the ME becomes asymptotically exact. From the



Quantum	  spin	  chain	  (comparison	  with	  Magnus	  expansion)	  

4

FIG. 2: (Color online) Long time absorbed energy, �ψ(t =
∞)|H0|ψ(t = ∞)�, as a function of the parameters, T0 and
T1, of the driving protocol. Blue (orange) regions corresponds
to little (large) absorbed energy. The data are obtained by
exact diagonalization (in the k = 0 momentum sector) of a
quantum spin- 12 chain with N = 15 spins.

can be computed to first order in T1 using the Hausdorff-

Baker-Campbell formula (HBC) [14]. For the present

problem, due to the simple form of the H0, it is pos-

sible to resum this series and obtain the following non-

perturbative expression in T0 (see Appendix):

Heff = Hav−
T1

2T

�
1− λ cot

�
λ

2

�
+ λ cot(λ)

�
M+O(T

2
1 )

(9)

where Hav ≡
1
T (H0T0 +H1T1) is the time-averaged

Hamiltonian, M is a simple operator that couples

nearest-neighbor and next-nearest-neighbor spins and

λ ≡
BxT0

� . The effective Hamiltonian above is singu-

lar for λ = nπ with n = integer which corresponds to

T0 = nπ (we have set � = 1 and Bx = 1). Since the

time-evolution for the time-dependent problem can be

obtained by a single quench from H0 to Heff (see Fig.

1) we expect that any singularity in Heff will show up

as a singularity in the dynamical behavior of the sys-

tem. This is clearly shown in Fig. 2. We stress that

the location of the singularity, Tc, is determined by the

single particle energy scale (Bx) and it is independent on

the system size. Before moving forward we note that for

T1 → 0, in each cycle of the driving the spins precess

independently around the x − axis (under the action of

H0) and are “δ-kicked” by switching on the spin interac-

tions (H1) for an infinitesimal time. It seems plausible

that the transition we have just described is the exten-

sion to coupled-systems of the well known kicked rotor

localization transition [15].

Away from the T0−axis, nested commutators of order

T
n
1 for n > 1 need to be included in the effective Hamil-

tonian. These commutators becomes difficult to compute

very quickly and the effective Hamiltonian becomes non-

local (this is similar to what happens in the HTE where
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FIG. 3: (Color online) Normalized asymptotic value of the

energy, 2
�H0�(t=∞)−Egs

(Emax−Egs)
where Egs and Emax are the lowest

and highest eigenvalues of H0, along the line pink line of Fig.
2. The exact results for different system sizes are compared
with the predictions obtained by truncating the Magnus Ex-
pansion to different orders (see main text).
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FIG. 4: (Color online) Error for fixed system size, L = 15, and
different approximations of the ME (left panel) and error for
different system sizes and the same approximation, Heff (3),
of the ME (right panel). The horizontal dotted lines are a
guide for the eye.

larger cluster are generated at each order of perturba-

tion theory). Thus away from the T0 − axis we rely on

the numerics. In Fig. 3 we study the behaviour along

the line-cut T1 = T0 − 2 for 2 ≤ T0 ≤ 3 (pink line in

Fig. 2). In Fig. 3 the exact results for different system

sizes, L = 10, ..., 17, are shown together with the predic-

tions obtained by truncating the ME at different orders:

Heff (k) contains terms of order T
m
0 T

n
1 with m+ n ≤ k.

In particular Heff (1) is the time averaged Hamiltonian

and Heff (∞+5) contains the not-perturbative result Eq.

9 together with all the terms T
m
0 T

n
1 with m+ n ≤ 5. In

Fig. 4 we study the error between the exact asymptotic

value and the one obtained by truncating the ME. In

particular, in the left panel it is shown the error for fixed

system size, L = 15, and different approximations of the

ME. We note that by adding more terms in the ME the

Energy	  

4

III. BEHAVIOR OF THE DIAGONAL ENTROPY ACROSS THE LOCALIZATION

TRANSITION FOR THE INTERACTING QUANTUM SPIN CHAIN
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FIG. 1: (Color online) (Color online) Asymptotic value of the normalized diagonal entropy, Sd/Smax where

Smax is the logarithm of the total number of the microstates. The exact results for different system sizes are

compared with the predictions obtained by truncating the Magnus Expansion to different orders: Heff (k)

contains terms of order T
m
0 T

n
1 with m+ n ≤ k and Heff (∞+ 5) denotes the non-perturbative result in T0

(Eq. (8) in the main text) together with all the other terms T
m
0 T

n
1 with m + n ≤ 5. The results from the

Magnus Expansion for different system sizes are identical within the image resolution.

In this Section we show our numerical results for the behavior of the diagonal entropy across the

localization transition. The diagonal entropy [6] is defined as Sd(t) = −
�

k p
k
0(t) log p

k
0(t) where

p
k
0(t) is the occupation probability at time t of the k − th eigenstate of H0. The diagonal entropy

serves as a measure of the occupation in the Hilbert space. As in Fig. 4 in the main text we study

the behavior along the generic line T1 = T0− 2 for 2 ≤ T0 ≤ 3. In particular, in Fig. 1 we show the

asymptotic value the diagonal entropy for different system sizes and we compare it to the values

obtained by truncating the ME to different orders. The asymptotic values have been computed

by projecting the initial state to the eigenstates of Heff and then back to H0. This procedure is

equivalent to the assumption of infinite time averaging with respect to Heff and the asymptotic

values obtained correspond to the prediction of the diagonal ensemble of Heff . Fig. 1 shows that

the energy increase observed in Fig. 4 of the main text is indeed caused by a delocalization of

Entropy	  

Clear	  evidence	  for	  the	  phase	  transi5on	  as	  a	  func5on	  of	  the	  driving	  period.	  	  
	  
Very	  similar	  behavior	  in	  a	  classical	  chain.	  
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7.3 Computer Experiments 149

Fig. 7.14. Poincaré phase space sec-
tion for a harmonic wall oscillation with
M = 20. Iterations of several selected
trajectories.

Fig. 7.15. Poincaré phase space sec-
tion for a harmonic wall oscillation with
M = 40. Iterations of several selected
trajectories.

For the absolute barrier, one finds the simple approximate expression [6]

ub ≈ 2.8
√

M , (7.17)

which is supported by the double logarithmic plot in Fig. 7.13 (taken from
Ref. [5] ). These data agree, of course, with the values ub = 12.9 and 27.5
obtained numerically in the above experiments.

Equation (7.17), however, describes only the overall features of the growth
of the stochastic sea with increasing M and does not account for the finer
details. When we compare the Poincaré phase space sections for M = 10
(Fig. 7.6) and M = 100 (Fig. 7.5), we observe the highest period-one fixed
point at u = M/m, with m = 1 in the first case and m = 4 in the second.
Therefore, the three fixed points with m = 1, 2, and 3 disappear from the
chaotic sea when M is increased from 10 to 100. Here, we study this mechanism
in some more detail.

Figures 7.14 and 7.15 show Poincaré sections for M = 20 and 40. Locating
the fixed points in the centers of the large stability islands embedded in the
chaotic sea at u = 10 or 13.3, respectively, we readily identify them as m = 2
or m = 3 fixed points. The maximum values of the velocity accessible for
acceleration from small velocities is given by ub = 12.5 and 15.8, respectively.

The fixed points with lower m are located above these ub values and a
KAM curve separates these higher fixed points from the lower ones. It should
also be noted that the value of ub = 12.5 for M = 20 is smaller than that
that of ub = 12.9 for M = 10, despite the overall increase predicted in
(7.17) and shown in Fig. 7.13. This justifies a more detailed numerical study
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Applica5on	  to	  non-‐equilibrium	  heat	  engines.	  
(with	  P.	  Mehta,	  2013)	  	  

Standard heat engine: two reservoirs hot an cold 

More common heat engines: only one reservoir like atmosphere. 



Ergodic and non-ergodic single reservoir engines 
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FIG. 2: Comparison of Carnot engines and single-heat bath engines (A) Carnot engines function by using two heat reservoirs,
a hot reservoir that serves as a source of energy and a cold reservoir that serves as an entropy sink. (B) In the ergodic
regime, energy is injected into the engine. The gas within the engine quickly equilibrates with itself. The gas then performs
mechanical work and then relaxes to back to its initial state. (C). In the non-ergodic regime, the system thermalizes on time
scales much slower than time scales on which work is performed. (D). (blue) Maximum efficiency as a function of excess energy
(ratio of injected energy to initial energy), τ , for Carnot engine, ηc, (red) true thermodynamic bound, ηmt, (magenta) actual
efficiency of a non-ergodic engine which acts as an effective one-dimensional gas, η3 (see the text), and (green) actual efficiency
of three-dimensional ideal gas Lenoir engine, η5/3.

external parameter λ from λ1 to λ2. In this case,

ηmne =
T0

�
Sr(q||p(2))− Sr(p(1)||p(2))

�

∆Q
, (8)

where p(1) and p(2) stand for equilibrium Gibbs distributions corresponding to the couplings λ1 and λ2 at the beginning
and the end of the process I respectively. Since the second term is negative, changing the external parameter during
the first stage can only reduce the engine efficiency, though this may be desirable for other practical reasons unrelated
to thermodynamics.

A. Efficiency of Ergodic Engines

An important special case of our bound is the limit where the the relaxation of particles within the engine is
fast compared to the time scale on which the engine preforms work (see Figure 2). This is the normal situation in
mechanical engines based on compressing gases and liquids. In this case, after the injection of energy the particles
in the engine quickly thermalize and can be described by a gas at an effective temperature T (E) ≡ (dS/dE)−1 that
depends on the energy of the gas. It is shown in Sec. V, that in this case, (7) reduces to

ηmt = 1− T0∆SI

∆Q
=

1

∆Q

� E+∆Q

E
dE�

�
1− T0

T (E�)

�
. (9)

Ergodic engine 
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mechanical work and then relaxes to back to its initial state. (C). In the non-ergodic regime, the system thermalizes on time
scales much slower than time scales on which work is performed. (D). (blue) Maximum efficiency as a function of excess energy
(ratio of injected energy to initial energy), τ , for Carnot engine, ηc, (red) true thermodynamic bound, ηmt, (magenta) actual
efficiency of a non-ergodic engine which acts as an effective one-dimensional gas, η3 (see the text), and (green) actual efficiency
of three-dimensional ideal gas Lenoir engine, η5/3.

external parameter λ from λ1 to λ2. In this case,

ηmne =
T0

�
Sr(q||p(2))− Sr(p(1)||p(2))

�

∆Q
, (8)

where p(1) and p(2) stand for equilibrium Gibbs distributions corresponding to the couplings λ1 and λ2 at the beginning
and the end of the process I respectively. Since the second term is negative, changing the external parameter during
the first stage can only reduce the engine efficiency, though this may be desirable for other practical reasons unrelated
to thermodynamics.

A. Efficiency of Ergodic Engines

An important special case of our bound is the limit where the the relaxation of particles within the engine is
fast compared to the time scale on which the engine preforms work (see Figure 2). This is the normal situation in
mechanical engines based on compressing gases and liquids. In this case, after the injection of energy the particles
in the engine quickly thermalize and can be described by a gas at an effective temperature T (E) ≡ (dS/dE)−1 that
depends on the energy of the gas. It is shown in Sec. V, that in this case, (7) reduces to

ηmt = 1− T0∆SI

∆Q
=

1

∆Q

� E+∆Q

E
dE�

�
1− T0

T (E�)

�
. (9)

Non-ergodic engine 

What does second law tell us about maximum efficiency? 



Application to heat engines (with P. Mehta). 

Consider cyclic process. Small perturbation:  

Large perturbations. Can write inequalities 
3

Equilibrium (1) Nonequilibrium

I
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II
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FIG. 1: Generalized nonequilibrium quenches. A system parameterized by λ is coupled to an external bath at temperature T .
Initially, λ = λ(1) and the system is in equilibrium and is described by the Boltzmann distribution p(1)n . I, energy is suddenly
injected into the system while changing λ from λ(1) to λ(2). The system is now described by possibly nonthermal distribution,
qn. During stage II of the process, the system relaxes and equilibrates with the external bath after which it is described by a
Boltzmann distribution p(2)n with λ = λ(2).

The importance of relative entropy for describing relaxation of nonequilibrium distributions has been discussed in

previous for different setups both in quantum and classical systems10,12–15. Taken together, (4), (5), and (6) constitute

the nonequilibrium identities that will be exploited next to calculate bounds for the efficiency of engines that operate

with a single heat bath.

II. MAXIMUM EFFICIENCY OF ENGINES

Figure 2 summarizes the single-reservoir engines analyzed in this work and compares them with Carnot engines (1).

The engine is initially in equilibrium with the environment (bath) at a temperature T0 and the system is described

by the equilibrium probability distribution peq. In the first stage, excess energy, ∆Q, is suddenly deposited into the

system. This can be a pulse electromagnetic wave, burst of gasoline, current discharge etc. In second stage, the

engine converts the excess energy into work and reaches mechanical equilibrium with the bath . Finally, the system

relaxes back to the initial equilibrium state. Of course splitting the cycle into three stages is rather schematic but it

is convenient for the analysis of the work of the engine. Such an engine will only work if the relaxation time of the

system and environment is slow compared to the time required to perform the work. Otherwise the energy will be

simply dissipated to the environment and no work will be done (see discussion in Ref. [16]).

The initial injection of energy, ∆Q results in the corresponding entropy increase ∆SI = S(q)−S(peq) of the system,

where S is the diagonal entropy and q describes the system immediately after the addition of energy. Because by

assumption the environment is not affected during this initial stage, the total entropy change of the system and

environment is also just ∆SI . By the end of the cycle, the entropy of the system returns to its initial value. Thus,

from the second law of thermodynamics, the increase in entropy of the environment must be greater than equal to

∆SI . This implies that the minimal amount of heat that must be dissipated into the environment during the cycle is

T0∆SI . An engine will work optimally if no extra entropy beyond ∆SI is produced during the system-bath relaxation

since then all of the remaining energy injected into the system is converted to work. Thus, the maximal work that

can be performed by the engine during a cycle is Wm = ∆Q−T0∆SI . For a cyclic process such as the one considered

here, substituting (5) into the expression for Wm implies that the maximum efficiency of a nonequilibrium engine,

ηnme, is given by

ηmne =
Wm

∆Q
= 1− TO∆SI

∆Q
=

T0Sr(q||p)
∆Q

. (7)

Equation (7) is the main result of this paper. It relates the maximum efficiency of an engine to the relative entropy of

the intermediate nonequilibrium distribution and the equilibrium distribution. We next consider various limits and

applications of this result. We point that Eq. (5) also allows us to extend the maximum efficiency bound to a more

general class of engines, like Otto engines, where during the first stage of the cycle one simultaneously changes the

The second inequality implies that the free energy can only 
decrease during the relaxation; the first inequality is less known. 
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FIG. 1: Generalized nonequilibrium quenches. A system parameterized by λ is coupled to an external bath at temperature T .
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The importance of relative entropy for describing relaxation of nonequilibrium distributions has been discussed in

previous for different setups both in quantum and classical systems10,12–15. Taken together, (4), (5), and (6) constitute

the nonequilibrium identities that will be exploited next to calculate bounds for the efficiency of engines that operate

with a single heat bath.

II. MAXIMUM EFFICIENCY OF ENGINES

Figure 2 summarizes the single-reservoir engines analyzed in this work and compares them with Carnot engines (1).

The engine is initially in equilibrium with the environment (bath) at a temperature T0 and the system is described

by the equilibrium probability distribution peq. In the first stage, excess energy, ∆Q, is suddenly deposited into the

system. This can be a pulse electromagnetic wave, burst of gasoline, current discharge etc. In second stage, the

engine converts the excess energy into work and reaches mechanical equilibrium with the bath . Finally, the system

relaxes back to the initial equilibrium state. Of course splitting the cycle into three stages is rather schematic but it

is convenient for the analysis of the work of the engine. Such an engine will only work if the relaxation time of the

system and environment is slow compared to the time required to perform the work. Otherwise the energy will be

simply dissipated to the environment and no work will be done (see discussion in Ref. [16]).

The initial injection of energy, ∆Q results in the corresponding entropy increase ∆SI = S(q)−S(peq) of the system,

where S is the diagonal entropy and q describes the system immediately after the addition of energy. Because by

assumption the environment is not affected during this initial stage, the total entropy change of the system and

environment is also just ∆SI . By the end of the cycle, the entropy of the system returns to its initial value. Thus,

from the second law of thermodynamics, the increase in entropy of the environment must be greater than equal to

∆SI . This implies that the minimal amount of heat that must be dissipated into the environment during the cycle is

T0∆SI . An engine will work optimally if no extra entropy beyond ∆SI is produced during the system-bath relaxation

since then all of the remaining energy injected into the system is converted to work. Thus, the maximal work that

can be performed by the engine during a cycle is Wm = ∆Q−T0∆SI . For a cyclic process such as the one considered

here, substituting (5) into the expression for Wm implies that the maximum efficiency of a nonequilibrium engine,

ηnme, is given by

ηmne =
Wm

∆Q
= 1− TO∆SI

∆Q
=

T0Sr(q||p)
∆Q

. (7)

Equation (7) is the main result of this paper. It relates the maximum efficiency of an engine to the relative entropy of

the intermediate nonequilibrium distribution and the equilibrium distribution. We next consider various limits and

applications of this result. We point that Eq. (5) also allows us to extend the maximum efficiency bound to a more

general class of engines, like Otto engines, where during the first stage of the cycle one simultaneously changes the

Define microscopic heat 
and adiabatic work: 

Main results (also Deffner, Lutz, 2010). Proofs are straightforward calculus.  

All inequalities follow from non-negativity of the relative entropy. 



Ergodic engines. 

Assume that the energy is first deposited without change of 
external couplings. 
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the nonequilibrium identities that will be exploited next to calculate bounds for the efficiency of engines that operate

with a single heat bath.
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Figure 2 summarizes the single-reservoir engines analyzed in this work and compares them with Carnot engines (1).

The engine is initially in equilibrium with the environment (bath) at a temperature T0 and the system is described

by the equilibrium probability distribution peq. In the first stage, excess energy, ∆Q, is suddenly deposited into the

system. This can be a pulse electromagnetic wave, burst of gasoline, current discharge etc. In second stage, the

engine converts the excess energy into work and reaches mechanical equilibrium with the bath . Finally, the system

relaxes back to the initial equilibrium state. Of course splitting the cycle into three stages is rather schematic but it

is convenient for the analysis of the work of the engine. Such an engine will only work if the relaxation time of the

system and environment is slow compared to the time required to perform the work. Otherwise the energy will be

simply dissipated to the environment and no work will be done (see discussion in Ref. [16]).

The initial injection of energy, ∆Q results in the corresponding entropy increase ∆SI = S(q)−S(peq) of the system,

where S is the diagonal entropy and q describes the system immediately after the addition of energy. Because by

assumption the environment is not affected during this initial stage, the total entropy change of the system and

environment is also just ∆SI . By the end of the cycle, the entropy of the system returns to its initial value. Thus,

from the second law of thermodynamics, the increase in entropy of the environment must be greater than equal to

∆SI . This implies that the minimal amount of heat that must be dissipated into the environment during the cycle is

T0∆SI . An engine will work optimally if no extra entropy beyond ∆SI is produced during the system-bath relaxation

since then all of the remaining energy injected into the system is converted to work. Thus, the maximal work that

can be performed by the engine during a cycle is Wm = ∆Q−T0∆SI . For a cyclic process such as the one considered

here, substituting (5) into the expression for Wm implies that the maximum efficiency of a nonequilibrium engine,

ηnme, is given by
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= 1− TO∆SI
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=

T0Sr(q||p)
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. (7)

Equation (7) is the main result of this paper. It relates the maximum efficiency of an engine to the relative entropy of

the intermediate nonequilibrium distribution and the equilibrium distribution. We next consider various limits and

applications of this result. We point that Eq. (5) also allows us to extend the maximum efficiency bound to a more

general class of engines, like Otto engines, where during the first stage of the cycle one simultaneously changes the

Maximum efficiency is given 
by the relative entropy 



Magnetic gas engine. 

B 

I) Flip spins with 
probability 0<R<1. 

Ergodic engine: allow to thermalize with kinetic degrees of freedom and then 
push the piston.  

Non-ergodic engine: for inverted spin population (R>1/2) first perform the 
work on B by rotating around x-axis  
and then use the residual energy to push the piston. 



Ergodic engine: allow to thermalize with 
kinetic degrees of freedom and then push 
the piston.  

Non-ergodic engine: for inverted spin 
population (R>1/2) use macroscopic 
magnetic energy to extract work 

B 
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B. Magnetic Gas Engine

It is possible exceed the thermodynamic efficiency ηmt by considering more complicated engines with an additional

magnetic degree of freedom. Then as we show below one can create a non-ergodic engine with efficiency higher than

the thermodynamic bound and which can be arbitrarily close to 100%. Assume that we have a gas composed of N
atoms which have an additional magnetic degree of freedom like a spin. For simplicity we assume that the spin is

equal to 1/2, i.e. there are two magnetic states per each atom. As will be clear from the discussion, this assumption

is not needed for the main conclusion and the calculations can easily be generalized to the case where we consider

electric dipole moments or some other discrete or continuous internal degree of freedom instead of the spin.
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FIG. 3: Efficiency of magnetic engine with initial temperature equal to 10% of the Zeeman energy: T0 = 0.1hz as a function
of the spin flipping rate (see Sec. III). (black) ηmne, maximum non-ergodic efficiency, (red) ηmt, maximum ergodic efficiency,
(pink) ηmgne, efficiency of magnetic gas engine in non-ergodic regime, (green) η5/3, efficiency of ergodic ideal gas engine,(blue)
ηmge, efficiency of ergodic magnetic gas engine.

The Hamiltonian of the system is then

H0 =

�

j

mv2j
2

− hzσ
z
j , (25)

where σz
j are the Pauli matrices. To simplify notations we absorbed the Bohr magneton and the g factor into the

magnetic field. The first term in the Hamiltonian is just the usual kinetic energy and the second term is due to the

interaction of the spin degrees of freedom with an external field in the z-direction. Initially the system is in equilibrium

at a temperature T and a fixed magnetic field hz.

Now let us assume that via some external pulse we pump energy to the atoms by flipping their spins with some

probability. This can be done by a resonant laser pulse or by e.g. a Landau-Zener process where we adiabatically turn

on a large magnetic field in x-direction then suddenly switch its sign and slowly decrease it back to zero. Ideally this

process creates a perfectly inverse population of atoms (i.e. number of spin up and spin down particles is exchanged)

but in practice there will be always some imperfections. In general unitary process the new occupation numbers can

be obtained from a single parameter describing the flipping rate: R ∈ [0, 1], with

q↑ = p↑(1−R) + p↓R, q↓ = p↓(1−R) + p↑R (26)

Can beat maximum 
equilibrium efficiency 
by using non-ergodic 
setup. 
 
Possible applications in 
small systems? 


