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Science is a multi-scale system with emergent 
complexity.  A very practical question is How to 
measure scientific output and impact at various 

scales while accounting for systemic heterogeneity
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C O M M E N TA R Y “ ”
communications, social science, transla-
tional research, complex systems, technol-
ogy, business and management, research 
development, biomedical and life sciences, 
and physical sciences. The increasing inter-
est in professional gatherings centered on 
SciTS combined with recent progress in 
SciTS research and practice suggest that 
this community is coalescing into its own 
area of inquiry.

MULTI-LEVEL, MIXED-METHODS  
APPROACH FOR SCITS
The burgeoning field of SciTS can serve as a 
transformative melting pot of existing the-
ories and scientific techniques. We propose 
a multi-level, mixed-methods approach 
that can serve as a framework capable of 
organizing the diverse forms of inquiry and 
interlink research on individual scientists, 
teams, and populations of teams (Fig. 1).

Researchers working at different levels 
study different facets of the team science 
ecology, contribute different theories and 
techniques, and generate diverse findings. 
Each level might analyze different data; use 
multiple approaches, techniques, and visual 
representations; and provide different in-
sights. The combination of insights from all 
levels is considerably larger than their sum.

First, “macro-level” research examines 
teams at the population level and leads 
to insights about patterns of collabora-
tion that are broad in both their amount 
and their form, and that provide input on 
how to measure the growth and effect of 
knowledge. Macro-level studies might use 
terabytes of data that require large-scale 
computing infrastructures to process and 
communicate results. Recent work com-
bines computational, behavioral, organiza-
tional, and other methodological approach-
es to derive new insights at this broad level. 
Second, “meso-level” research increases 
our understanding at the group level, ex-
amining, for example, how interaction pat-
terns, the nature and amount of intra-team 
communications, and the composition of 
the team contribute to team process and 
outcomes. Such approaches can use net-
work analysis—the representation of data 
as nodes and their interlinkages—to study 
the evolution and impact of (social) net-
work structures at varied time scales or an-
alyze the specific quality and type of inter-
action via examination of communication 
context and patterns within teams (12). 
Third, “micro-level” research considers the 
individuals within the team; their training, 

dispositions, and education; and how such 
factors predispose them to particular types 
of collaboration. Micro-level studies can be 
quantitative and, if considering network 
analyses, involve many attributes for nodes 
and linkages. Other methods include indi-
vidual-level analysis of researchers partici-
pating within teams in which members are 
queried about their experiences as team 
members (13, 14).

Each of these levels addresses different 
issues that can be roughly classified into 

when (temporal), where (geospatial), what 
(topical), with whom (network), how (pro-
cess), and why (modeling) questions. Table 
1 presents key insights from studies apply-
ing these differing levels of analysis.

Each level of team science involves a set 
of challenges. Macro-level challenges ad-
dress organizational change and the exist-
ing culture that either stifles or encourages 
collaboration and interdisciplinarity. Chal-
lenges at the meso-level involve explicat-
ing the group dynamics emerging in team 
science as well as how to better understand 
and train teamwork in science teams. At 
the micro-level (the individual level), but 
tightly intertwined with the macro- and 
meso-level issues, are issues pertaining to 
how individual scientists acquire training 
in the scientific aspects of their work, in the 
process of innovation and discovery, and 
in communication and conflict resolution. 
Table 2 lists key challenges that need to be 
addressed within these three levels.

MOVING FORWARD WITH SCITS
We conclude with a description of the 
more general challenges and opportunities 
surrounding SciTS. First, research relevant 
to SciTS is conducted in a variety of set-
tings—academic and commercial, technol-
ogy development, and government sector. 
As such, the variety of research results pub-
lished, approaches and tools applied, and 
data produced is impressive. We identified 
more than 180 core papers and reports 
that convey key results in team science re-
search. Of those papers, 17 were published 
between 1944 and 2000, with the remain-
der being published since 2001, showcas-
ing a surge of activity on SciTS. Many of 
the reported studies use proprietary pub-
lication data sets (such as Web of Science 
by Thomson Reuters or Scopus by Elsevier) 
and most tools are commercial, making it 
difficult to replicate results. Data such as 
journal publications, conference proceed-
ings, and book chapters, but also patents 
and grant awards, are not comprehensive-
ly collected across the sciences. The data 
studied are typically published in English, 
although science is international and mul-
tilingual. Furthermore, the unification of 
data records (such as the identification of 
all papers by one scholar as stored in differ-
ent databases) and the interlinkage of col-
lections of data (such as the retrieval of all 
papers that were supported by one funding 
award) proves difficult because no unique 
identifiers are available.

Fig. 1. Multi-level, mixed-methods approach 
to SciTS. Team science can be studied at differ-
ent levels using different approaches. Together, 
the insights derived from these studies are worth 
more than the sum of their parts.   C
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The evolution of careers from a collaboration perspective

Paul Erdös (1913-1996): collaboration network at career age 10, 30, present day*



• Measuring the duration Lij of the tie 
(time b/w 1st and last copublication)

• Measuring the intensity Kij of the tie 
(# of copublications)

• Measuring the net scientific impact Cij 
of the tie (net citation tally for pubs. 
between i and j)

Sir Andre K. Geim
# publications, Ni (2012) = 217 

Si = 303 coauthors
The average copublication duration  
⟨Li⟩ = 2.1 years, ⟨Ki⟩ = 3.7 pubs.

Ego collaboration network: 
quantifying dynamic & heterogenous patterns 

of collaboration within scientific careers

How important are academic “Life partners”? 
- Division/Diversity of labor
- Breadth/Depth of expertise
- Risk/Reward sharing
- Ethics of credit distribution & free-riding

I, Grigorieva

K, Novoselov



H. Eugene Stanley 1 HAVLIN, S 223
2 BULDYREV, SV 203
3 AMARAL, LAN 66
4 SCIORTINO, F 62
5 IVANOV, PC 55
6 GOLDBERGER, AL 48
7 PENG, CK 48
8 GOPIKRISHNAN, P 41
9 PLEROU, V 41

10 STARR, FW 41
11 DOKHOLYAN, NV 33
12 PAUL, G 33
13 BUNDE, A 31
14 GIOVAMBATTISTA, N28
15 MAKSE, HA 27
16 CONIGLIO, A 26
17 URBANC, B 25
18 CRUZ, L 25
19 SCALA, A 24
20 LARRALDE, H 23
21 MANTEGNA, RN 23
22 POOLE, PH 22
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Ni (2010) = 909 publications 
Si = 541 coauthors

⟨Ki⟩ = 5.7 papers
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FIG. 4: Visualizing the broad variation in the collaboration

profile of individual researchers. For each discipline, we show
two profiles (A.K. Geim and J. L. Goldstein) whose top-cited work
was done with their most intense collaborator (corresponding to
K(1, Ti)), and two profiles (P. W. Anderson and E. H. Blackburn)
whose top-cited research was not performed with their most intense
collaborator. Each scientist shown is a Nobel Prize recipient. (A-D)
Growth in the cumulative number of copublications between central
scientist i and collaborator j. (E-H) Evolution of the rank-coauthor
profile K(r, t) over time. Shown are K(r, t = 5) (small grey dots),
K(r, t = 10) (medium gray dots), K(r, t = 20) (large black dots),
and K(r, Ti). Curves and dots are colored and have thickness and ra-
dius, respectively, proportional to log

˜

Ci,j , the logarithm of the total
citation share of coauthor j in profile i (see Eq. 7).

Figures 5(C,D) show the cumulative distribution P ( x) of
the normalized collaboration intensity x ⌘ K

ij

(Y )/hK
i

i, ag-
gregating the data across all scientists in each discipline. Each
P ( x) is in good agreement with the exponential distribution
E(x) = exp[�x] (with mean value hxi = 1 by construction),
with the major exception in the tail for P (� x) < 10

�3 which
is home to the extreme super tie outliers.

Using the exponential distribution as our baseline model for
the tie-strength distribution P (K

ij

) / exp(�K

ij

), we use
extreme statistics arguments to define the super-tie threshold
K

c

i

specific to each i. Our extreme statistic definition posits
that out of S

i

observations there should be just a single ob-
servation with K

ij

> K

c

i

. This definition is operationalized
by integrating the tail of P (K

ij

) according to the equation
1/S

i

=

P1
Kij>K

c
i
P (K

ij

) = exp(�K

c

i

) with the analytic
relation hK

ij

i =

P1
Kij=1 Kij

P (K

ij

) = e



/(e

 � 1) ⇡
1 + 1/ for small  ⌧ 1. In the large S

i

and N

i

limit the

FIG. 5: Universal patterns in the distribution of collabora-

tion tie-strength Kij . (A) Cumulative distribution of hKiji. The
Kolmogorov-Smirnov (K-S) test indicates that the distributions of
hKiji are significantly different in each pairwise comparison. Verti-
cal lines indicate median value. (B) Cumulative distribution of Gi.
Comparison of the biology data yields a K-S p = 0.14 meaning
that the data are likely drawn from the same distribution, whereas
the physics datasets indicate the contrary, with K-S p = 0.02. Ver-
tical lines indicate the mean value, with the physics profiles indi-
cating significantly higher Gi than the biology profiles. (C,D) For
each dataset, the cumulative distribution of normalized collaboration
intensity x ⌘ Kij(Y )/hKii shows excellent agreement with the ex-
ponential distribution E(x) = exp[�x] (gray line) over the bulk of
the distribution, with the only deviations in the tail regime represent-
ing less than 0.1% of the data.

extreme value threshold is

K

c

i

= (hK
i

i � 1) lnS

i

. (4)

Hence, in what follows, we label a coauthor with K

ij

> K

c

i

a
super tie, indicated by the dummy variable value R

j

⌘ 1. The
rest of the ties with K

ij

 K

c

i

have an indicator value R
j

⌘ 0.
S

R,i

denotes the number of coauthors within a profile with the
super-tie distinction, with the complement S!R,i

= S

i

� S

R,i

.
Figure S2 shows the distributions of S

R,i

within each dataset.
We use the Kolmogorov-Smirnov (K-S) test statistic to estab-
lish that the top and other researcher datasets are well-matched
with respect to the S

R,i

variable, since each paired K-S test
yields a p-value > 0.05 indicating that the data are likely
drawn from the same distribution. The mean and standard de-
viation of S

R,i

are 18± 13 (top biology), 16± 13 (other biol-
ogy), 7.3±4.8 (top physics), 6.8±5.1 (other physics). Figure
6(A) shows the super-tie coauthor fraction f

R,i

= S

R,i

/S

i

,
with mean value hf

R,i

i ⇡ 0.04 for each dataset setting the
characteristic frequency of super ties at 1 in 25 coauthors. The
K-S test confirms that the f

R,i

belong to the same distribution.

We also divide the total coauthor input KT

i

⌘
P

j

K

ij

=

K

T

R,i

+ K

T

!R,i

into the contribution from super-ties (KT

R,i

=P
j|Rj=1 Kij

) and the complementary contribution K

T

!R,i

=

K

T

i

�K

T

R,i

. The productivity premium is then defined as the

Mathematical definition for extreme outlier in 
an exponential distribution:  

“super tie” threshold Kic = (〈Ki〉-1) Ln(Si)

Citations from Pubs 
w/ HE Stanley
[log scale]



Fixed-effects model - measures each researcher against his/her baseline zi,p

Unit of analysis : publication p 
Hierarchical “fixed effects” model : 473 researchers indexed by i
Dependent variable = zi,p = the citation impact ci,p,y of publication p normalized to 
baseline citation levels defined by other papers published in the same year y.

This measure maps ci,p,y to a stable 
normal distribution N(0,1) >> appropriate 
for comparing citation impact across time. 
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Apostle effect: citation model (z
i,p

)
Dataset A ln a

p

R

p

t

p

lnN

i

(t

p

) lnS

i

(t

p

) N

obs.

Adj. R2

All 373 0.251± 0.024 0.205± 0.024 �0.062± 0.004 0.075± 0.066 0.050± 0.072 65513 0.265
p-value 0.000 0.000 0.000 0.256 0.491

Biology (top) 100 0.269± 0.041 0.203± 0.034 �0.033± 0.007 �0.104± 0.106 0.050± 0.114 21398 0.113
p-value 0.000 0.000 0.000 0.327 0.661

Biology (other) 52 0.579± 0.056 0.127± 0.071 �0.037± 0.016 �0.192± 0.103 0.230± 0.106 4303 0.201
p-value 0.000 0.079 0.023 0.069 0.034

Physics (top) 100 0.121± 0.043 0.239± 0.044 �0.072± 0.007 0.277± 0.120 �0.115± 0.137 21819 0.188
p-value 0.006 0.000 0.000 0.022 0.402

Physics (other) 121 0.253± 0.041 0.243± 0.049 �0.061± 0.008 0.073± 0.092 0.016± 0.101 17993 0.187
p-value 0.000 0.000 0.000 0.427 0.874

TABLE II: Parameter estimates for the fixed-effects regression model in Eq. (12) calculated with STATA using robust standard errors
(“vce(robust)”) to implement the Huber/White/sandwich method. Values significant at the p < 0.01 level are indicated in boldface. Only
papers with yp  2002 were analyzed so that the dependent variable zi,p has time to become a robust measure of relative citation impact.

the parameters of the citation impact model,

z

i,p,y

= �

i,0 + �

a

ln a

i,p

+ �

R

R

i,p

+ �

t

t

i,p

+

�

N

lnN

i

(t

p

) + �

S

lnS

i

(t

p

) + ✏

i,y

, (12)

to quantify the effect of super ties on the long-term citation
impact of individual papers. This fixed-effects model ac-
counts for the unobserved heterogeneity in time-independent
variables related to each researcher profile, assuming that the
systemic citation processes are the same for all researchers.
Furthermore, we use robust standard errors to account for pos-
sible heteroskedasticity or within-panel serial correlation in
the idiosyncratic error term ✏

i,y

. Table II shows the parameter
estimates calculated using the “xtreg , vce(robust) fe” function
in STATA11 for each dataset.

The regression results indicate that the change in R

p

from
0 to 1 provides a significant citation impact boost in the long
term. This ‘apostle effect’ – the value added by a few ex-
tremely strong colleagues who act as messengers and repre-
sentatives for the knowledge contained in p – is quite robust
across each dataset analyzed, except for the Biology (other)
dataset where it was not observed to be significant at the
p = 0.05 level. Remarkably, in the datasets where �

R

was
statistically significant, the magnitude of the effect was com-
parable to effect of increasing a

p

by an exponential factor.
Interestingly, the career age parameter was negative (�

t

<

0) and statistically significant at the p  0.023 level in each
regression, meaning that researchers’ normalized citation im-
pact decreases across the career, possibly due to finite career
and knowledge life-cycles, and possibly the role of confirma-
tion bias in the career growth process. This finding is con-
sistent with a recent analysis of several hundred thousand re-
searcher profiles extracted from high-impact journals which
also shows a negative citation impact trend across the career
[33]. Neither the prestige (�

N

) nor collaboration radius (�
S

)
parameters were statistically significant in explaining z

i,p,y

.

Discussion

The characteristic collaboration size in science has been
steadily increasing over the last century [5, 7, 26] with con-
sequences at every level of science, from education and aca-

demic careers to universities and funding bodies [8]. Un-
derstanding how this team-oriented paradigm shift affects the
sustainability of careers, the efficiency of the science system,
and the rate of novel knowledge production, will be of great
important to a broad range of scientific actors, from scientists
to science policy makers.

Collaborative activities are also fundamental to the career
growth process, especially in disciplines where research ac-
tivities require a division of labor. This is especially true in
biology and physics research, where computational, theoret-
ical, and experimental methods provide complementary ap-
proaches to a wide array of problems. As a result, a research
group leader is likely to find the assembly of team – one which
is composed of individuals with diverse, yet complementary,
skill sets, spanning time, age-groups, and personalities– a
daunting task, especially when under constraints to optimize
access to valuable facilities, hardware, and software, and fi-
nancial resources. Many emerging online social network plat-
forms provide recommendation services that attempt to ad-
dress this problem by suggesting potentially advantageous
collaboration matches. These considerations underscore why
it is important to understand the role of local network struc-
tures. Understanding the redundancies in the local network
[24] and the interaction capacity of team members [22] pro-
vides the potential to act on this information and gain a strate-
gic competitive advantage by optimizing group intelligence
[23]. And beyond the performance of the team in the present,
social ties represent social capital investments which can have
important implications on information spreading [16], career
paths, and access to key strategic resources at future times.

To this end, we have dissected the career profile of a large
number of scientists in order to gain new insights into the dy-
namical aspects of collaboration, assuming the ‘ego’ perspec-
tive so that a career is the unit of analysis. As such, the col-
laborations, publications, and impact scores fit together into
a temporal framework ideal for pooled, cross-sectional and
longitudinal modeling. We began by considering the unavoid-
ably complex role played time. By way of example, the ar-
rival patterns of new collaborations in A. Geim’s profile (see
Fig. 1) appear to be subject to bursts, and the durations of in-
dividual collaborations appear to span the entire range, from
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papers with yp  2002 were analyzed so that the dependent variable zi,p has time to become a robust measure of relative citation impact.
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to quantify the effect of super ties on the long-term citation
impact of individual papers. This fixed-effects model ac-
counts for the unobserved heterogeneity in time-independent
variables related to each researcher profile, assuming that the
systemic citation processes are the same for all researchers.
Furthermore, we use robust standard errors to account for pos-
sible heteroskedasticity or within-panel serial correlation in
the idiosyncratic error term ✏

i,y

. Table II shows the parameter
estimates calculated using the “xtreg , vce(robust) fe” function
in STATA11 for each dataset.

The regression results indicate that the change in R

p

from
0 to 1 provides a significant citation impact boost in the long
term. This ‘apostle effect’ – the value added by a few ex-
tremely strong colleagues who act as messengers and repre-
sentatives for the knowledge contained in p – is quite robust
across each dataset analyzed, except for the Biology (other)
dataset where it was not observed to be significant at the
p = 0.05 level. Remarkably, in the datasets where �

R

was
statistically significant, the magnitude of the effect was com-
parable to effect of increasing a

p

by an exponential factor.
Interestingly, the career age parameter was negative (�

t

<

0) and statistically significant at the p  0.023 level in each
regression, meaning that researchers’ normalized citation im-
pact decreases across the career, possibly due to finite career
and knowledge life-cycles, and possibly the role of confirma-
tion bias in the career growth process. This finding is con-
sistent with a recent analysis of several hundred thousand re-
searcher profiles extracted from high-impact journals which
also shows a negative citation impact trend across the career
[33]. Neither the prestige (�

N

) nor collaboration radius (�
S

)
parameters were statistically significant in explaining z

i,p,y

.

Discussion

The characteristic collaboration size in science has been
steadily increasing over the last century [5, 7, 26] with con-
sequences at every level of science, from education and aca-

demic careers to universities and funding bodies [8]. Un-
derstanding how this team-oriented paradigm shift affects the
sustainability of careers, the efficiency of the science system,
and the rate of novel knowledge production, will be of great
important to a broad range of scientific actors, from scientists
to science policy makers.

Collaborative activities are also fundamental to the career
growth process, especially in disciplines where research ac-
tivities require a division of labor. This is especially true in
biology and physics research, where computational, theoret-
ical, and experimental methods provide complementary ap-
proaches to a wide array of problems. As a result, a research
group leader is likely to find the assembly of team – one which
is composed of individuals with diverse, yet complementary,
skill sets, spanning time, age-groups, and personalities– a
daunting task, especially when under constraints to optimize
access to valuable facilities, hardware, and software, and fi-
nancial resources. Many emerging online social network plat-
forms provide recommendation services that attempt to ad-
dress this problem by suggesting potentially advantageous
collaboration matches. These considerations underscore why
it is important to understand the role of local network struc-
tures. Understanding the redundancies in the local network
[24] and the interaction capacity of team members [22] pro-
vides the potential to act on this information and gain a strate-
gic competitive advantage by optimizing group intelligence
[23]. And beyond the performance of the team in the present,
social ties represent social capital investments which can have
important implications on information spreading [16], career
paths, and access to key strategic resources at future times.

To this end, we have dissected the career profile of a large
number of scientists in order to gain new insights into the dy-
namical aspects of collaboration, assuming the ‘ego’ perspec-
tive so that a career is the unit of analysis. As such, the col-
laborations, publications, and impact scores fit together into
a temporal framework ideal for pooled, cross-sectional and
longitudinal modeling. We began by considering the unavoid-
ably complex role played time. By way of example, the ar-
rival patterns of new collaborations in A. Geim’s profile (see
Fig. 1) appear to be subject to bursts, and the durations of in-
dividual collaborations appear to span the entire range, from
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counts for the unobserved heterogeneity in time-independent
variables related to each researcher profile, assuming that the
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gic competitive advantage by optimizing group intelligence
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social ties represent social capital investments which can have
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paths, and access to key strategic resources at future times.
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number of scientists in order to gain new insights into the dy-
namical aspects of collaboration, assuming the ‘ego’ perspec-
tive so that a career is the unit of analysis. As such, the col-
laborations, publications, and impact scores fit together into
a temporal framework ideal for pooled, cross-sectional and
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estimates calculated using the “xtreg , vce(robust) fe” function
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and the rate of novel knowledge production, will be of great
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growth process, especially in disciplines where research ac-
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proaches to a wide array of problems. As a result, a research
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forms provide recommendation services that attempt to ad-
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[24] and the interaction capacity of team members [22] pro-
vides the potential to act on this information and gain a strate-
gic competitive advantage by optimizing group intelligence
[23]. And beyond the performance of the team in the present,
social ties represent social capital investments which can have
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paths, and access to key strategic resources at future times.

To this end, we have dissected the career profile of a large
number of scientists in order to gain new insights into the dy-
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tive so that a career is the unit of analysis. As such, the col-
laborations, publications, and impact scores fit together into
a temporal framework ideal for pooled, cross-sectional and
longitudinal modeling. We began by considering the unavoid-
ably complex role played time. By way of example, the ar-
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Fig. 1) appear to be subject to bursts, and the durations of in-
dividual collaborations appear to span the entire range, from

publication year of p, measured as a career age, accounting for 
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Do super-ties correlate with higher citations?
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• 1 in 25 collaborators 

qualify as a super-tie
• 1 in 2 publications 
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���

���

Comparing publications with and without a super-tie — within a researcher’s publication 
portfolio (i.e. fixed effects) — compared to the author’s publications with R=0 (the 
counterfactual), tho publications with R=1 have 0.2 𝜎z higher citations. 
In terms of real citations, this citation boost corresponds to a roughly 20% citation increase 
at the publication level!

Emphasizes who in addition to how many coauthors

Plausible explanations: compounding self-citations, reputation arising from larger formal and 
informal social network; added value of skill complementarity, trust, conviction, commitment, 
experience, collocation, moral support, risk-profit sharing

The significant + value of super-ties
Placebo Model: 10,000 ShufflesEmpirical Model 
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to quantify the effect of super ties on the long-term citation
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counts for the unobserved heterogeneity in time-independent
variables related to each researcher profile, assuming that the
systemic citation processes are the same for all researchers.
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. Table II shows the parameter
estimates calculated using the “xtreg , vce(robust) fe” function
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)
parameters were statistically significant in explaining z

i,p,y

.

Discussion

The characteristic collaboration size in science has been
steadily increasing over the last century [5, 7, 26] with con-
sequences at every level of science, from education and aca-

demic careers to universities and funding bodies [8]. Un-
derstanding how this team-oriented paradigm shift affects the
sustainability of careers, the efficiency of the science system,
and the rate of novel knowledge production, will be of great
important to a broad range of scientific actors, from scientists
to science policy makers.

Collaborative activities are also fundamental to the career
growth process, especially in disciplines where research ac-
tivities require a division of labor. This is especially true in
biology and physics research, where computational, theoret-
ical, and experimental methods provide complementary ap-
proaches to a wide array of problems. As a result, a research
group leader is likely to find the assembly of team – one which
is composed of individuals with diverse, yet complementary,
skill sets, spanning time, age-groups, and personalities– a
daunting task, especially when under constraints to optimize
access to valuable facilities, hardware, and software, and fi-
nancial resources. Many emerging online social network plat-
forms provide recommendation services that attempt to ad-
dress this problem by suggesting potentially advantageous
collaboration matches. These considerations underscore why
it is important to understand the role of local network struc-
tures. Understanding the redundancies in the local network
[24] and the interaction capacity of team members [22] pro-
vides the potential to act on this information and gain a strate-
gic competitive advantage by optimizing group intelligence
[23]. And beyond the performance of the team in the present,
social ties represent social capital investments which can have
important implications on information spreading [16], career
paths, and access to key strategic resources at future times.

To this end, we have dissected the career profile of a large
number of scientists in order to gain new insights into the dy-
namical aspects of collaboration, assuming the ‘ego’ perspec-
tive so that a career is the unit of analysis. As such, the col-
laborations, publications, and impact scores fit together into
a temporal framework ideal for pooled, cross-sectional and
longitudinal modeling. We began by considering the unavoid-
ably complex role played time. By way of example, the ar-
rival patterns of new collaborations in A. Geim’s profile (see
Fig. 1) appear to be subject to bursts, and the durations of in-
dividual collaborations appear to span the entire range, from
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. Table II shows the parameter
estimates calculated using the “xtreg , vce(robust) fe” function
in STATA11 for each dataset.
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sequences at every level of science, from education and aca-

demic careers to universities and funding bodies [8]. Un-
derstanding how this team-oriented paradigm shift affects the
sustainability of careers, the efficiency of the science system,
and the rate of novel knowledge production, will be of great
important to a broad range of scientific actors, from scientists
to science policy makers.

Collaborative activities are also fundamental to the career
growth process, especially in disciplines where research ac-
tivities require a division of labor. This is especially true in
biology and physics research, where computational, theoret-
ical, and experimental methods provide complementary ap-
proaches to a wide array of problems. As a result, a research
group leader is likely to find the assembly of team – one which
is composed of individuals with diverse, yet complementary,
skill sets, spanning time, age-groups, and personalities– a
daunting task, especially when under constraints to optimize
access to valuable facilities, hardware, and software, and fi-
nancial resources. Many emerging online social network plat-
forms provide recommendation services that attempt to ad-
dress this problem by suggesting potentially advantageous
collaboration matches. These considerations underscore why
it is important to understand the role of local network struc-
tures. Understanding the redundancies in the local network
[24] and the interaction capacity of team members [22] pro-
vides the potential to act on this information and gain a strate-
gic competitive advantage by optimizing group intelligence
[23]. And beyond the performance of the team in the present,
social ties represent social capital investments which can have
important implications on information spreading [16], career
paths, and access to key strategic resources at future times.

To this end, we have dissected the career profile of a large
number of scientists in order to gain new insights into the dy-
namical aspects of collaboration, assuming the ‘ego’ perspec-
tive so that a career is the unit of analysis. As such, the col-
laborations, publications, and impact scores fit together into
a temporal framework ideal for pooled, cross-sectional and
longitudinal modeling. We began by considering the unavoid-
ably complex role played time. By way of example, the ar-
rival patterns of new collaborations in A. Geim’s profile (see
Fig. 1) appear to be subject to bursts, and the durations of in-
dividual collaborations appear to span the entire range, from

Quantifying the impact of weak, strong, and super ties in scientific careers. PNAS, 2015

approximately log-normally distributed in the right tail (7). The
second explanatory variable is the dummy variable Ri,p, which
takes the value 1 if p includes a super tie and the value 0 other-
wise. Remarkably, the percentage of publications including a
super tie is rather close to parity for three of the four datasets:
54% (Top biology), 45% (Top physics), 74% (Other biology), and
54% (Other physics). The third age variable, ti,p, is the career age
of i at the time of publication. The fourth variable, NiðtpÞ, is the
total number of publications up to year ti,p, which is a non-cita-
tion-based measure of the central author’s reputation, visibility,
and experience within the scientific community. The final ex-
planatory variable is the collaboration radius, SiðtpÞ, which is the
cumulative number of distinct coauthors up to ti,p, representing
the central author’s access to collaborative resources, as well as
an estimate of the number of researchers in the local community
who, having published with i, may preferentially cite i. Hence, by
including NiðtpÞ and SiðtpÞ, we control for two dimensions of cu-
mulative advantage that could potentially affect a publication’s
citation tally.
We then implement a fixed-effects regression to estimate the

parameters of the citation impact model,

zi,p= βi,0+ βa ln ai,p+ βRRi,p+ βtti,p+ βN lnNi
!
tp
"
+ βS ln Si

!
tp
"
+ ei,p,

[8]

using the Huber/White/sandwich method to calculate robust SE
estimates that account for heteroskedasticity and within-panel
serial correlation in the idiosyncratic error term ei,p. We excluded
publications with yp > 2003, and, in order that the Top and Other
datasets are well balanced, we also excluded the Other re-
searchers with less than 43 (biology) and 33 (physics) publications
(observations) as of 2003. Table 2 lists the (standardized) parameter
estimates. We provide the data used for both regression models
in Dataset S1.
We estimated βR = 0.20± 0.02 (p≤ 0.026 level in each re-

gression), indicating a significant relative citation increase when a
publication is coauthored with at least one super tie. The stan-
dardized βa and βR coefficients are roughly equal, meaning that
increasing ap from 1 (a solo author publication) to e≈ 3 coauthors
produces roughly the same effect as a change in Rp from 0 to 1.
Thus, although larger team size correlates with more citations (4),
the relative strength of βR stresses the importance of who in ad-
dition to how many.
Interestingly, the career age parameter βt =−0.061± 0.004 is

negative (significant at the p≤ 0.04 level in each regression),
meaning that researchers’ normalized citation impact decreases
across the career, possibly due to finite career and knowledge life
cycles. This finding is consistent with a large-scale analysis of
researcher histories within high-impact journals, which also shows
a negative trend in the citation impact across a career (31). Neither
the reputation (βN) nor collaboration radius (βS) parameters were
consistently statistically significant in explaining zi,p,y, likely because
they are highly correlated with tp for established researchers.
Modifications to consider in followup analysis are controls for the
impact factor of the journal publishing p, the absolute year y to
account for shifts in citation patterns in the post-Internet era, and
removing self-citations from super ties. Unfortunately, this last task
requires a substantial increase in data coverage, far beyond the
relatively small amount needed to construct individual ego network
collaboration profiles.
We develop three additional descriptive methods in SI Text to

compare the subset of publications with at least one super tie to
the complementary subset of publications without one. These in-
vestigations provide further evidence for the apostle effect. First,
we defined an aggregate career measure, the productivity premium
pN,i (see Eq. S1), which measures the average Kij value among the
super ties relative to all of the other collaborators. Second, we

defined a similar career measure, the citation premium pC,i (see
Eq. S5), which quantifies the average citation impact attributable
to super ties relative to all of the other collaborators.
Independent of dataset, we observed rather substantial pre-

mium values. For example, the productivity premium has an av-
erage value h pNi≈ 8, meaning that on a per-collaborator basis,
productivity with super ties is roughly 8 times higher than with the
remaining collaborators. Similarly, the citation premium pC,i
is also significantly right-skewed, with average value hpCi≈ 14,
meaning that net citation impact per super tie is 14 times larger
than the net citation impact from all other collaborators. We
emphasize that pC,i appropriately accounts for team size by using
an equal partitioning of citation credit across the ap coauthors,
remedying the multiplicity problem concerning citation credit.
Third, we calculated an additional estimation of the publica-

tion-level citation advantage due to super ties (Fig. S6). For both
biology and physics, we found that the publications with super ties
receive roughly 17% more citations than their counterparts. In
basic terms, this means that the average publication with a super
tie has 21 more citations in biology and 8 more citations in physics
than the average publication without a super tie. This is not a tail
effect, because the citation boost factor αR = 1.17 applies a mul-
tiplicative shift to the entire citation distribution, Pð~cjRp = 1Þ≈
PðαR~cjRp = 0Þ, thereby impacting publications above and below
the average.

Discussion
The characteristic collaboration size in science has been steadily
increasing over the last century (4, 7, 21), with consequences at
every level of science, from education and academic careers to
universities and funding bodies (8). Understanding how this
team-oriented paradigm shift affects the sustainability of careers,
the efficiency of the science system, and society’s capacity to
overcome grand challenges will be of great importance to a broad
range of scientific actors, from scientists to science policy makers.
Collaborative activities are also fundamental to the career

growth process, especially in disciplines where research activities
require a division of labor. This is especially true in biology and
physics research, where computational, theoretical, and experi-
mental methods provide complementary approaches to a wide
array of problems. As a result, a contemporary research group
leader is likely to find the assembly of team—one that is com-
posed of individuals with diverse yet complementary skill sets—a
daunting task, especially when under constraints to optimize
financial resources, valuable facilities, and other material re-
sources. Online social network platforms, such as VIVO (www.
vivoweb.org/) and Profiles RNS (profiles.catalyst.harvard.edu/),
which serve as match-making recommendation systems, have
been developed to facilitate the challenges of team assembly.
Our analysis indicates that 2/3 of the collaborations analyzed

here are weak. Nevertheless, the remaining strong ties represent
social capital investments that can indeed have important long-
term implications, for example, on information spreading (17),
career paths (36), and access to key strategic resources (37). In
the private sector, strong ties facilitate access to new growth op-
portunities, playing an important role in sustaining the competi-
tiveness of firms and employees (38). These considerations further
identify why it is important for researchers to understand the op-
portunities that exist within their local network. Understanding the
redundancies in the local network (39) and the interaction capacity
of team members (25) can help a group leader optimize group
intelligence (26) and monitor team efficiency (24), thereby con-
stituting a source of strategic competitive advantage.
In summary, we developed methods to better understand the

diversity of collaboration strengths. We focused on the career as
the unit of analysis, operationalized by using an ego perspective
so that collaborations, publications, and impact scores fit to-
gether into a temporal framework ideal for cross-sectional and
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the central author’s access to collaborative resources, as well as
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Thus, although larger team size correlates with more citations (4),
the relative strength of βR stresses the importance of who in ad-
dition to how many.
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meaning that researchers’ normalized citation impact decreases
across the career, possibly due to finite career and knowledge life
cycles. This finding is consistent with a large-scale analysis of
researcher histories within high-impact journals, which also shows
a negative trend in the citation impact across a career (31). Neither
the reputation (βN) nor collaboration radius (βS) parameters were
consistently statistically significant in explaining zi,p,y, likely because
they are highly correlated with tp for established researchers.
Modifications to consider in followup analysis are controls for the
impact factor of the journal publishing p, the absolute year y to
account for shifts in citation patterns in the post-Internet era, and
removing self-citations from super ties. Unfortunately, this last task
requires a substantial increase in data coverage, far beyond the
relatively small amount needed to construct individual ego network
collaboration profiles.
We develop three additional descriptive methods in SI Text to

compare the subset of publications with at least one super tie to
the complementary subset of publications without one. These in-
vestigations provide further evidence for the apostle effect. First,
we defined an aggregate career measure, the productivity premium
pN,i (see Eq. S1), which measures the average Kij value among the
super ties relative to all of the other collaborators. Second, we

defined a similar career measure, the citation premium pC,i (see
Eq. S5), which quantifies the average citation impact attributable
to super ties relative to all of the other collaborators.
Independent of dataset, we observed rather substantial pre-

mium values. For example, the productivity premium has an av-
erage value h pNi≈ 8, meaning that on a per-collaborator basis,
productivity with super ties is roughly 8 times higher than with the
remaining collaborators. Similarly, the citation premium pC,i
is also significantly right-skewed, with average value hpCi≈ 14,
meaning that net citation impact per super tie is 14 times larger
than the net citation impact from all other collaborators. We
emphasize that pC,i appropriately accounts for team size by using
an equal partitioning of citation credit across the ap coauthors,
remedying the multiplicity problem concerning citation credit.
Third, we calculated an additional estimation of the publica-

tion-level citation advantage due to super ties (Fig. S6). For both
biology and physics, we found that the publications with super ties
receive roughly 17% more citations than their counterparts. In
basic terms, this means that the average publication with a super
tie has 21 more citations in biology and 8 more citations in physics
than the average publication without a super tie. This is not a tail
effect, because the citation boost factor αR = 1.17 applies a mul-
tiplicative shift to the entire citation distribution, Pð~cjRp = 1Þ≈
PðαR~cjRp = 0Þ, thereby impacting publications above and below
the average.
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team-oriented paradigm shift affects the sustainability of careers,
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require a division of labor. This is especially true in biology and
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mental methods provide complementary approaches to a wide
array of problems. As a result, a contemporary research group
leader is likely to find the assembly of team—one that is com-
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daunting task, especially when under constraints to optimize
financial resources, valuable facilities, and other material re-
sources. Online social network platforms, such as VIVO (www.
vivoweb.org/) and Profiles RNS (profiles.catalyst.harvard.edu/),
which serve as match-making recommendation systems, have
been developed to facilitate the challenges of team assembly.
Our analysis indicates that 2/3 of the collaborations analyzed

here are weak. Nevertheless, the remaining strong ties represent
social capital investments that can indeed have important long-
term implications, for example, on information spreading (17),
career paths (36), and access to key strategic resources (37). In
the private sector, strong ties facilitate access to new growth op-
portunities, playing an important role in sustaining the competi-
tiveness of firms and employees (38). These considerations further
identify why it is important for researchers to understand the op-
portunities that exist within their local network. Understanding the
redundancies in the local network (39) and the interaction capacity
of team members (25) can help a group leader optimize group
intelligence (26) and monitor team efficiency (24), thereby con-
stituting a source of strategic competitive advantage.
In summary, we developed methods to better understand the

diversity of collaboration strengths. We focused on the career as
the unit of analysis, operationalized by using an ego perspective
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Is Europe Evolving Toward an Integrated Research Area? 

How does this question manifest in the cross-
border mobility/collaboration activities in Europe?

Geopolitical borders EU borders



Thus, EU initiatives aimed at integrating the “European 
Research Area” (ERA) serves as a “treatment”

EU Horizon 2020 Impact Assessment: one of the 5 key objectives is to  
“encourage cross-border training and career development, and supporting 

research infrastructures”

The EU spends ~ 10% of government level R&D budget on programs with 
explicit cross-border criteria, compared to < 1% for non-EU countries

Quantifying the impact of EU policies on cross-border R&D integration

EU 
countries

non-EU OECD 
countries

Treatment Group Control Group



4 patent networks
(i) co-inventor
(ii) co-applicant
(iii) citations
(iv) mobility

1 publication network
(v) co-author

Geocoded data
(a) 2.4 million patents 
filed in the EPO and 
(b) 0.26 million 
scientific publications

Complex networks approach

Methods and Data

｛Nmn(t)

｛ Nn(t)

｛Nm(t)

Country m Country n
NUTS3 region in country m

NUTS3 region in country n
cross-border link

NUTS3 
regions ≈ 
province/
district/
county

size



Intra-country -vs- Cross-border Networks

Methods and Data
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EU 
countries

non-EU 
countries

country ncountry m country m country n 4 patent networks
(i) co-inventor
(ii) co-applicant
(iii) citations
(iv) mobility

1 publication network
(v) co-author

Geocoded data
(a) 2.4 million patents 
filed in the EPO and 
(b) 0.26 million  
scientific publications



Comparing the community structure of the 2009 
EU-15 and US coinventor networks 

co-inventor communities
USA
San Francisco
New York
Boston
Cincinnati
Philadelphia
Minneapolis
Chicago
Los Angeles
Houston
Cleveland
Raleigh
New Haven
Albany
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EU
Mannheim
Dusseldorf
Paris
Hamburg
Stuttgart
Eindhoven
Munich
Cambridge
Copenhagen
Nuremberg
Milan
Vienna
Madrid

�
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�

long-range
collaborations

co-inventor communitiesA

Q1: Are the scientific borders in the EU 
any different than the geo-political 
borders?

Q2: has there been an intensification
in cross-border R&D activity in Europe vis-
a-vis other OECD countries (control group 
used to quantify the “treatment effect”) 

Community structure of the 
2009 EU-15 and USA 
coinventor network. 
Communities are labeled by 
their most-central region and 
were generated using the 
Louvain algorithm —
communities are sub-sets of 
nodes (NUTS3 regions) more 
strongly linked to one another 
than to nodes outside.



EU countries

non-EU countries

ERA initiatives 
(“treatment”)
 begin ≈ 2000

1990 2000 t

!1

!2

�!3

Null hypothesis H0(t | t0): With respect to base year t0, 

there is relative increase in # of links Lt in year t
τt > 0  : accept H0(t | t0)
τt ≤ 0 : reject H0(t | t0) 

�
!1+!2+!3

Treatment effect
τt

Tr
ea

tm
en

t

t0

Q: do “treated” EU countries have different cross-border collaboration 
patterns than “untreated” non-EU countries above global trends

Quantifying the impact of EU policies on cross-border R&D integration

EU 
countries

non-EU 
countries

Econometric ZINB model controlling for:  
borders, distance, technological 

distance, neighbors, EU vs non-EU



Q2: Is there any positive  trend in the rate of cross-border 
activity within the EU — relative to the world?

Causal (DiDiD) model: We measured the effect of EU institutional 
integration policies by quantifying the relative rate of cross-border 
links — comparing a) within versus across-borders links, b) EU vs 
Non-EU links, c) and across time.

]

A
dd

iti
on

al
 li

nk
s 

pe
r r

eg
io

n 
pa

ir
(a

ris
in

g 
fr

om
 E

U
-s

pe
ci

fic
 fa

ct
or

s)
C

o-
in

ve
nt

or

C
o-

ap
pl

ic
an

t
M

ob
ili

ty

C
ita

tio
ns

pu
bl
ic
at
io
ns

pa
te
nt
s

C
oa

ut
ho

r

EU integration effect

 C
ha

ng
e 

in
 e

xp
ec

te
d 

nu
m

be
r o

f l
in

ks
re

la
tiv

e 
to

 b
as

e 
ye

ar
 2

00
4 

-0.15
0

0.15

-0.014
0

0.014

-0.2
0

0.2

-0.5
0
0.5
1

1985 1990 1995 2000 2005 2010
0

0.05
0.1
0.15

]
A

dd
iti

on
al

 li
nk

s 
pe

r r
eg

io
n 

pa
ir

(a
ris

in
g 

fr
om

 E
U

-s
pe

ci
fic

 fa
ct

or
s)

C
o-

in
ve

nt
or

C
o-

ap
pl

ic
an

t
M

ob
ili

ty

C
ita

tio
ns

pu
bl
ic
at
io
ns

pa
te
nt
s

C
oa

ut
ho

r

EU integration effect

 C
ha

ng
e 

in
 e

xp
ec

te
d 

nu
m

be
r o

f l
in

ks
re

la
tiv

e 
to

 b
as

e 
ye

ar
 2

00
4 

-0.15
0

0.15

-0.014
0

0.014

-0.2
0

0.2

-0.5
0
0.5
1

1985 1990 1995 2000 2005 2010
0

0.05
0.1
0.15

Period of 
positive 
relative
integration

Period of 
stagnationWhy stagnation since 2004???

EU
 T

re
at

m
en

t e
ffe

ct
ch

an
ge

 in
 c

ro
ss

-
bo

rd
er

 li
nk

s 
du

e 
to

 
EU

-s
pe

ci
fic

 fa
ct

or
s

Patent co-inventor network: 
Additional cross-border links per region pair

Is Europe Evolving Toward an Integrated Research Area? 
Science, 2014
The evolution of networks of innovators within and across 
borders: Evidence from patent data Research Policy, 2015



Divergence in Eastern - Western integration 
within the global science system

6

their EU membership status over 1997–2012 (members of
country groups gEU,i = 1 and 4), and the treated group are
those that did change their EU membership status over 1997–
2012 (members of country groups gEU,i = 2 and 3). We esti-

mated the parameters of the following linear panel data model
with country fixed-effects, which controls for scientific pro-
ductivity and impact, R&D investment, high-skilled mobility,
total migration in particular, and research subject area:

fs
i,t = �tt+ �TTEU,i,t + {�D log10 D

s
i,t + �RR

s
i,t

+ �E log10 Ei,t + �GDPpc log10 GDPpci,t + �Spc log10 Spci,t +

+ �BBi,t + �I log10 I
+
i,t + �P (in)Pin

i,t + �O log10 O
+
i,t + �P (out)Pout

i,t + �GiGi
i,t + �GoGout

i,t

+ �B̃
˜Bi,⌧ + �Õ log10

˜Oi,⌧ + �Ĩ log10
˜Ii,⌧ + �G̃o

˜Gout
i,⌧ + �G̃i

˜Gin
i,⌧}

+

~�s · ~SA(s) + �i,0 + ✏i,t

= �tt+ �TTEU,i,t + {~� · ~xs,i,t}+ ~�s · ~SA(s) + �i,0 + ✏i,t (S4)

The “EU Enlargement” treatment effect is estimated using
the indicator value TEU,i,t capturing the EU-vs-nonEU and
before-vs-after cross-term: it is 1 for countries belonging to
the EU in year t and 0 otherwise. Thus, there are three groups
of countries: (i) the incumbent EU countries with TEU,i,t = 1

for all t, (ii) the group of new entrants with a transition from
TEU,i,t = 0 to TEU,i,t = 1 in t = 5 for the ten 2004 entrants
(CY, CZ, EE, HU, LT, LV, MT, PL, SK ,SI), and t = 8 for
the two 2007 entrants (BG, RO), and (iii) the three Eurozone
countries (CH, HR, and NO) that were not part of the EU as
of the end of 2012 with TEU,i,t = 0 for all t.

In order to provide a consistency check and to justify
our identification strategy, we define the EU entry group as
gENTRY = �g

EU,i

,2 + �g
EU,i

,3 + �i,HR, which is a variable
equal to 1 if the country is in EU country group 2, 3 or is
HR. We then ran the model in Eq. S4 with an additional
interaction term between gENTRY and the year, given by
Xi,t = gENTRY ⇥ dummyt. The coefficient  t of the
interaction term, shown in Fig. S11, estimates the annual
impact of (eventual) entry on the countries belonging to
gENTRY . With the exception of the value  2001/2002, the
 t values are only significant negative after the baseline year
t ⌘ 2005/2006. Thus, this result rules out other factors prior
to 2004 that could have also contributed to our estimation of
the mobility and EU enlargement effects.

Results of partial models. Table S1 shows the parameter
estimates for simplified models that do not include one or
more of the data types (Scientific productivity and impact,
R&D investment, High-skilled mobility, Total migration).
The coefficients estimated for the simplified models and the
full model (Table I and 3 columns of Table S1) are consistent
in magnitude, sign, and significance, demonstrating the full
model’s robustness.
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FIG. S1: Global trends in cross-border collaboration by interna-
tional region: 1996–2014. Source: SCImago Journal & Country
Rank based on Scopus [26].
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With globalization, the rate of 
international collaboration has 
largely been increasing, however 
there is considerable regional 
variation. 

For example, comparing the decade 
before and after 2004, while 
Western Europe and North America 
experienced a 36-42% increase in 
the rate of cross-border collaboration 
(per publication), Eastern Europe 
and Asia have experienced much 
slower 9% growth. 

These diverging trends point to the 
importance of historical, socio- 
technological, and geographic 
factors underlying the globalization 
of science. 

So why have Western and Eastern Europe followed 
different cross-border collaboration paths? 



Estimating cross-border collaboration rates in Europe under the counterfactual 
— no 2004 EU enlargement — using the Synthetic Control Method (SCM)  

26 non-EU control group countries: 
AR, AM, AZ, BY, CA, CN, CO, CU, IN, IL, JP, KZ, KW, KG, 
MG, MX, MN, PA, RU, RS, SG, KR, TT, TR, UA, US

Country-level control/matching variables: 
[Scimago] Cross-border pubs, Total pubs, Citations
[World Bank]  GDPpercapita, Govt. Expenditure on R&D

RUBIN CAUSALITY MODEL 
D. Rubin. “Causal Inference Using Potential Outcomes”,
J. Am. Stat. Assoc., 2005

W = 0W = 1

Y(1) : Outcome of child i if W=1
Y(0) : Outcome of same child i if W=0

Causal “treatment” effect = Y(1) - Y(0)

Fundamental Challenge: How to measure 
the counterfactual outcome in a world where 
there is only one reality — i.e. only one 
observed outcome, either Y(1) or Y(0) ??

If you give a little kid a balloon, how do you really 
know it makes them happy? And happier by how 
much?

W = 1 : State in which receives balloon
W = 0 : State in which does not receive balloon

SCM: Abadie et al., American Economic Review 93 (2003)
Abadie et al., J. Amer. Stat. Assoc. 105 (2010)

Pre-existing 2004 EU New 2004 EU



    New (entrants) EU countries:  real data                synthetic (SCM) estimate

C
ro

ss
-b

or
de

r p
ub

lic
at

io
ns

, !
t

1995 2000 2005 20100

200

400

600

800

1000

1200

LV

1995 2000 2005 20100

1000

2000

3000

4000

5000
SI

1995 2000 2005 20100

50

100

150

200

250

300

350
MT

1995 2000 2005 20100

500

1000

1500

2000

LT

1995 2000 2005 20100

2000

4000

6000

8000

10000
CZ

1995 2000 2005 20100

500

1000

1500

EE

1995 2000 2005 20100
500
1000
1500
2000
2500
3000
3500

SK

1995 2000 2005 20100

200

400

600

800

1000

1200

CY

1995 2000 2005 20100
1000
2000
3000
4000
5000
6000
7000

RO

1995 2000 2005 20100

500

1000

1500

2000

2500

3000

BG

1995 2000 2005 20100

5000

10000

15000

PL

1995 2000 2005 20100

2000

4000

6000

8000

10000

HU

δ(%) = 10 δ(%) = - 35 δ(%) = 2.1

δ(%) = 13 δ(%) = 60 δ(%) = 30

δ(%) = 71 δ(%) = 41 δ(%) = 7.0

δ(%) = 12 δ(%) = 42 δ(%) = 10

C
ro

ss
-b

or
de

r p
ub

lic
at

io
ns

    New (entrants) EU countries:  real data                synthetic (SCM) estimate

What would have happened had there NOT BEEN a 2004 
expansion of the European Union??

Counterintuitively, there would have been MORE cross-border 
integration had there been no European Union enlargement!!

Hungary (HU)
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FIG. S3: Synthetic Control Method – Cross-border publications. Counterfactual estimates of the number of the publications that are cross-
border, ˆY

i

, for each of the 2004 and 2007 new EU entrants. Each solid line indicates the (real) observed number of cross-border publications by
year. Each dashed line indicates the synthetic estimates had the country not entered the EU. The SCM explanatory variables used to estimate
ˆY
i

are the total number of publications (log10 D
All

i,t

), the normalized citations (RAll

i,t

), the per-capita GDP (log10 GDPpc
i,t

), and government
expenditure on R&D, e

i,t

; “All” indicates the total across all subject areas (s). �(%) is the percent difference between the net area under
the real and synthetic curves after the entry year (indicated by each dashed vertical line), serving as a basic estimates of the net impact of
the 2004 enlargement on each country. �(%) > 0 for 11 of the 12 countries; the mean and standard deviation of the individual values are
h�(%)i± �

�(%) = 22± 29 percent.

Twelve 2004/2007 Entrant Countries



(A) SCM results for the fraction 𝑓𝑡 of cross-border publications and (B) the total number 𝜒𝑡 of 
cross-border publications. The solid curves represent the real data, while the dashed curves 
represent the estimates for the counter-factual scenario of no 2004 EU enlargement.  

• Note that the 𝜒𝑡 that represent the incumbent pre-2004 EU countries are divided by 10 in 
order to facilitate visualizing all the curves on the same scale.

•  𝛿 and 𝛿(%) represent the difference between the real and synthetic curves after 2004, 
providing estimates of the “2004 EU Entry” effect on cross-border European integration. 

• (C,D) Estimation of the significance level of the SCM results using the “permutation test”



Unintended consequence: there would have been more 
cross-border integration without EU enlargement

1997-2004 2005-2013

East-West collaboration
W EBefore 2004 

EU enlargement

East to West mobility

XW EAfter 2004 
EU enlargement

The micro-level mechanism connecting X-border collab. & brain drain

 Why?? Brain drain: largely from Eastern to Western European countries

Quantifying the negative impact of brain drain on the integration of European science.  
Science Advances, 2017
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What is the marginal impact of ‘brain-drain’ (Bi) on the international 
collaboration rate (fi) of the average country within each EU group? 

Brain DrainBrain Gain

The impact of brain drain on cross-border collaboration is even more 
negative for the new 2004 EU members



Human & Social capital perspectives on the value of EU membership

Gateway hub 
for Eastern
countries

Gateway hub 
for Northern

countries

Forward-looking questions: 
What will be the impact of a ‘Hard Brexit' on :
(a) the import/export of high-skilled labor between the UK 
& EU? (human capital)
(b) the social capital (i.e. research networks) in Europe?

Two central hubs within 
the high-skilled mobility 

network: UK and DE



Centrality in the high-skilled mobility network 
— before and after the 2004 enlargement



 High-skilled labour mobility in Europe before and after the 2004 
enlargement. J. Royal Society Interface, 2017

How might the ‘hardness’ of Brexit affect EU 
high-skilled mobility networks?



Reorganization of high-skilled mobility pathways 
in Europe in a hypothetical “Hard Brexit” scenario

Empirical: real data Hypothetical: Brexit scenario with severe 
restrictions on international mobility to the UK  



Thank you!

A special thanks to my collaborators: 
Omar Doria, Andrea Morescalchi, Fabio Pammolli, Orion Penner, Michelangelo Puliga 

Papers available at:
  http://physics.bu.edu/~amp17/ 

• Quantifying the impact of weak, strong, and super ties in scientific careers.            
A. M. Petersen. Proc. Natl. Acad. Sci. USA, 2015.

• Is Europe Evolving Toward an Integrated Research Area? A. Chessa, A. 
Morescalchi, F. Pammolli, O. Penner, A. M. Petersen, M. Riccaboni. Science, 2013

• The evolution of networks of innovators within and across borders: Evidence 
from patent data. A. Morescalchi, F. Pammolli, O. Penner, A. M. Petersen, M. 
Riccaboni. Research Policy, 2015.

• Quantifying the negative impact of brain drain on the integration of European 
science. O. A. Doria Arrieta, F. Pammolli, A. M. Petersen. Science Advances, 2017

•  High-skilled labour mobility in Europe before and after the 2004 enlargement. 
A. M. Petersen & M. Puliga. J. Royal Society Interface, 2017

http://physics.bu.edu/~amp17/


The dynamics of collaboration and its implications —  from careers to Europe

Collaboration in science is intrinsically interpersonal, and as a result, the networks of (in)formal relations 
are characteristically dynamic. In this talk I will discuss recent work on how these dynamics impact 
career paths, with implications as far-reaching as the evolution of entire national research systems. In the 
first part I will focus on the remarkably wide variation of collaborative strengths within research careers. 
In order to demonstrate the added value of long-term interpersonal partnership on career outcomes, I will 
present the results of a within-career (i.e. researcher fixed-effects) regression model showing that 
publications authored by a given scientist that include her strongest collaborators have higher citation 
impact relative to those publications that do not. These results point to the advantage of “super” social 
ties characterized by trust, conviction, and commitment. In the second part I will discuss the aggregate 
implications of collaboration dynamics at the level of the European Research Area (ERA) —  a 
longstanding vision of the European Union to develop a competitive and integrated innovation system 
through directed cross-country policies. In order to measure the EU’s progress towards the establishment 
of the ERA, we analyzed the rate of international publication for 32 European countries using data 
extracted from millions of academic publications from 1996 to 2012. We then used the EU 2004/2007 
enlargement, a large policy intervention representing a multi-country and multi-stage “quasi-experiment”, 
to provide causal insights into the interaction between two types of cross-border activity: human mobility 
and international collaboration. Our results reveal a counterintuitive result — that the twelve 2004/2007 
entrant EU countries would have had higher rates of cross-border collaboration had they not joined the 
EU— thereby identifying an unintended consequence of labor market integration in Europe. Together, 
these results identify East-to-West European brain drain as a mechanism underlying the stalled 
integration of the ERA.


