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Evolution of Science: “In the beginning...”

• scientific patronage during the 
renaissance

• the emergence of “open science”

Galileo Galilei “Leaning” Tower of Pisa

Paul A. David. The Historical Origins of ʻOpen Scienceʼ: An essay on patronage, reputation, 
and common agency contracting in the scientific revolution. Capitalism and Society 3(2): 
Article 5 (2008). 
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Chain-like NON Star-like NON Tree-like NON

Figure 6 | Three types of loopless NON composed of five coupled
networks. All have the same percolation threshold and the same giant

component. The dark node represents the origin network on which failures

initially occur.

NON, (2) a tree-like random regular fully dependent NON, (3) a

loop-like Erdős–Rényi partially dependent NON and (4) a random

regular network of partially dependent Erdős–Rényi networks.

All cases represent different generalizations of percolation theory

for a single network. In all examples except (3) we apply the

no-feedback condition.

(1) We solve explicitly
96

the case of a tree-like NON (Fig. 6)

formed by n Erdős–Rényi networks92–94 with the same average

degrees k, p1 = p, pi = 1 for i �= 1 and qij = 1 (fully interdependent).

From equations (15) and (16) we obtain an exact expression for the

order parameter, the size of the mutual giant component for all p, k
and n values,

P∞ = p[1−exp(−kP∞)]n (17)

Equation (17) generalizes known results for n= 1,2. For n= 1, we

obtain the known result pc =1/k, equation (11), of an Erdős–Rényi
network and P∞(pc) = 0, which corresponds to a continuous

second-order phase transition. Substituting n= 2 in equation (17)

yields the exact results of ref. 73.

Solutions of equation (17) are shown in Fig. 7a for several values

of n. The special case n= 1 is the known Erdős–Rényi second-order
percolation law, equation (12), for a single network. In contrast,

for any n> 1, the solution of (17) yields a first-order percolation

transition, that is, a discontinuity of P∞ at pc.
Our results show (Fig. 7a) that the NON becomes more vul-

nerable with increasing n or decreasing k (pc increases when

n increases or k decreases). Furthermore, for a fixed n, when
k is smaller than a critical number kmin(n), pc ≥ 1, meaning

that for k < kmin(n) the NON will collapse even if a single

node fails
96
.

(2) In the case of a tree-like network of interdependent random

regular networks
97
, where the degree k of each node in each network

is assumed to be the same, we obtain an exact expression for the

order parameter, the size of the mutual giant component for all

p, k and n values,

P∞ = p
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(18)

Numerical solutions of equation (18) are in excellent agreement

with simulations. Comparing with the results of the tree-like

Erdős–Rényi NON, we find that the robustness of n interdependent
random regular networks of degree k is significantly higher than

that of the n interdependent Erdős–Rényi networks of average

degree k. Moreover, whereas for an Erdős–Rényi NON there exists

a critical minimum average degree k = kmin that increases with n
(below which the system collapses), there is no such analogous kmin

for the random regular NON system. For any k > 2, the random

regular NON is stable, that is, pc < 1. In general, this is correct

for any network with any degree distribution, Pi(k), such that

Pi(0) = Pi(1) = 0, that is, for a network without disconnected or

singly connected nodes
97
.

(3) In the case of a loop-like NON (for dependences in

one direction) of n Erdős–Rényi networks
96
, all the links are

unidirectional, and the no-feedback condition is irrelevant. If the

initial attack on each network is the same, 1−p, qi−1i = qn1 = q and
ki =k, using equations (15) and (16)we obtain thatP∞ satisfies

P∞ = p(1−e
−kP∞)(qP∞ −q+1) (19)

Note that if q = 1 equation (19) has only a trivial solution

P∞ = 0, whereas for q = 0 it yields the known giant component

of a single network, equation (12), as expected. We present

numerical solutions of equation (19) for two values of q in

Fig. 7b. Interestingly, whereas for q = 1 and tree-like structures

equations (17) and (18) depend on n, for loop-like NON structures

equation (19) is independent of n.
(4) For NONs where each ER network is dependent on exactly

m other Erdős–Rényi networks (the case of a random regular

network of Erdős–Rényi networks), we assume that the initial attack

on each network is 1− p, and each partially dependent pair has

the same q in both directions. The n equations of equation (15)

are exactly the same owing to symmetries, and hence P∞ can be

obtained analytically,

P∞ = p
2m

(1−e
−kP∞)[1−q+

�
(1−q)2 +4qP∞]m (20)

from which we obtain

pc =
1

k(1−q)m
(21)

Again, as in case (3), it is surprising that both the critical threshold

and the giant component are independent of the number of

networks n, in contrast to tree-like NON (equations (17) and (18)),

but depend on the coupling q and on both degrees k and

m. Numerical solutions of equation (20) are shown in Fig. 7c,

and the critical thresholds pc in Fig. 7c coincide with the

theory, equation (21).

Remark on scale-free networks
The above examples regarding Erdős–Rényi and random regular

networks have been selected because they can be explicitly

solved analytically. In principle, the generating function formalism

presented here can be applied to randomly connected networks

with any degree distribution. The analysis of the scale-free networks

with a power-law degree distribution P(k) ∼ k−λ
is extremely

important, because many real networks can be approximated

by a power-law degree distribution, such as the Internet, the

airline network and social-contact networks, such as networks

of scientific collaboration
2,10,51

. Analysis of fully interdependent

scale-free networks
73

shows that, for interdependent scale-free

networks, pc > 0 even in the case λ ≤ 3 for which in a single

network pc = 0. In general, for fully interdependent networks,

the broader the degree distribution the greater pc for networks

with the same average degree
73
. This means that networks with a

broad degree distribution become less robust than networks with

a narrow degree distribution. This trend is the opposite of the

trend found in non-interacting isolated networks. The explanation

of this phenomenon is related to the fact that in randomly

interdependent networks the hubs in one network may depend on

poorly connected nodes in another. Thus the removal of a randomly

selected node in one network may cause a failure of a hub in

a second network, which in turn renders many singly connected

NATURE PHYSICS | VOL 8 | JANUARY 2012 | www.nature.com/naturephysics 45

Noble patron (king, wealthy aristocrat, Pope)

Early scientific labor system
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C O M M E N TA R Y “ ”
communications, social science, transla-
tional research, complex systems, technol-
ogy, business and management, research 
development, biomedical and life sciences, 
and physical sciences. !e increasing inter-
est in professional gatherings centered on 
SciTS combined with recent progress in 
SciTS research and practice suggest that 
this community is coalescing into its own 
area of inquiry.

MULTI-LEVEL, MIXED-METHODS  
APPROACH FOR SCITS
!e burgeoning "eld of SciTS can serve as a 
transformative melting pot of existing the-
ories and scienti"c techniques. We propose 
a multi-level, mixed-methods approach 
that can serve as a framework capable of 
organizing the diverse forms of inquiry and 
interlink research on individual scientists, 
teams, and populations of teams (Fig. 1).

Researchers working at di#erent levels 
study di#erent facets of the team science 
ecology, contribute di#erent theories and 
techniques, and generate diverse "ndings. 
Each level might analyze di#erent data; use 
multiple approaches, techniques, and visual 
representations; and provide di#erent in-
sights. !e combination of insights from all 
levels is considerably larger than their sum.

First, “macro-level” research examines 
teams at the population level and leads 
to insights about patterns of collabora-
tion that are broad in both their amount 
and their form, and that provide input on 
how to measure the growth and e#ect of 
knowledge. Macro-level studies might use 
terabytes of data that require large-scale 
computing infrastructures to process and 
communicate results. Recent work com-
bines computational, behavioral, organiza-
tional, and other methodological approach-
es to derive new insights at this broad level. 
Second, “meso-level” research increases 
our understanding at the group level, ex-
amining, for example, how interaction pat-
terns, the nature and amount of intra-team 
communications, and the composition of 
the team contribute to team process and 
outcomes. Such approaches can use net-
work analysis—the representation of data 
as nodes and their interlinkages—to study 
the evolution and impact of (social) net-
work structures at varied time scales or an-
alyze the speci"c quality and type of inter-
action via examination of communication 
context and patterns within teams (12). 
!ird, “micro-level” research considers the 
individuals within the team; their training, 

dispositions, and education; and how such 
factors predispose them to particular types 
of collaboration. Micro-level studies can be 
quantitative and, if considering network 
analyses, involve many attributes for nodes 
and linkages. Other methods include indi-
vidual-level analysis of researchers partici-
pating within teams in which members are 
queried about their experiences as team 
members (13, 14).

Each of these levels addresses di#erent 
issues that can be roughly classi"ed into 

when (temporal), where (geospatial), what 
(topical), with whom (network), how (pro-
cess), and why (modeling) questions. Table 
1 presents key insights from studies apply-
ing these di#ering levels of analysis.

Each level of team science involves a set 
of challenges. Macro-level challenges ad-
dress organizational change and the exist-
ing culture that either sti$es or encourages 
collaboration and interdisciplinarity. Chal-
lenges at the meso-level involve explicat-
ing the group dynamics emerging in team 
science as well as how to better understand 
and train teamwork in science teams. At 
the micro-level (the individual level), but 
tightly intertwined with the macro- and 
meso-level issues, are issues pertaining to 
how individual scientists acquire training 
in the scienti"c aspects of their work, in the 
process of innovation and discovery, and 
in communication and con$ict resolution. 
Table 2 lists key challenges that need to be 
addressed within these three levels.

MOVING FORWARD WITH SCITS
We conclude with a description of the 
more general challenges and opportunities 
surrounding SciTS. First, research relevant 
to SciTS is conducted in a variety of set-
tings—academic and commercial, technol-
ogy development, and government sector. 
As such, the variety of research results pub-
lished, approaches and tools applied, and 
data produced is impressive. We identi"ed 
more than 180 core papers and reports 
that convey key results in team science re-
search. Of those papers, 17 were published 
between 1944 and 2000, with the remain-
der being published since 2001, showcas-
ing a surge of activity on SciTS. Many of 
the reported studies use proprietary pub-
lication data sets (such as Web of Science 
by !omson Reuters or Scopus by Elsevier) 
and most tools are commercial, making it 
di%cult to replicate results. Data such as 
journal publications, conference proceed-
ings, and book chapters, but also patents 
and grant awards, are not comprehensive-
ly collected across the sciences. !e data 
studied are typically published in English, 
although science is international and mul-
tilingual. Furthermore, the uni"cation of 
data records (such as the identi"cation of 
all papers by one scholar as stored in di#er-
ent databases) and the interlinkage of col-
lections of data (such as the retrieval of all 
papers that were supported by one funding 
award) proves di%cult because no unique 
identi"ers are available.

Fig. 1. Multi-level, mixed-methods approach 
to SciTS. Team science can be studied at differ-
ent levels using different approaches. Together, 
the insights derived from these studies are worth 
more than the sum of their parts.   C
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• Collaboration (attractive)

• Competition (repulsive)

• Knowledge (an “exchange particle”)

Interactions mediated by social “forces”:

Sociophysics: scientists as interacting “atoms”

K. Börner, et al. A multi-level systems 
perspective for the science of team science. 
Sci. Transl. Med. 2, 49cm24 (2010).
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Collaboration & the “Invisible College”

K. Börner, et al. A multi-level systems perspective for the science of team science. Sci. Transl. Med. 2, 49cm24 (2010).
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SciTS research and practice suggest that 
this community is coalescing into its own 
area of inquiry.

MULTI-LEVEL, MIXED-METHODS  
APPROACH FOR SCITS
!e burgeoning "eld of SciTS can serve as a 
transformative melting pot of existing the-
ories and scienti"c techniques. We propose 
a multi-level, mixed-methods approach 
that can serve as a framework capable of 
organizing the diverse forms of inquiry and 
interlink research on individual scientists, 
teams, and populations of teams (Fig. 1).

Researchers working at di#erent levels 
study di#erent facets of the team science 
ecology, contribute di#erent theories and 
techniques, and generate diverse "ndings. 
Each level might analyze di#erent data; use 
multiple approaches, techniques, and visual 
representations; and provide di#erent in-
sights. !e combination of insights from all 
levels is considerably larger than their sum.

First, “macro-level” research examines 
teams at the population level and leads 
to insights about patterns of collabora-
tion that are broad in both their amount 
and their form, and that provide input on 
how to measure the growth and e#ect of 
knowledge. Macro-level studies might use 
terabytes of data that require large-scale 
computing infrastructures to process and 
communicate results. Recent work com-
bines computational, behavioral, organiza-
tional, and other methodological approach-
es to derive new insights at this broad level. 
Second, “meso-level” research increases 
our understanding at the group level, ex-
amining, for example, how interaction pat-
terns, the nature and amount of intra-team 
communications, and the composition of 
the team contribute to team process and 
outcomes. Such approaches can use net-
work analysis—the representation of data 
as nodes and their interlinkages—to study 
the evolution and impact of (social) net-
work structures at varied time scales or an-
alyze the speci"c quality and type of inter-
action via examination of communication 
context and patterns within teams (12). 
!ird, “micro-level” research considers the 
individuals within the team; their training, 

dispositions, and education; and how such 
factors predispose them to particular types 
of collaboration. Micro-level studies can be 
quantitative and, if considering network 
analyses, involve many attributes for nodes 
and linkages. Other methods include indi-
vidual-level analysis of researchers partici-
pating within teams in which members are 
queried about their experiences as team 
members (13, 14).

Each of these levels addresses di#erent 
issues that can be roughly classi"ed into 

when (temporal), where (geospatial), what 
(topical), with whom (network), how (pro-
cess), and why (modeling) questions. Table 
1 presents key insights from studies apply-
ing these di#ering levels of analysis.

Each level of team science involves a set 
of challenges. Macro-level challenges ad-
dress organizational change and the exist-
ing culture that either sti$es or encourages 
collaboration and interdisciplinarity. Chal-
lenges at the meso-level involve explicat-
ing the group dynamics emerging in team 
science as well as how to better understand 
and train teamwork in science teams. At 
the micro-level (the individual level), but 
tightly intertwined with the macro- and 
meso-level issues, are issues pertaining to 
how individual scientists acquire training 
in the scienti"c aspects of their work, in the 
process of innovation and discovery, and 
in communication and con$ict resolution. 
Table 2 lists key challenges that need to be 
addressed within these three levels.

MOVING FORWARD WITH SCITS
We conclude with a description of the 
more general challenges and opportunities 
surrounding SciTS. First, research relevant 
to SciTS is conducted in a variety of set-
tings—academic and commercial, technol-
ogy development, and government sector. 
As such, the variety of research results pub-
lished, approaches and tools applied, and 
data produced is impressive. We identi"ed 
more than 180 core papers and reports 
that convey key results in team science re-
search. Of those papers, 17 were published 
between 1944 and 2000, with the remain-
der being published since 2001, showcas-
ing a surge of activity on SciTS. Many of 
the reported studies use proprietary pub-
lication data sets (such as Web of Science 
by !omson Reuters or Scopus by Elsevier) 
and most tools are commercial, making it 
di%cult to replicate results. Data such as 
journal publications, conference proceed-
ings, and book chapters, but also patents 
and grant awards, are not comprehensive-
ly collected across the sciences. !e data 
studied are typically published in English, 
although science is international and mul-
tilingual. Furthermore, the uni"cation of 
data records (such as the identi"cation of 
all papers by one scholar as stored in di#er-
ent databases) and the interlinkage of col-
lections of data (such as the retrieval of all 
papers that were supported by one funding 
award) proves di%cult because no unique 
identi"ers are available.
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ent levels using different approaches. Together, 
the insights derived from these studies are worth 
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interval with the interval itself. However, since the rate of
citation per unit of time is increasing almost exponentially
with time, the homogeneity of references in each interval
does not correspond to homogeneity in time: for instance the
first interval spans more than 70 years of publications !1893–
1966", while the last interval is representative for the publi-
cations of only one year !2006". The choice MR=488 000
adopted in this paper ensures that intervals are representative
of periods of time not shorter than one year.

B. Properties of the Weighted Author Citation Network

We provide in this section a simple statistical analysis of
the WACNs. In particular, we monitor the number of authors
and their indegree and instrength distributions, where for ex-
ample the instrength of a node i is defined as

si
in = #

j
wji, !1"

i.e., the sum of all weights of the links pointing to i $18%.
First of all, it is interesting to note that quantitatively the

properties of the WACNs are not constant in time. This is
understandable since the production of scientists has strongly
changed during the last century.

From Fig. 3, one can qualitatively appreciate the former
observation: the total number of nodes in the network !i.e.,
the number of scientists citing or cited in a particular period
of time" is an increasing function of time. It should be
stressed that this behavior is mainly a consequence of the
increment of scientists in physics as one can deduce from the
time increment of the number of nodes with nonzero in-
strength !i.e., cited authors" that is growing in a much slower
fashion.

The indegree distributions calculated on different WACNs
are generally different. Nevertheless, if we consider the rela-
tive indicator given by the ratio of the citing authors !kin" to
a scientist in a given WACN divided by the average number
!&kin'" of citing authors over all physicists in the same
WACN, the distributions of the rescaled variable kin / &kin'
obey the same universal curve $see Fig. 4!a"%. This result is
in accordance with the remarkable scaling recently discov-

FIG. 2. !Color online" We generated the citation network based on all papers published in PR journals about the topic “complex
networks.” For clarity, only links with weight above a certain threshold have been plotted. As a consequence only top physicists in this field
are shown. The width of each connection is proportional to its weight and the size of the nodes is proportional to the sum of all weights of
incident links.

DIFFUSION OF SCIENTIFIC CREDITS AND THE… PHYSICAL REVIEW E 80, 056103 !2009"

056103-3

F.  Radicchi, et al. Phys. Rev. E 80, 056103, 2009

Multi-level system

The network of network scientists

• The increase in the typical size of scientific collaborations has led to 
the increasingly difficult task of allocating funding and assigning 
recognition

• The scientific collaboration radius can change dramatically over the 
course of a career

• Economics of 
collaboration: 

• collaboration 
efficiency 

• knowledge spillovers

• competition: science 
is a market for 
knowledge-based 
goods

• size-dependent 
growth fluctuations 
(uncertainty)
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Science of Science

- “When the hunter becomes the hunted....”

Why study science itself?

Academia
(Universities, research institutes)

Funding bodies
(Gov’t / non-profit)

Industrial (proprietary)

Science

“the Triple Helix of Science” (Loet Leydesdorff, Univ. of Amsterdam)
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Emerging trends in Science
• emergence of small-world collaboration networks with the increasing 

role of team-work in science
NATURE PHYSICS DOI:10.1038/NPHYS2180 INSIGHT | PROGRESS ARTICLE

Chain-like NON Star-like NON Tree-like NON

Figure 6 | Three types of loopless NON composed of five coupled
networks. All have the same percolation threshold and the same giant

component. The dark node represents the origin network on which failures

initially occur.

NON, (2) a tree-like random regular fully dependent NON, (3) a

loop-like Erdős–Rényi partially dependent NON and (4) a random

regular network of partially dependent Erdős–Rényi networks.

All cases represent different generalizations of percolation theory

for a single network. In all examples except (3) we apply the

no-feedback condition.

(1) We solve explicitly
96

the case of a tree-like NON (Fig. 6)

formed by n Erdős–Rényi networks92–94 with the same average

degrees k, p1 = p, pi = 1 for i �= 1 and qij = 1 (fully interdependent).

From equations (15) and (16) we obtain an exact expression for the

order parameter, the size of the mutual giant component for all p, k
and n values,

P∞ = p[1−exp(−kP∞)]n (17)

Equation (17) generalizes known results for n= 1,2. For n= 1, we

obtain the known result pc =1/k, equation (11), of an Erdős–Rényi
network and P∞(pc) = 0, which corresponds to a continuous

second-order phase transition. Substituting n= 2 in equation (17)

yields the exact results of ref. 73.

Solutions of equation (17) are shown in Fig. 7a for several values

of n. The special case n= 1 is the known Erdős–Rényi second-order
percolation law, equation (12), for a single network. In contrast,

for any n> 1, the solution of (17) yields a first-order percolation

transition, that is, a discontinuity of P∞ at pc.
Our results show (Fig. 7a) that the NON becomes more vul-

nerable with increasing n or decreasing k (pc increases when

n increases or k decreases). Furthermore, for a fixed n, when
k is smaller than a critical number kmin(n), pc ≥ 1, meaning

that for k < kmin(n) the NON will collapse even if a single

node fails
96
.

(2) In the case of a tree-like network of interdependent random

regular networks
97
, where the degree k of each node in each network

is assumed to be the same, we obtain an exact expression for the

order parameter, the size of the mutual giant component for all

p, k and n values,

P∞ = p
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(18)

Numerical solutions of equation (18) are in excellent agreement

with simulations. Comparing with the results of the tree-like

Erdős–Rényi NON, we find that the robustness of n interdependent
random regular networks of degree k is significantly higher than

that of the n interdependent Erdős–Rényi networks of average

degree k. Moreover, whereas for an Erdős–Rényi NON there exists

a critical minimum average degree k = kmin that increases with n
(below which the system collapses), there is no such analogous kmin

for the random regular NON system. For any k > 2, the random

regular NON is stable, that is, pc < 1. In general, this is correct

for any network with any degree distribution, Pi(k), such that

Pi(0) = Pi(1) = 0, that is, for a network without disconnected or

singly connected nodes
97
.

(3) In the case of a loop-like NON (for dependences in

one direction) of n Erdős–Rényi networks
96
, all the links are

unidirectional, and the no-feedback condition is irrelevant. If the

initial attack on each network is the same, 1−p, qi−1i = qn1 = q and
ki =k, using equations (15) and (16)we obtain thatP∞ satisfies

P∞ = p(1−e
−kP∞)(qP∞ −q+1) (19)

Note that if q = 1 equation (19) has only a trivial solution

P∞ = 0, whereas for q = 0 it yields the known giant component

of a single network, equation (12), as expected. We present

numerical solutions of equation (19) for two values of q in

Fig. 7b. Interestingly, whereas for q = 1 and tree-like structures

equations (17) and (18) depend on n, for loop-like NON structures

equation (19) is independent of n.
(4) For NONs where each ER network is dependent on exactly

m other Erdős–Rényi networks (the case of a random regular

network of Erdős–Rényi networks), we assume that the initial attack

on each network is 1− p, and each partially dependent pair has

the same q in both directions. The n equations of equation (15)

are exactly the same owing to symmetries, and hence P∞ can be

obtained analytically,

P∞ = p
2m

(1−e
−kP∞)[1−q+

�
(1−q)2 +4qP∞]m (20)

from which we obtain

pc =
1

k(1−q)m
(21)

Again, as in case (3), it is surprising that both the critical threshold

and the giant component are independent of the number of

networks n, in contrast to tree-like NON (equations (17) and (18)),

but depend on the coupling q and on both degrees k and

m. Numerical solutions of equation (20) are shown in Fig. 7c,

and the critical thresholds pc in Fig. 7c coincide with the

theory, equation (21).

Remark on scale-free networks
The above examples regarding Erdős–Rényi and random regular

networks have been selected because they can be explicitly

solved analytically. In principle, the generating function formalism

presented here can be applied to randomly connected networks

with any degree distribution. The analysis of the scale-free networks

with a power-law degree distribution P(k) ∼ k−λ
is extremely

important, because many real networks can be approximated

by a power-law degree distribution, such as the Internet, the

airline network and social-contact networks, such as networks

of scientific collaboration
2,10,51

. Analysis of fully interdependent

scale-free networks
73

shows that, for interdependent scale-free

networks, pc > 0 even in the case λ ≤ 3 for which in a single

network pc = 0. In general, for fully interdependent networks,

the broader the degree distribution the greater pc for networks

with the same average degree
73
. This means that networks with a

broad degree distribution become less robust than networks with

a narrow degree distribution. This trend is the opposite of the

trend found in non-interacting isolated networks. The explanation

of this phenomenon is related to the fact that in randomly

interdependent networks the hubs in one network may depend on

poorly connected nodes in another. Thus the removal of a randomly

selected node in one network may cause a failure of a hub in

a second network, which in turn renders many singly connected
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At first glance, Robert Kirshner took the 
e-mail message for a scam. An astronomer 
at King Abdulaziz University (KAU) in Jed-
dah, Saudi Arabia, was offering him a con-
tract for an adjunct professorship that would 
pay $72,000 a year. Kirshner, an astrophysi-
cist at Harvard University, would be expected 
to supervise a research group at KAU and 
spend a week or two a year on KAU’s cam-
pus, but that requirement was fl exible, the 
person making the offer wrote in the e-mail. 
What Kirshner would be required to do, 
however, was add King Abdulaziz Univer-
sity as a second affi liation to his name on the 
Institute for Scientifi c Information’s (ISI’s) 
list of highly cited researchers.

“I thought it was a joke,” says Kirshner, 
who forwarded the e-mail to his department 
chair, noting in jest that the money was a lot 
more attractive than the 2% annual raise pro-
fessors typically get. Then he discovered that 
a highly cited colleague at another U.S. insti-
tution had accepted KAU’s offer, adding KAU 
as a second affi liation on ISIhighlycited.com.

Kirshner’s colleague is not alone. Sci-

ence has learned of more than 60 top-ranked 
researchers from different scientific disci-
plines—all on ISI’s highly cited list—who 
have recently signed a part-time employment 
arrangement with the university that is struc-
tured along the lines of what Kirshner was 
offered. Meanwhile, a bigger, more promi-
nent Saudi institution—King Saud Univer-
sity in Riyadh—has climbed several hundred 
places in international rankings in the past 

4 years largely through initiatives specifi cally 
targeted toward attaching KSU’s name to 
research publications, regardless of whether 
the work involved any meaningful collabora-
tion with KSU researchers.

Academics both inside and outside Saudi 
Arabia warn that such practices could detract 
from the genuine efforts that Saudi Arabia’s 
universities are making to transform them-
selves into world-class research centers. For 
instance, the Saudi government has spent bil-
lions of dollars to build the new King Abdul-
lah University of Science and Technology in 
Thuwal, which boasts state-of-the-art labs 
and dozens of prominent researchers as full-
time faculty members (Science, 16 October 
2009, p. 354).

But the initiatives at KSU and KAU are 
aimed at getting speedier results. “They are 
simply buying names,” says Mohammed Al-
Qunaibet, a professor of agricultural eco-
nomics at KSU, who recently criticized the 
programs in an article he wrote for the leading 
Saudi newspaper, Al Hayat. Teddi Fishman, 
director of the Center for Academic Integ-
rity at Clemson University in South Carolina, 
says the programs deliberately create “a false 
impression that these universities are produc-
ing great research.”

Academics who have accepted KAU’s 
offer represent a wide variety of faculty 
from elite institutions in the United States, 
Canada, Europe, Asia, and Australia. All 
are men. Some are emeritus professors who 
have recently retired from their home insti-

tutions. All have changed their affi liation on 
ISI’s highly cited list—as required by KAU’s 
contract—and some have added KAU as an 
affi liation on research papers. Other require-
ments in the contract include devoting “the 
whole of your time, attention, skill and abili-
ties to the performance of your duties” and 
doing “work equivalent to a total of 4 months 
per contract period.”

Neil Robertson, a professor emeritus 
of mathematics at Ohio State University in 
Columbus who has signed on, says he has 
no concerns about the offer. “It’s just capi-
talism,” he says. “They have the capital 
and they want to build something out of it.” 
Another KAU affiliate, astronomer Gerry 
Gilmore of the University of Cambridge in 
the United Kingdom, notes that “universities 
buy people’s reputations all the time. In prin-
ciple, this is no different from Harvard hiring 
a prominent researcher.”

Officials at KAU did not respond to 
Science’s request for an interview. But 
Surender Jain, a retired mathematics pro-
fessor from Ohio University in Athens who 
is an adviser to KAU and has helped recruit 
several of the adjuncts, provided a list of 61 
academics who have signed contracts simi-
lar to the one sent to Kirshner. The fi nancial 
arrangements in the contracts vary, Jain says: 
For instance, some adjuncts will receive their 
compensation not as salary but as part of a 
research grant provided by KAU.

Jain acknowledges that a primary goal of 
the program—funded by Saudi Arabia’s Min-
istry of Higher Education—is to “improve 
the visibility and ranking of King Abdulaziz 
University.” But he says KAU also hopes the 
foreign academics will help it kick-start indig-
enous research programs. “We’re not just giv-
ing away money,” he says. Most recruits will 
be expected to visit for a total of 4 weeks in a 
year to “give crash courses”; they will also be 
expected to supervise dissertations and help 
KAU’s full-time faculty members develop 
research proposals. Even the “shadows” of 
such eminent scholars would inspire local stu-
dents and faculty members, he says.

The recruits Science spoke to say they 
have a genuine interest in promoting research 
at KAU, even though none of them knew how 
their individual research plans would match 
up with the interests and abilities of KAU’s 
faculty members and students. Ray Carlberg, 
an astronomer at the University of Toronto in 
Canada who accepted the offer, says he had 
to Google the university after he received the 
e-mail. He admits that he was initially con-
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e-mail message for a scam. An astronomer 
at King Abdulaziz University (KAU) in Jed-
dah, Saudi Arabia, was offering him a con-
tract for an adjunct professorship that would 
pay $72,000 a year. Kirshner, an astrophysi-
cist at Harvard University, would be expected 
to supervise a research group at KAU and 
spend a week or two a year on KAU’s cam-
pus, but that requirement was fl exible, the 
person making the offer wrote in the e-mail. 
What Kirshner would be required to do, 
however, was add King Abdulaziz Univer-
sity as a second affi liation to his name on the 
Institute for Scientifi c Information’s (ISI’s) 
list of highly cited researchers.

“I thought it was a joke,” says Kirshner, 
who forwarded the e-mail to his department 
chair, noting in jest that the money was a lot 
more attractive than the 2% annual raise pro-
fessors typically get. Then he discovered that 
a highly cited colleague at another U.S. insti-
tution had accepted KAU’s offer, adding KAU 
as a second affi liation on ISIhighlycited.com.

Kirshner’s colleague is not alone. Sci-

ence has learned of more than 60 top-ranked 
researchers from different scientific disci-
plines—all on ISI’s highly cited list—who 
have recently signed a part-time employment 
arrangement with the university that is struc-
tured along the lines of what Kirshner was 
offered. Meanwhile, a bigger, more promi-
nent Saudi institution—King Saud Univer-
sity in Riyadh—has climbed several hundred 
places in international rankings in the past 

4 years largely through initiatives specifi cally 
targeted toward attaching KSU’s name to 
research publications, regardless of whether 
the work involved any meaningful collabora-
tion with KSU researchers.

Academics both inside and outside Saudi 
Arabia warn that such practices could detract 
from the genuine efforts that Saudi Arabia’s 
universities are making to transform them-
selves into world-class research centers. For 
instance, the Saudi government has spent bil-
lions of dollars to build the new King Abdul-
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Thuwal, which boasts state-of-the-art labs 
and dozens of prominent researchers as full-
time faculty members (Science, 16 October 
2009, p. 354).

But the initiatives at KSU and KAU are 
aimed at getting speedier results. “They are 
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nomics at KSU, who recently criticized the 
programs in an article he wrote for the leading 
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rity at Clemson University in South Carolina, 
says the programs deliberately create “a false 
impression that these universities are produc-
ing great research.”

Academics who have accepted KAU’s 
offer represent a wide variety of faculty 
from elite institutions in the United States, 
Canada, Europe, Asia, and Australia. All 
are men. Some are emeritus professors who 
have recently retired from their home insti-

tutions. All have changed their affi liation on 
ISI’s highly cited list—as required by KAU’s 
contract—and some have added KAU as an 
affi liation on research papers. Other require-
ments in the contract include devoting “the 
whole of your time, attention, skill and abili-
ties to the performance of your duties” and 
doing “work equivalent to a total of 4 months 
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Columbus who has signed on, says he has 
no concerns about the offer. “It’s just capi-
talism,” he says. “They have the capital 
and they want to build something out of it.” 
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ciple, this is no different from Harvard hiring 
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is an adviser to KAU and has helped recruit 
several of the adjuncts, provided a list of 61 
academics who have signed contracts simi-
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arrangements in the contracts vary, Jain says: 
For instance, some adjuncts will receive their 
compensation not as salary but as part of a 
research grant provided by KAU.

Jain acknowledges that a primary goal of 
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istry of Higher Education—is to “improve 
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University.” But he says KAU also hopes the 
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year to “give crash courses”; they will also be 
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• shifts in the competitive aspects 
of science, universities, and 
scientists: reputation 
tournaments in omnipresent 
competition arenas

• organizational shifts in the business structure of research universities

LETTERS

Quantifying social group evolution
Gergely Palla1, Albert-László Barabási2 & Tamás Vicsek1,3

The rich set of interactions between individuals in society1–7

results in complex community structure, capturing highly con-
nected circles of friends, families or professional cliques in a social
network3,7–10. Thanks to frequent changes in the activity and com-
munication patterns of individuals, the associated social and com-
munication network is subject to constant evolution7,11–16. Our
knowledge of themechanisms governing the underlying commun-
ity dynamics is limited, but is essential for a deeper understanding
of the development and self-optimization of society as a whole17–22.
We have developed an algorithm based on clique percolation23,24

that allows us to investigate the time dependence of overlapping
communities on a large scale, and thus uncover basic relationships
characterizing community evolution. Our focus is on networks
capturing the collaboration between scientists and the calls be-
tween mobile phone users. We find that large groups persist for
longer if they are capable of dynamically altering their member-
ship, suggesting that an ability to change the group composition
results in better adaptability. The behaviour of small groups dis-
plays the opposite tendency—the condition for stability is that
their composition remains unchanged. We also show that know-
ledge of the time commitment of members to a given community
can be used for estimating the community’s lifetime. These find-
ings offer insight into the fundamental differences between the
dynamics of small groups and large institutions.

The data sets we consider are (1) the monthly list of articles in the
Cornell University Library e-print condensed matter (cond-mat)
archive spanning 142 months, with over 30,000 authors25, and (2)
the record of phone calls between the customers of a mobile phone
company spanning 52weeks (accumulated over two-week-long per-
iods), and containing the communication patterns of over 4 million
users. Both types of collaboration events (a new article or a phone
call) document the presence of social interaction between the
involved individuals (nodes), and can be represented as (time-
dependent) links. The extraction of the changing link weights from
the primary data is described in Supplementary Information. In
Fig. 1a, b we show the local structure at a given time step in the
two networks in the vicinity of a randomly chosen individual
(marked by a red frame). The communities (social groups repre-
sented by more densely interconnected parts within a network of
social links) are colour coded, so that black nodes/edges do not
belong to any community, and those that simultaneously belong to
two or more communities are shown in red.

The two networks have rather different local structure: the collab-
oration network of scientists emerges as a one-mode projection of the
bipartite graph between authors and papers, so it is quite dense and
the overlap between communities is very significant. In contrast, in the
phone-call network the communities are less interconnected and are
often separated by one ormore inter-community nodes/edges. Indeed,
whereas the phone record captures the communication between two
people, the publication record assigns to all individuals that contribute
to a paper a fully connected clique. As a result, the phone data are

dominated by single links, whereas the co-authorship data have many
dense, highly connected neighbourhoods. Furthermore, the links in
the phone network correspond to instant communication events, cap-
turing a relationship as it happens. In contrast, the co-authorship data

1Statistical and Biological Physics ResearchGroup of theHAS, Pázmány P. stny. 1A, H-1117 Budapest, Hungary. 2Center for ComplexNetwork Research andDepartments of Physics and
Computer Science, University of Notre Dame, Indiana 46566, USA. 3Department of Biological Physics, Eötvös University, Pázmány P. stny. 1A, H-1117 Budapest, Hungary.
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Figure 1 | Structure and schematic dynamics of the two networks
considered. a, The co-authorship network. The figure shows the local
community structure at a given time step in the vicinity of a randomly selected
node. b, As a but for the phone-call network. c, The filled black symbols
correspond to the average size of the largest subset of members with the same
zip-code, Ænrealæ, in the phone-call communities divided by the same quantity
found in randomsets, Ænrandæ, as a function of the community size, s. Similarly,
the open symbols show the average size of the largest subset of community
members with an age falling in a three-year time window, divided by the same
quantity in random sets. The error bars in both cases correspond to Ænrealæ/
(Ænrandæ1srand) and Ænrealæ/(Ænrandæ2srand), where srand is the standard
deviation in the case of the random sets. d, The Ænrealæ/s as a function of s, for
both the zip-code (filledblack symbols) and theage (open symbols).e, Possible
events in community evolution. f, The identificationof evolving communities.
The links at t (blue) and the links at t1 1 (yellow) aremerged into a joint graph
(green). Any CPM community at t or t1 1 is part of a CPM community in the
joined graph, so these can be used to match the two sets of communities.
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• shifts away from tenure towards shorter-term contracts + bottle 
neck in the number of tenure-track positions available

• redefining the role of teaching -vs- research faculty

Chait RP, ed. The Questions of Tenure. (Harvard University 
Press, Cambridge USA, 2002).
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... Career briefs on the Academic labor market

S cientists who attain a PhD are rightly 
proud — they have gained entry to 
an academic elite. But it is not as elite 
as it once was. The number of science 
doctorates earned each year grew by 
nearly 40% between 1998 and 2008, 

to some 34,000, in countries that are members 
of the Organisation for Economic Co-opera-
tion and Development (OECD). The growth 
shows no sign of slowing: most countries are 
building up their higher-education systems 
because they see educated workers as a key 
to economic growth (see ‘The rise of doctor-
ates’). But in much of the world, science PhD 
graduates may never get a chance to take full 
advantage of their qualifications. 

In some countries, including the United 
States and Japan, people who have trained at 
great length and expense to be researchers con-
front a dwindling number of academic jobs, and 
an industrial sector unable to take up the slack. 
Supply has outstripped demand and, although 
few PhD holders end up unemployed, it is not 
clear that spending years securing this high-
level qualification is worth it for a job as, for 
example, a high-school teacher. In other coun-
tries, such as China and India, the economies 
are developing fast enough to use all the PhDs 
they can crank out, and more — but the quality 
of the graduates is not consistent. Only a few 
nations, including Germany, are successfully 
tackling the problem by redefining the PhD as 

training for high-level positions in careers out-
side academia. Here, Nature examines graduate-
education systems in various states of health.

JAPAN: A SYSTEM IN CRISIS
 Of all the countries in which to graduate with a 
science PhD, Japan is arguably one of the worst. 
In the 1990s, the government set a policy to 
triple the number of postdocs to 10,000, and 
stepped up PhD recruitment to meet that goal. 
The policy was meant to bring Japan’s science 

capacity up to match that of the West — but 
is now much criticized because, although it 
quickly succeeded, it gave little thought to 
where all those postdocs were going to end up. 

Academia doesn’t want them: the number 
of 18-year-olds entering higher education has 
been dropping, so universities don’t need the 
staff. Neither does Japanese industry, which has 
traditionally preferred young, fresh bachelor’s 
graduates who can be trained on the job. The 
science and education ministry couldn’t even 
sell them off when, in 2009, it started offering 
companies around ¥4 million (US$47,000) 
each to take on some of the country’s 18,000 

unemployed postdoctoral students (one of 
several initiatives that have been introduced 
to improve the situation). “It’s just hard to find 
a match” between postdoc and company, says 
Koichi Kitazawa, the head of the Japan Science 
and Technology Agency.

This means there are few jobs for the current  
crop of PhDs. Of the 1,350 people awarded 
doctorates in natural sciences in 2010, just over 
half (746) had full-time posts lined up by the 
time they graduated. But only 162 were in the 
academic sciences or technological services,; of 
the rest, 250 took industry positions, 256 went 
into education and 38 got government jobs. 

With such dismal prospects, the number 
entering PhD programmes has dropped off 
(see ‘Patterns of PhD production’). “Everyone 
tends to look at the future of the PhD labour 
market very pessimistically,” says Kobayashi 
Shinichi, a specialist in science and technol-
ogy workforce issues at the Research Center 
for University Studies at Tsukuba University. 

CHINA: QUANTITY OUTWEIGHS QUALITY?
The number of PhD holders in China is going 
through the roof, with some 50,000 people 
graduating with doctorates across all disci-
plines in 2009 — and by some counts it now 
surpasses all other countries. The main prob-
lem is the low quality of many graduates. 

Yongdi Zhou, a cognitive neuroscientist at 
the East China Normal University in Shanghai, 

THE PHD FACTORY 
The world is producing more 

PhDs than ever before. 
Is it time to stop?

“EVERYONE TENDS TO LOOK AT 
THE FUTURE OF THE PHD LABOUR 
MARKET VERY PESSI MISTICALLY.”
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RETHINKING PHDS
Fix it, overhaul it or skip it completely — institutions 
and individuals are taking innovative approaches to 

postgraduate science training.

 “M2 8 0  |  N A T U R E  |  V O L  4 7 2  |  2 1  A P R I L  2 0 1 1

B Y  K E N D A L L  P O W E L L

Only a minor spark was needed to set off 
an online firestorm about the precari-
ous state of US biomedical research 

funding. In late January on the blog Extra-
mural Nexus, Sally Rockey, deputy director 
for extramural research at the US National 
Institutes of Health (NIH), announced the 
creation of a committee to advise the NIH on 
the future needs of the biomedical workforce. 
Daniel Noonan, a molecular biologist at the 
University of Kentucky in Lexington, wrote in 
response what he terms a “spontaneous post”, 
outlining what he believes to be 
problems with current NIH poli-
cies that have disproportionately 
affected funding for mid-career 
biomedical scientists. 

His sentiments struck a chord 
— resonant to some, and off-key 
to others. Noonan’s post made the 
e-mail rounds of academic depart-
ments and touched off heated 
online debates about whether the 
NIH system is ‘broken’ or headed 
for disaster, given looming budget 
concerns. The agency is facing flat-
tened budgets for fiscal years 2011, 
2012 and beyond; grant submis-
sions have the lowest success rates 
in a decade; and policies favour 
new investigators. Mid-career sci-
entists are under funding pressure, 
and the situation is creating a growing number 
of tenured but unfunded professors. Lacking 
a major NIH grant, these researchers may be 
forced to shrink their staff numbers, or shift to 
teaching, administrative or even non-science 
positions.

In the interest of stretching funds further, 
Noonan advised the NIH to delay large initia-
tives such as building the National Center for 
Advancing Translational Science; limit individ-
ual investigators to three grants or US$1 million 
a year; implement a formula that gives inves-
tigators with multiple grants less per grant for 
indirect costs from university overheads; fac-
tor in an investigator’s non-NIH funding when 
deciding whether to provide a grant; and limit 
or eliminate funds for construction projects.

Applications for NIH grants are scored for 
scientific merit; for investigators beyond the 
early stages of their careers, only those scoring 
in roughly the top 10% get funded. In 2010, 
success rates for R01 grants — the NIH’s pri-
mary grant for individual investigators — were 

around 15–25%. “If you lose that one grant-
renewal opportunity, it’s hard to recover in this 
day and age,” says Noonan. The pool of money 
dedicated to investigator-initiated grants has 
shrunk, he says, and with limited state and 
federal budgets, the NIH needs to find ways to 
generate money from within.

Rockey has pledged to forward the online 
discussions to the workforce advisory commit-
tee, which will be chaired by Shirley Tilghman, 
a molecular biologist and president of Prince-
ton University in New Jersey. But Rockey says 
that no decisions have been made to cap appli-
cations from individuals. “There are a lot of  

different thoughts about how one might go 
about this,” she says. “We want to have data and 
facts and information before we resort to any 
social engineering of the workforce.”

Ideas for reform extend beyond unhappy 
individual investigators. The 12,000-member  
American Society for Biochemistry and Molec-
ular Biology (ASBMB) in Bethesda, Maryland, 
has proposed some recommendations, says 
Benjamin Corb, the society’s director of public 
affairs. The ASBMB seeks a cap on the fund-
ing going to any one person, and suggests that 
money be redirected to the R01 pool from large 
initiatives that have not made medical break-
throughs, such as the Genome-Wide Asso-
ciation Studies programme and the Protein 
Structure Initiative. The ASBMB also proposes 
that the NIH adopt a sliding scale, to partially 
fund lower-scoring but meritorious grants. 
The society presented its recommendations to 
six institute directors and Lawrence Tabak, the 
NIH’s deputy director, on 14 March.

The idea of capping the number of awards to 

individuals has received some attention. Sev-
eral investigators receive multiple NIH grants: 
a 2008 analysis by Nature found 200 scientists 
who held 6 or more (see Nature 452, 258–259; 
2008). And the ASBMB calculates that in fiscal 
year 2009, 1,600 scientists each received $1 mil-
lion or more from the NIH. Rockey points out 
that the National Institute of General Medical 
Sciences already has a capping policy — an 
investigator already receiving $750,000 or 
more from any source must justify new grant 
submissions. 

But she emphasizes that such multiple-grant 
holders are rare. “Contrary to popular belief, the 

average NIH-funded scientist holds 
1.4 grants at any one time,” she says. 
“So there is not a huge cadre of people 
who have eight, nine or ten grants.” 
But she concedes that compared 
with a decade ago, more researchers 
are fighting over the same sized slice 
of pie, as a result of budget doubling 
that has now levelled off.

“It’s a difficulty for just about 
every body — early-, mid- or late-
career — in sustaining NIH fund-
ing,” says Rockey, noting that 
scientists’ frustrations stem from “a 
lot of pent-up good science going on 
that we are unable to fund.” Tilgh-
man’s workforce advisory commit-
tee will try to determine the size 
and composition of the biomedical 
workforce that the NIH can support.

Not everyone thinks that the NIH needs to 
reconsider how grant funding is apportioned. 
Several scientist bloggers believe that Noonan’s 
comments imply that scientists should have 
access to NIH resources regardless of ability 
or outcomes; they counter that meritocracy 
should rule. One contributor wrote that with 
budgets shrinking, researchers really should be 
concentrating on communicating the value of 
research to the public.

Rockey advises mid-career scientists facing 
an R01 renewal to consider a no-cost exten-
sion (stretching out existing grant funds) for 
another year to gather data or publish results; 
or to try making contingency plans, such as 
seeking bridge funding from their institutions. 
“Your reviewer is taking into account what 
you have already accomplished, so be sure to 
highlight how well your research is going and 
the strengths of your research team,” she says. 
Rockey’s top recommendation, she says, is to 
seek advice from the relevant grant-review 
programme officer. ■

U N I T E D  S TAT E S

Mid-career crunch
Some senior scientists feel neglected by the National Institutes of Health’s  grant formula.
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NATUREJOBS For the latest career 
listings and advice www.naturejobs.com

Q&A ETH Zurich’s president explains the 
appeal of Switzerland p.126

EUROPE Transferable pensions for 
researchers may soon be a reality p.125

B Y  K A R E N  K A P L A N

Biologist Rafael Carazo Salas doesn’t have 
tenure — nor is he expecting to pursue 
the tenure-track system any time soon. 

As a faculty member at a UK institution, he 
doesn’t have that option — academic tenure 
per se in the United Kingdom was abolished 
more than 20 years ago. 

But Carazo Salas, a group leader at the Uni-
versity of Cambridge, UK, isn’t lying awake at 
night trying to dream up ways to manoeuvre 
himself into a tenured or tenure-track research 
position. Funded by a portable five-year grant 
from the European Research Council, he is 
pleased with what he calls a high level of scien-
tific independence conferred by the grant, even 
though he’s well aware that he has no guarantee 

of a continuing position at Cambridge at the 
end of the next four years. 

“Everyone would like to have job security,” 
says Carazo Salas, who moved this year from 
ETH Zurich in Switzerland after his partner 
secured a Cambridge post. But Carazo Salas 
is fine with his current position. He may not 
have job security in perpetuity, but he has 
autonomy, few administrative duties, and no 
teaching obligations. “If I secure funds to con-
tinue paying my own salary, I can conceivably 
stay here as long as I want,” he says.

Although most academics strive for ten-
ure, experiences such as Carazo Salas’s sug-
gest that it is not the only satisfying career 
course. Early-career academic researchers in 
the United States, the European Union (EU) 
and elsewhere are wrestling with major shifts 
in tenure’s definition, availability and value. 
Seen for decades as the only route to long-term 
job security and academic freedom, its long-
standing symbol as the ultimate prize for aca-
demic researchers has been eroding on many 
fronts. Tenured and tenure-track positions, 
already hard to secure, have become rarer in 
some areas because of budget concerns. Other 
regions are seeing increased interest, as gov-
ernments and institutions try to attract top 
talent. Tenure is no longer what it once was, 
and young scientists might want to survey the 
features of a changing landscape.

TENURE’S DECLINE
At most North American institutions, tenure 
is typical for senior faculty appointments such 
as professors and associate professors. Achiev-
ing tenure generally requires a strong record 
of published research and administrative work 
including committee membership (see ‘How to 
get tenure’). Most tenure systems allow junior 
tenure-track faculty members a period of sev-
eral years to establish such a record. In addition 
to job security, academic tenure aims to pro-
tect academic freedom; faculty members can 
disagree with popular opinion, express nega-
tive views about their institution, or research 
unpopular topics.

Nevertheless, tenure is receding in the 
United States, where tight budgets have 
prompted universities to hire more adjunct 
faculty members. In 1970, roughly three-quar-
ters of all faculty members were in the tenure 
stream in the United States, according to fig-
ures amassed by the American Association of 
University Professors (AAUP). By 1975, that 
number had dropped to 56%, and it continued 
to fall. Only 42% received tenure in 1995, 

A C A D E M I A

The changing  
face of tenure
Although still highly desirable, tenure is not as prevalent as 
it was in some places — and that may not be a bad thing.
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CREDIT: Kelly Krause, AAAS Undergraduates also carry an
increasing share of the load, she
adds: Their tuition, often paid with
student loans, rises as more funds
go to research. Their teachers,
meanwhile, increasingly are
cut-rate adjuncts rather than the
famous professors the recruiting
brochures boast about.

http://sciencecareers.sciencemag.org

Issues & Perspectives  

Academia's Crooked Money
Trail
“Follow the money!”
According to the film All the
President's Men
(http://www.imdb.com/title
/tt0074119/quotes

%E2%80%9D)) , this advice from the shadowy informant
known as Deep Throat guided Washington Post reporters Bob
Woodward and Carl Bernstein in cracking the Watergate
conspiracy.

The strategy also serves Georgia State University economist
Paula Stephan (http://www2.gsu.edu/~ecopes/) extremely
well in her illuminating and accessible new book, How
Economics Shapes Science (http://www.hup.harvard.edu
/catalog.php?recid=31302) . A leading expert on the
scientific labor market, Stephan isn’t looking to sniff out
high-level government corruption. Rather, using the “tool bag”
economics provides for “analyzing the relationships between
incentives and costs,” she penetrates the financial structure of
university-based science, explaining the motivation and behavior of everyone from august university presidents and
professors to powerless and impecunious graduate students and postdocs.

It's a remarkably revealing approach. Most of what the public hears about the arrangements that govern research comes
from reports by blue-ribbon commissions, prestigious panels, and university-oriented advocacy organizations. Such reports
rarely use hard-headed economic analysis; rather, the groups writing them tend to consist of top administrators at leading
universities, eminent faculty members in major science and engineering departments, and high executives of large
corporations -- “not,” Stephan pointedly notes, “students and postdocs who could not find jobs.”

The documents that result from those high-end studies lean toward self-congratulatory invocations of science’s role in
advancing human welfare. Their suggestions generally favor solving what ails universities by giving them more of what they
already have: funding, grants, graduate students, and postdocs. But, warns Stephan with an astringency that she infuses
throughout the book, when “assessing recommendations, one should be leery of those coming from groups who have a
vested interest in keeping the system the way it is.”

The consequences of cost and risk

The troubles plaguing academic science -- including fierce competition for funding, dismal career opportunities for young
scientists, overdependence on soft money, excessive time spent applying for grants, and many more -- do not arise,
Stephan suggests, from a shortage of funds. In 2009, she notes, the United States spent nearly $55 billion on university-
and medical school–based research and development, far more than any other nation.

Academia's Crooked Money Trail - Science Careers - Biotech, ... http://sciencecareers.sciencemag.org/career_magazine/previous_...
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soft money positions.” Stephan also wants more attention paid to the potential advantages and disadvantages of funding
systems that support researchers over time, as the Howard Hughes Medical Institute has done with great success, rather
than for specific, short-term projects. Importantly, she notes, “universities and faculty members do not respond to
recommendations that lack teeth.”

The short space at my disposal allows me to present just a hint of the penetrating discoveries waiting in this book: How and
to what extent does patenting enrich some faculty members and universities? What incentives encourage universities to
import increasing numbers of foreign students and postdocs -- and to insist that there are shortages of both -- while a
growing surplus of native-born scientists struggle to find jobs that allow them to pay off student loans? How do universities
continue to attract students into graduate programs despite poor odds of attaining the careers they desire? Why does
supporting scientists over time, rather than individual grant-funded projects, appear to produce better science?

These and many other apparent quandaries yield to Stephan’s rigorous and clear-eyed examination of the money trail. She
conveys her findings in clear, comprehensible prose. If you want to understand what is really happening in American
academic science today, here’s my advice: Read this enlightening book.

Beryl Lieff Benderly writes from Washington, D.C.

10.1126/science.caredit.a1200001
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• Are stellar careers an anomaly?

• Are there statistical regularities in success?

• Are there universal mechanisms that guide success?

Using quantitative 
methods developed 
in statistical physics 

 to address 
questions in 
sociology.....

Opening Questions
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1. Empirical evidence: production, impact, longevity

2. Quantitative career longevity model: based on       
the Matthew “rich-get-richer” effect 

3. Empirical evidence: Patterns in the growth dynamics 
of careers

4. Quantitative preferential capture model: featuring 
the competition for limited opportunities

Outline of Quantitative Analysis 
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Quantifying impact and productivity in science

“Math-letes”

1. Empirical Facts
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Publication careers of individual scientists 
within individual journals

Our data collection procedure begins with downloading
all “articles” for each journal for year y from ISI Web of
Knowledge. From the set of N!y" articles for each particular
journal and year, we calculate #c!y"$, the average number of
citations per article at the date of data extraction !May 2009".
Each article summary includes a field for a contributing au-
thor’s name identification, which consists of a last name and
first and middle initial %26&. From these fields, we aggregate
the career works of individual authors within a particular
journal. In this paper we develop normalized metrics for ca-
reer success and productivity, while in %16& we compare
theory and empirical data for career longevity.

For each author, we combine all his/her articles in a given
journal. Specifically, a publication career in this paper refers
to the lifetime achievements of a single author within a
single journal, and not the lifetime achievements combined
among the six journals analyzed. We define n as the total
number of papers for a given author in a given journal over
the 50-year period. In analogy with the traditional citation
tally, one can calculate the career success/impact within a
given journal by adding together the citations ci received by
the n papers,

C = '
i=1

n

ci. !1"

Furthermore, one can calculate the career productivity of a
given author within a specific journal as the total number P
of papers published within the journal. A main point raised in
this paper is to discount the value of citation metrics which
do not take into account the time evolution of citation accu-
mulation.

Naturally, some older papers will have more citations than
younger papers only because the older papers have been in
circulation for a longer time. In Fig. 1 we plot #c!y"$, the
average number of citations for articles from a given year,
and confirm that the time dependence of citation accumula-
tion is an important factor. Interestingly, it is found in %10&
that the pdf of citations from papers within a given year and
journal is approximately log normal, where the average value
of the distribution has a time-dependent drift. With increas-
ing time, the pdf approaches a steady state distribution which
is also approximately log normal. Hence, the nonmonotonic-
ity in #c!y"$ suggests that an important factor in the dynamics
of citation counts is the growth with time of the scientific
body and the scientific output. The mechanism underlying

the evolution of citation trends and impact factors is com-
plex, where it is found that citation growth rates decompose
into several components in addition to the growth of science
%11&. Another criticism of Eq. !1" is that it does not take into
account the variability in number of coauthors, which varies
both within and across discipline !see Fig. 3".

To remedy these problems, we propose a simple success
metric termed citation shares, which normalizes the citations
ci!y" of paper i by #c!y"$, the average number of citations for
papers in a given journal in year y, and divides the quantity
ci!y" / #c!y"$ into equally distributed shares among the ai co-
authors. Dividing the shares equally will obviously discount
the value of the efforts made by greater contributors while
raising the value of the efforts made by lesser contributors.
Without more accurate reporting schemes on the extent of
each authors’ contributions !as is now implemented in e.g.,
Nature and PNAS", dividing the shares equally is the most
reasonable method given the available data. Hence, we cal-
culate the normalized career citation shares as

Cs = '
i=1

n
1
ai

ci!y"
#c!y"$

. !2"

An analogous estimator for career productivity is Ps, the total
number of paper shares within a given journal,

Ps = '
i=1

n
1
ai

, !3"

which partitions the credit for each publication into equal
shares among the ai coauthors.

There is another sampling bias that we address. Currently,
we assume that all careers are comparable in their duration,
or more precisely, maturity. However, without further consid-
eration, this assumption would ensure that we are comparing
the careers of graduate students with seasoned professors.

TABLE I. Summary of data set size for each journal. Total num-
ber N of unique !but possibly degenerate" name identifications.

Journal Years Articles Authors, N

CELL 1974–2008 53290 31918
NEJM 1958–2008 17088 66834
Nature 1958–2008 65709 130596
PNAS 1958–2008 84520 182761
PRL 1958–2008 85316 112660
Science 1958–2008 48169 109519
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FIG. 1. !Color online" The average number of citations #c!y"$
per article for each journal in year y demonstrates the time depen-
dence of citations. This quantity serves as a normalizing factor, so
that we can detrend citation values across different years. The popu-
lar Impact Factor !IF" %10,11& of a journal for a particular year is
the average number of citations obtained in a given year for articles
published over the previous two years. In this paper we restrict our
analysis to journals with large IF, ensuring that there is considerable
competition for limited publication space in such journals.
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Measures for “career longevity” in academia

• Each author i has n articles in a given journal j.  As a proxy 
for career longevity in academia,  we define the journal 
longevity x as the number of years separating his/her first 
and last publication in journal j : 

xi,j = yi,j (f) - yi,j (0) +1
Thursday, February 9, 2012



Empirical distributions in high-impact journals

100 101

x (career longevity in years)

10-5

10-4

10-3

10-2

10-1

100
P(

x)

Nature
PNAS
Science

100 101 10210-5

10-4

10-3

10-2

10-1

100

P(
x)

CELL
NEJM
PRL

E F

• Each author i has n articles in a given journal j.  As a proxy 
for career longevity in academia,  we define the journal 
longevity x as the number of years separating his/her first 
and last publication in journal j : 

A. M. Petersen, W.-S. Jung, J.-S. Yang, H. E. Stanley, “Quantitative and empirical demonstration of the Matthew 
effect in a study of career longevity.“  Proc. Natl. Acad. Sci. USA 108, 18-23 (2011).

xi,j = yi,j (f) - yi,j (0) +1
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Empirical evidence for the Matthew Effect

• For a given journal:                       
the waiting time  τ(n) 
is the number of years 
between an author’s 
paper n and paper n+1 

• A decreasing  τ(n) 
indicates that it 
becomes “easier” to 
publish in a journal 
with each successive 
publication

n and the paper n+1. The values of !!"1#$ for each journal
are 2.2 "CELL, PRL#, 3.0 "Nature, PNAS, Science# and 3.5
"NEJM# years. The decrease in waiting time between publi-
cations is a signature of the cumulative advantage mecha-
nism qualitatively described in %19& and quantitatively ana-
lyzed in %16,18&. To avoid presenting statistical fluctuations
arising from the small size of data sets, we only present
!!"n#$ computed for data sets exceeding 75 observations.

To explain the steady decline of the curve for PRL we
mention that PRL has many authors with many articles
"n"100#. A possible explanation is that a significant number
of these authors are involved in large particle accelerator
experiments with multiple collaborating groups. These mul-
tilateral projects contribute significantly to the heavy tail ob-
served in the pdf of the number of authors per paper "Fig. 3#.
Hence, the decay in the curve for PRL which approaches
zero might be due to the project leaders at large experimental

institutions which produce over many years many significant
results per year. Furthermore, the organization of the curves
in Fig. 7 suggests that it is more difficult at the beginning of
a career to repeatedly publish in CELL than PRL. Reaching a
crossover point along the career ladder is a generic phenom-
enon observed in many professions. Accordingly, surmount-
ing this abstract crossover is motivated by significant per-
sonal incentives, such as salary increase, job security, and
managerial responsibility.

IV. DISCUSSION

Scientific careers share many qualities with other com-
petitive careers, such as the careers of professional sports
players, inventors, entertainers, actors, and musicians
%15,32,33&. Limited resources such as employment, salary,
creativity, equipment, events, data samples, and even indi-
vidual lifetime contribute to the formation of generic arenas
for competition. Hence, of interest here is the distribution of
success and productivity in high-impact journals which in
principle have high standards of excellence.

In science, there are unwritten guides to success requiring
ingenuity, longevity, and publication. We observe a quantifi-
able statistical regularity describing publication careers of
individual scientists across both time and discipline. Interest-
ingly, we find that the scaling exponent for individual papers
"#'3# is larger than the scaling exponent for total citation
shares "$'2.5# and the scaling exponent for total paper
shares "$'2.6#, which indicates that there is a higher fre-
quency of stellar careers than stellar papers. This is consis-
tent with the observation that a stellar career can result from
an arbitrary combination of stellar papers and consistent suc-
cess, as demonstrated in Table III. In all, the statistical regu-
larity found in the distributions for both citation shares and
paper shares lend naturally to methods based on extreme
statistics in order to distinguishing stellar careers. Such
methods have been developed for Hall of Fame candidacy in
baseball %16,34&, where statistical benchmarks are estab-
lished using the distribution of success.

Statistical physicists have long been interested in complex
interacting systems, and are beginning to succeed in describ-
ing social dynamics using models that were developed in the
context of concrete physical systems %35&. This study is in-
spired by the long term goal of using quantitative methods
from statistical physics to answer traditional questions rooted
in social science %36&, such as the nature of competition,
success, productivity, and the universal features of human
activity. Many studies begin as empirical descriptions, such
as the studies of common mobility patterns %37&, sexuality
%38,39&, and financial fluctuations %40&, and lead to a better
understanding of the underlying mechanics. It is possible that
the empirical laws reported here will motivate useful descrip-
tive theories of success and productivity in competitive en-
vironments.
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TABLE IV. Summary of paper shares for “completed” careers.
The value of the log-normal fit parameters % and & correspond to
the pdf before the cutoff value of Ps

c'2 paper shares. The values of
$ are calculated using a data values after the cutoff Ps

c(1 paper
shares, which corresponds to approximately 8% of the total data for
each journal.

Journal % & $

CELL −1.7'0.1 0.7'0.1 2.60'0.05
NEJM −1.7'0.1 1.0'0.1 2.60'0.02
Nature −1.3'0.1 1.0'0.1 2.74'0.05
PNAS −1.6'0.1 0.7'0.1 2.56'0.02
PRL −1.1'0.1 1.0'0.1 2.35'0.02
Science −1.4'0.1 0.9'0.1 2.61'0.02
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FIG. 7. "Color online# A decreasing waiting time !"n# between
publications in a given journal suggests that a longer publication
career "larger n# facilitates future publications, as predicted by the
Matthew effect. We plot !!"n#$ / !!"1#$, the average waiting time
!!"n#$ between paper n and paper n+1, rescaled by the average
waiting time between the first and second publication, !!"1#$. The
values of !!"1#$ are 2.2 "CELL, PRL#, 3.0 "Nature, PNAS, Science#,
and 3.5 "NEJM# years. Physical Review Letters exhibits a more
rapid decline in !"n#, reflecting the rapidity of successive publica-
tions "often by large high-energy experiment collaborations#, which
is possible in this high-impact letters journal.
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Journals as “arenas for competition”

! = 1 +
N

!
i

ln"Cs
i /Cs

c#
, "5#

with standard error,

"! $ "! − 1#/%N . "6#

For each journal, the number of data points N greater than Cs
c

used in the calculation of ! is approximately 10% of the total
data set size N!. Remarkably, the scaling exponent for cita-
tion statistics of completed careers is approximately 2.5 for
all journals analyzed. Hence, we find convincing evidence
for a universal scaling function representing the distribution
of citation shares for scientific careers in competitive high-
impact journals. Interestingly, the values of ! for each jour-
nal are less than the values of #$3 which describes the
scaling of normalized single article citation counts in Fig. 2.
This result implies that the success of individuals over their
entire careers is not related in a simple way to the success of
a random number of independent articles. Instead, there is a

larger number of stellar careers than would be expected from
the number of stellar papers.

Another illustrative method for comparing the distribution
of success across the entire range of individuals is the popu-
lar Zipf plot, which is mathematically related to the pdf &1,9'.
In Fig. 5 we plot Cs versus rank for the same set of com-
pleted careers analyzed in Fig. 4"b#. The Zipf plot empha-
sizes the scaling in the tail of the pdf, which is represented
by high rank values. We calculate the scaling exponent of the
Zipf plot for rank values in the range 10$r$rc for each
journal, where rc corresponds to the number of data points
incorporated into the calculation of ! using Hill’s MLE.
These values are in approximate agreement with the ex-
pected relationship 1+1 /%$!.

The small range of % values across journals "see Table II#
demonstrates that our normalization procedure places scien-
tific accomplishments on a comparable footing across both
time and discipline. In Table III we list the top 20 publication
careers according to citation shares. This table consists
mostly of careers that have many papers of significant im-
pact; however, it also contains a few careers that are distin-
guished by a small number of seminal papers. Hence, while
longevity at the upper tier of science is good at assuring
reputation and success, there are also a few instances of suc-
cess achieved via a singular yet monumental accomplish-
ment.

C. Paper shares

We now focus on scientific productivity, quantified by the
number of papers published by a given author. In Fig. 6 we
plot the pdfs for paper shares defined in Eq. "3#. In order to
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FIG. 4. "Color online# We estimate the career success of a sci-
entist within a given journal using the citation shares metric Cs
defined in Eq. "2#, which accounts for both the number of authors
and the age of the paper. "a# PDF of total raw citations C according
to Eq. "1# for “completed” careers. "b# PDF of total citation shares
Cs according to Eq. "2# for “completed” careers. A given career is
considered “complete” if there is a large likelihood that the data set
contains all of the particular author’s publications. The normaliza-
tion procedure results in significant data collapse in panel "b#, with
the value of the scaling exponent !$2.5 for all journals analyzed.
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FIG. 5. "Color online# The Zipf plot emphasizes the stellar ca-
reers corresponding to large Cs, the total number of citation shares
within a particular journal defined in Eq. "2#, and shows a signifi-
cant scaling regime corresponding to the top-ranking “champions”
of each journal. For comparison, we list the top 20 careers within
the journals CELL, NEJM, and PRL in Table III. The total number
of career citation shares for a particular author in a given journal
serves as a proxy for the career success of the scientist. The statis-
tical regularity in the rank ordering of scientific achievement ex-
tends over four orders of magnitude. The similarity in scaling ex-
ponent among the journals analyzed possibly suggests that there are
fundamental forces governing success in competitive arenas such as
high-impact journals. For visual clarity, we plot the power law with
scaling exponent %(0.5.
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Our data collection procedure begins with downloading
all “articles” for each journal for year y from ISI Web of
Knowledge. From the set of N!y" articles for each particular
journal and year, we calculate #c!y"$, the average number of
citations per article at the date of data extraction !May 2009".
Each article summary includes a field for a contributing au-
thor’s name identification, which consists of a last name and
first and middle initial %26&. From these fields, we aggregate
the career works of individual authors within a particular
journal. In this paper we develop normalized metrics for ca-
reer success and productivity, while in %16& we compare
theory and empirical data for career longevity.

For each author, we combine all his/her articles in a given
journal. Specifically, a publication career in this paper refers
to the lifetime achievements of a single author within a
single journal, and not the lifetime achievements combined
among the six journals analyzed. We define n as the total
number of papers for a given author in a given journal over
the 50-year period. In analogy with the traditional citation
tally, one can calculate the career success/impact within a
given journal by adding together the citations ci received by
the n papers,

C = '
i=1

n

ci. !1"

Furthermore, one can calculate the career productivity of a
given author within a specific journal as the total number P
of papers published within the journal. A main point raised in
this paper is to discount the value of citation metrics which
do not take into account the time evolution of citation accu-
mulation.

Naturally, some older papers will have more citations than
younger papers only because the older papers have been in
circulation for a longer time. In Fig. 1 we plot #c!y"$, the
average number of citations for articles from a given year,
and confirm that the time dependence of citation accumula-
tion is an important factor. Interestingly, it is found in %10&
that the pdf of citations from papers within a given year and
journal is approximately log normal, where the average value
of the distribution has a time-dependent drift. With increas-
ing time, the pdf approaches a steady state distribution which
is also approximately log normal. Hence, the nonmonotonic-
ity in #c!y"$ suggests that an important factor in the dynamics
of citation counts is the growth with time of the scientific
body and the scientific output. The mechanism underlying

the evolution of citation trends and impact factors is com-
plex, where it is found that citation growth rates decompose
into several components in addition to the growth of science
%11&. Another criticism of Eq. !1" is that it does not take into
account the variability in number of coauthors, which varies
both within and across discipline !see Fig. 3".

To remedy these problems, we propose a simple success
metric termed citation shares, which normalizes the citations
ci!y" of paper i by #c!y"$, the average number of citations for
papers in a given journal in year y, and divides the quantity
ci!y" / #c!y"$ into equally distributed shares among the ai co-
authors. Dividing the shares equally will obviously discount
the value of the efforts made by greater contributors while
raising the value of the efforts made by lesser contributors.
Without more accurate reporting schemes on the extent of
each authors’ contributions !as is now implemented in e.g.,
Nature and PNAS", dividing the shares equally is the most
reasonable method given the available data. Hence, we cal-
culate the normalized career citation shares as

Cs = '
i=1

n
1
ai

ci!y"
#c!y"$

. !2"

An analogous estimator for career productivity is Ps, the total
number of paper shares within a given journal,

Ps = '
i=1

n
1
ai

, !3"

which partitions the credit for each publication into equal
shares among the ai coauthors.

There is another sampling bias that we address. Currently,
we assume that all careers are comparable in their duration,
or more precisely, maturity. However, without further consid-
eration, this assumption would ensure that we are comparing
the careers of graduate students with seasoned professors.

TABLE I. Summary of data set size for each journal. Total num-
ber N of unique !but possibly degenerate" name identifications.

Journal Years Articles Authors, N

CELL 1974–2008 53290 31918
NEJM 1958–2008 17088 66834
Nature 1958–2008 65709 130596
PNAS 1958–2008 84520 182761
PRL 1958–2008 85316 112660
Science 1958–2008 48169 109519

1960 1970 1980 1990 2000 2010
Year, y

0

100

200

300

400

500

<c
(y

)>

CELL
NEJM
Nature
PNAS
PRL
Science

FIG. 1. !Color online" The average number of citations #c!y"$
per article for each journal in year y demonstrates the time depen-
dence of citations. This quantity serves as a normalizing factor, so
that we can detrend citation values across different years. The popu-
lar Impact Factor !IF" %10,11& of a journal for a particular year is
the average number of citations obtained in a given year for articles
published over the previous two years. In this paper we restrict our
analysis to journals with large IF, ensuring that there is considerable
competition for limited publication space in such journals.
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Our data collection procedure begins with downloading
all “articles” for each journal for year y from ISI Web of
Knowledge. From the set of N!y" articles for each particular
journal and year, we calculate #c!y"$, the average number of
citations per article at the date of data extraction !May 2009".
Each article summary includes a field for a contributing au-
thor’s name identification, which consists of a last name and
first and middle initial %26&. From these fields, we aggregate
the career works of individual authors within a particular
journal. In this paper we develop normalized metrics for ca-
reer success and productivity, while in %16& we compare
theory and empirical data for career longevity.

For each author, we combine all his/her articles in a given
journal. Specifically, a publication career in this paper refers
to the lifetime achievements of a single author within a
single journal, and not the lifetime achievements combined
among the six journals analyzed. We define n as the total
number of papers for a given author in a given journal over
the 50-year period. In analogy with the traditional citation
tally, one can calculate the career success/impact within a
given journal by adding together the citations ci received by
the n papers,

C = '
i=1

n

ci. !1"

Furthermore, one can calculate the career productivity of a
given author within a specific journal as the total number P
of papers published within the journal. A main point raised in
this paper is to discount the value of citation metrics which
do not take into account the time evolution of citation accu-
mulation.

Naturally, some older papers will have more citations than
younger papers only because the older papers have been in
circulation for a longer time. In Fig. 1 we plot #c!y"$, the
average number of citations for articles from a given year,
and confirm that the time dependence of citation accumula-
tion is an important factor. Interestingly, it is found in %10&
that the pdf of citations from papers within a given year and
journal is approximately log normal, where the average value
of the distribution has a time-dependent drift. With increas-
ing time, the pdf approaches a steady state distribution which
is also approximately log normal. Hence, the nonmonotonic-
ity in #c!y"$ suggests that an important factor in the dynamics
of citation counts is the growth with time of the scientific
body and the scientific output. The mechanism underlying

the evolution of citation trends and impact factors is com-
plex, where it is found that citation growth rates decompose
into several components in addition to the growth of science
%11&. Another criticism of Eq. !1" is that it does not take into
account the variability in number of coauthors, which varies
both within and across discipline !see Fig. 3".

To remedy these problems, we propose a simple success
metric termed citation shares, which normalizes the citations
ci!y" of paper i by #c!y"$, the average number of citations for
papers in a given journal in year y, and divides the quantity
ci!y" / #c!y"$ into equally distributed shares among the ai co-
authors. Dividing the shares equally will obviously discount
the value of the efforts made by greater contributors while
raising the value of the efforts made by lesser contributors.
Without more accurate reporting schemes on the extent of
each authors’ contributions !as is now implemented in e.g.,
Nature and PNAS", dividing the shares equally is the most
reasonable method given the available data. Hence, we cal-
culate the normalized career citation shares as

Cs = '
i=1

n
1
ai

ci!y"
#c!y"$

. !2"

An analogous estimator for career productivity is Ps, the total
number of paper shares within a given journal,

Ps = '
i=1

n
1
ai

, !3"

which partitions the credit for each publication into equal
shares among the ai coauthors.

There is another sampling bias that we address. Currently,
we assume that all careers are comparable in their duration,
or more precisely, maturity. However, without further consid-
eration, this assumption would ensure that we are comparing
the careers of graduate students with seasoned professors.

TABLE I. Summary of data set size for each journal. Total num-
ber N of unique !but possibly degenerate" name identifications.

Journal Years Articles Authors, N

CELL 1974–2008 53290 31918
NEJM 1958–2008 17088 66834
Nature 1958–2008 65709 130596
PNAS 1958–2008 84520 182761
PRL 1958–2008 85316 112660
Science 1958–2008 48169 109519
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FIG. 1. !Color online" The average number of citations #c!y"$
per article for each journal in year y demonstrates the time depen-
dence of citations. This quantity serves as a normalizing factor, so
that we can detrend citation values across different years. The popu-
lar Impact Factor !IF" %10,11& of a journal for a particular year is
the average number of citations obtained in a given year for articles
published over the previous two years. In this paper we restrict our
analysis to journals with large IF, ensuring that there is considerable
competition for limited publication space in such journals.
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Each author has n articles in a 
given journal j. 

Each article i, published in year y, 
can be quantified by the number 

of citations ci it has received at 
the time of data extraction.      

(May, 2009) 
Two possible ways to measure citations:

(i) Total citations: 

(ii) Total citations ``shares”: 

ζ ≈ 2.5
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productivity of scientists across time and discipline” Phys. Rev. E, 81 (2010) 036114 
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Top-20 “champions” of Physical Review Letters

collapse the pdfs for the six journals analyzed, we hypoth-
esize that a universal function for productivity can be written
as P!Ps"= f!Ps / #Ps$". In an effort to compare the pdfs across
discipline, we approximate the generic pdf of paper shares by
a log-normal distribution with a heavy tail after a cutoff
value Ps

c. Quantitatively, we represent the general form of the
pdf as

P!Ps" ! % 1
Ps

exp&− !ln Ps − ""2/2#2' Ps $ Ps
c

Ps
−% Ps & Ps

c

.( !7"

The least-square parameters for the log-normal fit and the
MLE parameter for the scaling regime are listed in Table IV.
The log-normal distribution is consistent with the prediction
by Shockley &23' that productivity !as estimated here by pa-
per shares" is a result of a series of multiplicative factors,
which can lead to log-normal &29', stretched exponential
&30', and even power-law &31' distributions, given the appro-
priate set of systematic conditions.

D. Matthew effect

We conclude this section with quantitative evidence of the
“Matthew effect” in the advancement of scientific careers. In
Fig. 7 we plot the average waiting time between publications
#'!n"$ for all authors that meet the complete career criterion
by averaging the difference in publication year for the paper

TABLE III. The top 20 authors !not necessarily “completed”" in the journals CELL, NEJM, and PRL,
ranked according to citation shares Cs accumulated from their n papers published in each journal. Our
normalization procedure offers one way to quantitatively order the top authors.

CELL NEJM PRL

Name Cs n Name Cs n Name Cs n

GREEN, H 49.7 35 BRAUNWALD, E 30.3 59 WEINBERG, S 313.3 49
BALTIMORE, D 33.8 64 KOCHWESER, J 23.6 28 ANDERSON, PW 137.4 64
MANIATIS, T 29.5 55 MCCORD, JM 20.2 1 WILCZEK, F 120.0 62
SHARP, PA 25.1 41 FINLAND, M 17.4 36 TERSOFF, J 105.1 76
TJIAN, R 23.8 45 HENNEKENS, CH 16.9 36 HALDANE, FDM 102.3 38
LEDER, P 22.4 39 REICHLIN, S 16.7 10 YABLONOVITCH, E 87.5 21
AXEL, R 20.9 52 VECCHIO, TJ 14.8 1 PERDEW, JP 78.3 20
WEINTRAUB, H 20.5 46 STAMPFER, MJ 14.3 45 LEE, PA 74.6 76
KARIN, M 18.5 40 TERASAKI, PI 13.7 29 PENDRY, JB 74.1 29
RUBIN, GM 18.0 52 OSSERMAN, EF 13.7 6 PARRINELLO, M 72.8 68
KOZAK, M 17.1 6 KUNIN, CM 13.5 16 FISHER, ME 71.6 67
ROEDER, RG” 15.5 44 YUSUF, S 13.4 18 CIRAC, JI 66.7 97
RHEINWALD, JG 14.7 7 ROSEN, FS 13.2 42 HALPERIN, BI 66.7 50
EVANS, RM 14.1 32 CHALMERS, TC 13.1 30 RANDALL, L 63.4 14
OFARRELL, PH 13.9 14 AUSTEN, KF 12.9 30 BURKE, K 63.2 18
GLUZMAN, Y 13.3 2 WELLER, TH 12.7 7 JOHN, S 62.8 20
HUNTER, T 13.2 27 GARDNER, FH 12.6 19 GEORGI, H 61.9 26
GOLDSTEIN, JL 13.0 36 DIAMOND, LK 12.6 18 CAR, R 59.8 51
PENMAN, S 12.9 30 FEINSTEIN, AR 12.2 16 GLASHOW, SL 59.6 37
BROWN, MS 12.8 35 MERRILL, JP 11.9 25 CEPERLEY, DM 58.9 39
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FIG. 6. !Color online" As a proxy for career productivity, we
define paper shares Ps in Eq. !3", which accounts for variations in
the size of the collaboration. In order to collapse the pdfs of total
paper shares for completed careers within the six journals analyzed,
we hypothesize that the universal scaling function quantifying pro-
ductivity can be written as P!Ps"= f!Ps / #Ps$". We approximate the
generic pdf of paper shares by a log-normal distribution with a
power-law tail after a cutoff value Ps

c)1. We list the values of the
log-normal parameters " and #, and the scaling parameter % for
each journal in Table IV. !Inset" We plot the pdf for CELL and
PNAS data on log-linear axes for Ps(3 in order to demonstrate the
log-normal form consistent with the prediction by Shockley &23'
that productivity can be modeled as a series of random multiplica-
tive factors.
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Our data collection procedure begins with downloading
all “articles” for each journal for year y from ISI Web of
Knowledge. From the set of N!y" articles for each particular
journal and year, we calculate #c!y"$, the average number of
citations per article at the date of data extraction !May 2009".
Each article summary includes a field for a contributing au-
thor’s name identification, which consists of a last name and
first and middle initial %26&. From these fields, we aggregate
the career works of individual authors within a particular
journal. In this paper we develop normalized metrics for ca-
reer success and productivity, while in %16& we compare
theory and empirical data for career longevity.

For each author, we combine all his/her articles in a given
journal. Specifically, a publication career in this paper refers
to the lifetime achievements of a single author within a
single journal, and not the lifetime achievements combined
among the six journals analyzed. We define n as the total
number of papers for a given author in a given journal over
the 50-year period. In analogy with the traditional citation
tally, one can calculate the career success/impact within a
given journal by adding together the citations ci received by
the n papers,

C = '
i=1

n

ci. !1"

Furthermore, one can calculate the career productivity of a
given author within a specific journal as the total number P
of papers published within the journal. A main point raised in
this paper is to discount the value of citation metrics which
do not take into account the time evolution of citation accu-
mulation.

Naturally, some older papers will have more citations than
younger papers only because the older papers have been in
circulation for a longer time. In Fig. 1 we plot #c!y"$, the
average number of citations for articles from a given year,
and confirm that the time dependence of citation accumula-
tion is an important factor. Interestingly, it is found in %10&
that the pdf of citations from papers within a given year and
journal is approximately log normal, where the average value
of the distribution has a time-dependent drift. With increas-
ing time, the pdf approaches a steady state distribution which
is also approximately log normal. Hence, the nonmonotonic-
ity in #c!y"$ suggests that an important factor in the dynamics
of citation counts is the growth with time of the scientific
body and the scientific output. The mechanism underlying

the evolution of citation trends and impact factors is com-
plex, where it is found that citation growth rates decompose
into several components in addition to the growth of science
%11&. Another criticism of Eq. !1" is that it does not take into
account the variability in number of coauthors, which varies
both within and across discipline !see Fig. 3".

To remedy these problems, we propose a simple success
metric termed citation shares, which normalizes the citations
ci!y" of paper i by #c!y"$, the average number of citations for
papers in a given journal in year y, and divides the quantity
ci!y" / #c!y"$ into equally distributed shares among the ai co-
authors. Dividing the shares equally will obviously discount
the value of the efforts made by greater contributors while
raising the value of the efforts made by lesser contributors.
Without more accurate reporting schemes on the extent of
each authors’ contributions !as is now implemented in e.g.,
Nature and PNAS", dividing the shares equally is the most
reasonable method given the available data. Hence, we cal-
culate the normalized career citation shares as

Cs = '
i=1

n
1
ai

ci!y"
#c!y"$

. !2"

An analogous estimator for career productivity is Ps, the total
number of paper shares within a given journal,

Ps = '
i=1

n
1
ai

, !3"

which partitions the credit for each publication into equal
shares among the ai coauthors.

There is another sampling bias that we address. Currently,
we assume that all careers are comparable in their duration,
or more precisely, maturity. However, without further consid-
eration, this assumption would ensure that we are comparing
the careers of graduate students with seasoned professors.

TABLE I. Summary of data set size for each journal. Total num-
ber N of unique !but possibly degenerate" name identifications.

Journal Years Articles Authors, N

CELL 1974–2008 53290 31918
NEJM 1958–2008 17088 66834
Nature 1958–2008 65709 130596
PNAS 1958–2008 84520 182761
PRL 1958–2008 85316 112660
Science 1958–2008 48169 109519
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FIG. 1. !Color online" The average number of citations #c!y"$
per article for each journal in year y demonstrates the time depen-
dence of citations. This quantity serves as a normalizing factor, so
that we can detrend citation values across different years. The popu-
lar Impact Factor !IF" %10,11& of a journal for a particular year is
the average number of citations obtained in a given year for articles
published over the previous two years. In this paper we restrict our
analysis to journals with large IF, ensuring that there is considerable
competition for limited publication space in such journals.

METHODS FOR MEASURING THE CITATIONS AND… PHYSICAL REVIEW E 81, 036114 !2010"

036114-3

Total citations ``shares”: 

Traditional total citations:

Our data collection procedure begins with downloading
all “articles” for each journal for year y from ISI Web of
Knowledge. From the set of N!y" articles for each particular
journal and year, we calculate #c!y"$, the average number of
citations per article at the date of data extraction !May 2009".
Each article summary includes a field for a contributing au-
thor’s name identification, which consists of a last name and
first and middle initial %26&. From these fields, we aggregate
the career works of individual authors within a particular
journal. In this paper we develop normalized metrics for ca-
reer success and productivity, while in %16& we compare
theory and empirical data for career longevity.

For each author, we combine all his/her articles in a given
journal. Specifically, a publication career in this paper refers
to the lifetime achievements of a single author within a
single journal, and not the lifetime achievements combined
among the six journals analyzed. We define n as the total
number of papers for a given author in a given journal over
the 50-year period. In analogy with the traditional citation
tally, one can calculate the career success/impact within a
given journal by adding together the citations ci received by
the n papers,

C = '
i=1

n

ci. !1"

Furthermore, one can calculate the career productivity of a
given author within a specific journal as the total number P
of papers published within the journal. A main point raised in
this paper is to discount the value of citation metrics which
do not take into account the time evolution of citation accu-
mulation.

Naturally, some older papers will have more citations than
younger papers only because the older papers have been in
circulation for a longer time. In Fig. 1 we plot #c!y"$, the
average number of citations for articles from a given year,
and confirm that the time dependence of citation accumula-
tion is an important factor. Interestingly, it is found in %10&
that the pdf of citations from papers within a given year and
journal is approximately log normal, where the average value
of the distribution has a time-dependent drift. With increas-
ing time, the pdf approaches a steady state distribution which
is also approximately log normal. Hence, the nonmonotonic-
ity in #c!y"$ suggests that an important factor in the dynamics
of citation counts is the growth with time of the scientific
body and the scientific output. The mechanism underlying

the evolution of citation trends and impact factors is com-
plex, where it is found that citation growth rates decompose
into several components in addition to the growth of science
%11&. Another criticism of Eq. !1" is that it does not take into
account the variability in number of coauthors, which varies
both within and across discipline !see Fig. 3".

To remedy these problems, we propose a simple success
metric termed citation shares, which normalizes the citations
ci!y" of paper i by #c!y"$, the average number of citations for
papers in a given journal in year y, and divides the quantity
ci!y" / #c!y"$ into equally distributed shares among the ai co-
authors. Dividing the shares equally will obviously discount
the value of the efforts made by greater contributors while
raising the value of the efforts made by lesser contributors.
Without more accurate reporting schemes on the extent of
each authors’ contributions !as is now implemented in e.g.,
Nature and PNAS", dividing the shares equally is the most
reasonable method given the available data. Hence, we cal-
culate the normalized career citation shares as

Cs = '
i=1

n
1
ai

ci!y"
#c!y"$

. !2"

An analogous estimator for career productivity is Ps, the total
number of paper shares within a given journal,

Ps = '
i=1

n
1
ai

, !3"

which partitions the credit for each publication into equal
shares among the ai coauthors.

There is another sampling bias that we address. Currently,
we assume that all careers are comparable in their duration,
or more precisely, maturity. However, without further consid-
eration, this assumption would ensure that we are comparing
the careers of graduate students with seasoned professors.

TABLE I. Summary of data set size for each journal. Total num-
ber N of unique !but possibly degenerate" name identifications.

Journal Years Articles Authors, N

CELL 1974–2008 53290 31918
NEJM 1958–2008 17088 66834
Nature 1958–2008 65709 130596
PNAS 1958–2008 84520 182761
PRL 1958–2008 85316 112660
Science 1958–2008 48169 109519
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FIG. 1. !Color online" The average number of citations #c!y"$
per article for each journal in year y demonstrates the time depen-
dence of citations. This quantity serves as a normalizing factor, so
that we can detrend citation values across different years. The popu-
lar Impact Factor !IF" %10,11& of a journal for a particular year is
the average number of citations obtained in a given year for articles
published over the previous two years. In this paper we restrict our
analysis to journals with large IF, ensuring that there is considerable
competition for limited publication space in such journals.
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The “righ-get-richer” Matthew Effect:

“For to all those who have, more will be 
given, and they will have an abundance” 

Gospel of St. Matthew 25: 29

2. Longevity Model

~ 2000+ year old sociological effect!
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A stochastic model for 
career longevity

• Ingredient I: Random forward progress                 
Experience and reputation can provide 

positive feedback in sustaining a career                        

( generic “rich-get-richer” effect)

• Ingredient II: Random termination time         

Career must survive through a horizon 
of hazards which eventually terminate 

the career 
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Ingredient 1: Random forward progress
•  Forward progress is made according to the “progress rate” g(x) 

• Matthew Effect: g(x) increases with career position x 

Quantitative and empirical demonstration of the Matthew effect in a

study of career longevity
Alexander M. Petersen1, Woo-Sung Jung1, Jae-Suk Yang2, H. Eugene Stanley1

1 Center for Polymer Studies and Department of Physics, Boston University, MA, USA
2Department of Physics, Korea University, Seoul 136-701,  Republic of Korea

Abstract

“One-hit wonders” and “Iron Horses”

Stochastic model for career progress: spatial Poisson process

The “Rich-get-richer” Matthew effect Career success metrics in sports

Decreasing inter-publication time !(n)
The Matthew effect refers to the adage written some two-thousand years ago in the Gospel of St.
Matthew: ``For to all those who have, more will be given". Even two millennia later, this idiom is
used by sociologists to qualitatively describe individual progress and the interplay between status
and reward. Quantitative studies of professional careers are traditionally limited by the difficulty in
measuring progress and the lack of data on individual careers. However, in some professions,
there are well-defined metrics that quantify career longevity, success, and prowess, which together
contribute to the overall success rating for an individual employee. Here we demonstrate  testable
evidence, inherent  in the remarkable statistical regularity of career longevity distributions, of the
age-old Matthew ``rich get richer"  effect, in which  longevity and past success lead to cumulative
advantage.  We develop an exactly solvable  stochastic model that quantitatively incorporates  the
Matthew  effect such that it can be validated in competitive professions. These results demonstrate
that statistical laws can exist at even the microscopic social level, where the collective behaviour of
individuals can lead to emergent phenomena. We test our model on the careers of 400,000
scientists using data from six high-impact journals. We further confirm our findings by testing the
model on the careers of more than 20,000 athletes in four sports leagues.
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We analyze the professional careers of:

• 400,000 scientists publishing in 6 high-impact journals: Nature, the Proceedings of the

National Academy of Science, Science, CELL, the New England Journal of Medicine,

and Physical Review Letters

• 20,000 professional athletes: Major League Baseball (1920-2004), Korean

Professional Baseball League 1982-2007, National Basketball Association 1946-2004,

English Premier League 1992-2007

Theoretical curves (solid green lines) derived from our stochastic model show excellent

agreement with empirical data. We define metrics for career longevity that are inherently

related to the time spent in the career, and according to the available data.

•  scientific longevity: x = y last - y first+1

 which is the time interval in years between a scientist’s first and last publication in a

given high-impact journal

• sports longevity: x = total number of in-game opportunities over the career

- Baseball: At-bats (AB), Innings Pitched in Outs (IPO)

- Basketball: minutes played

- Soccer: games played

We model progress in competitive professions as a random hopping process with two main ingredients:

• random forward progress up the career ladder

• random stopping times, terminating the career

We solve the corresponding master equation governing the evolution of P(x,t), the probability that an individual is at career

position x at time t. The progress rate parameter g(x) determines the relative difference in late-career progress versus

early-career progress. We choose a functional form for g(x) that increases with x, capturing the salient feature of the

Matthew effect that it becomes easier to make progress the further along is the career.

- ``For to all those who have, more will be given”
Matthew 25:29

For " > 1 :  P(x) is bimodal

For " < 1 :  P(x) is a truncated power-law,

We choose a functional form for the progress rate g(x) which is characterized by two parameters:

(1) " is a scaling exponent which quantifies the growth of g(x) for small values of x. For small x < xc  the progress rate g(x) ~ x"

Two different types of career longevity probability density function (pdf) emerge depending on the value of " :

(i) For convex " > 1 it is more difficult to make progress early in the career, and hence, P(x) is bimodal, with one group of stunted

careers grouped around small x < xc values and another group of successful careers grouped around larger x > xc values.

(ii) For concave " < 1 it is easier to make progress early in the career. This feature results in a remarkable statistical regularity

over several orders of magnitude captured by a truncated power-law with scaling exponent ".

(2)  xc is a career length scale which separates newcomers from veterans on the career ladder. The width xw of the “potential barrier”   

which newcomers must overcome scales as   xw / xc ! xc
-1/"

We observe " < 1 for all careers analyzed. The statistical regularity implies that the relative number of individuals with career longevity

x1and  x2 are given approximately by the ratio   P(x1)/P(x2) = (x2/x1)" which is quantified only by a scale-free ratio and the  scaling

exponent.

xw

Xc # 103

" = 0.40
In sports, successes are obtained in proportion to the total number of opportunities.

Hence, the probability density function P(z) of career successes z is also a truncated

power law with the same scaling exponent " as the corresponding longevity

distribution.

•  (A) MLB Baseball: xc
Hits ! 1200, xc

RBI ! 600.

  One hit wonders: 5% of all fielders 1920-Present finish career with only 1 hit !

3% of all pitchers finish career with less than an inning pitched!

•  (B) NBA Basketball: xc
Points ! 8000, xc

Rebounds ! 3500

Furthermore, we approximate P(z) with the Gamma pdf, and use the extreme
statistics of the Gamma distribution to estimate benchmarks which distinguish stellar
careers (e.g. Hall of Fame). See [1] and [2] for a discussion of establishing statistically
significant milestones for HR, K, RBI, and W in professional baseball.

See Ref. [1,2,4] for more details.

See Ref. [1] for more details.

See Ref. [3] for more details.
See Ref. [1] for more details.

.

.

.

See Ref. [1,2,3,4] for more details.

We analyze the inter-publication waiting time !(n) between an author’s paper n and

paper n+1 in a given journal. The quantity !(n) is inversely proportional to the

progress probability g(x) used in the stochastic model. We find that the average

inter-publication time ‹ !(n) › decreases with increasing number publications,

consistent with the Matthew effect. The values of ‹ !(1) › are 2.2 (CELL, PRE), 3.0

(Nature, PNAS, Science), and 3.5 (NEJM) years.

‹ !(n) › = 1 / g(n)

Lou Gehrig HOF plaque

λ ≡ g(x) 

Poisson Distribution

P(x, t) =
e−λt(λt)x−1

(x−1)!

Master Equation 
approach {

P(x , t) = probability that career is at position x at time t
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Progress rate: 

xc =1000

• xc ≡ career position time-scale which separates veterans from 
newcomers.

• α ≡  quantifies the rate at which an individual climbs the                  
“career ladder” :  g(x) ~ x α  for x ≪ xc  

“ potential well”, width xw

xw/xc ≈ x−1/α
c

g(x)≡ 1− e−(x/xc)α

0 1000 2000 3000
x (opportunities)

0
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1
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Ingredient II: Random Termination Time 

• Termination of career can occur for many reasons:  

• decreased work performance

• economic downturn

• health and other biological factors

• forced retirement / change of profession

• So we choose a constant hazards model,  H(T) = 1/xc  which 
corresponds to a pdf of termination times:

•  Hence, the career position at termination time T = career 
longevity.  Hazard rate H(T): conditional probability that 
termination will occur at time (T + δT) given that termination has 
not yet occurred at time T

S(T ) = 1−
Z T

0
r(t)dtH(T ) =

r(T )
S(T )

=− ∂
∂T

lnS(T )

r(T ) = exp[−T/xc]/xc
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Progress rate g(x) + Career Longevity pdf  P(x)

• α ≡ power-law exponent for career longevity, which is intrinsically 
related to the rate at which individuals establish their reputation 
and secure future opportunity based on prior success. 

for concave α < 1 : 

xc =1000

for convex α > 1 : 
Bimodal

P(x) ∝
�

x−α x < xc
e−(x/xc) x > xc

100 101 102 103

x (opportunities)
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10-4
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10-2
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100

P(
x)

 α  = 2.0
 α  = 1.5
 α  = 1.0
 α  = 0.8
 α  = 0.6

 α

P(x) =
g(x)x−1

xc[ 1
xc

+g(x)]x
≈ 1

g(x)xc
e−

x
g(x)xc

x (career longevity)

P(x)

 ← “no man’s →
   land”
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Empirical Results: 
Career longevity in professional 

basketball (NBA)
• Analyzed 2700+ completed careers   

over the 59-yr period 1946-2004

• x ≡ career longevity (e.g.  min. or games 
played)

• P(x): probability density function (pdf)   
of career longevity x

• P(x) is truncated power-law:  

• scaling exponent α ≲ 1

• Exponential cutoff xc:             
Finite-lifetime

• Scale Free behavior:                                                      
P(x1)/P(x2) ≅ (x2/x1)α  for x < xc 

• 3% of players played between  1-12 minutes in their entire career! 
However, the average career length is approx. <x> = 6,500 min., 
Max(x) = 57,446 min. (Kareem A.-Jabbar)

• 2% of players played in only 1 game in their entire career!        
<x> = 273 games ~ 3 seasons, Max(x) = 1,611 games (R. Parish)

101 102 103 104 105

career longevity, x
10-7
10-6
10-5
10-4
10-3
10-2
10-1

P(
x)

x = Minutes

100 101 102 103 104

career longevity, x
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P(
x)
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A

B

 α = 0.63

 α = 0.50
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Career Longevity in 4 sports leagues

opportunities ~ time duration

• 130+ years of player 
statistics, ~ 15,000 careers

Major League Baseball

• 3% of all fielders finish their 
career with ONE at-bat!

• 3% of all pitchers finish their 
career with less than one 
inning pitched!

``One-hit wonders”

``Iron horses”

• Lou Gehrig (the Iron Horse): NY Yankees 
(1923-1939)

• Played in 2,130 consecutive games in 15 
seasons! 8001 career at-bats!

•  Career & life stunted by the fatal 
neuromuscular disease, amyotrophic lateral 
sclerosis (ALS), aka Lou Gehrig’s Disease
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AB (USA, MLB)

101 102 103 104 105

10-6

10-4

10-2

P(
x)

Minutes

100 101 102 103 104

x (career longevity in opportunities)

10-7

10-5

10-3

10-1
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C D

α = 0.77
α = 0.63

α = 0.71 α = 0.55
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Baseball (pitchers)

Basketball (NBA)
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New statistical laws for success!
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Implications of longevity on career success
American Basketball (NBA + ABA): 1946-2004

• Career longevity exponents α carry over naturally into career statistics

z = career success total ∝ career longevity
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Right-skewed phenomena in the social sciences
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claims to have had over 20,000+ sexual partners....

U
nlike clearly defined ‘real-world’ net-
works1, social networks tend to be
subjective to some extent2,3 because

the perception of what constitutes a social
link may differ between individuals. One
unambiguous type of connection, however,
is sexual contact, and here we analyse the
sexual behaviour of a random sample of
individuals4 to reveal the mathematical fea-
tures of a sexual-contact network. We find
that the cumulative distribution of the
number of different sexual partners in one
year decays as a scale-free power law that
has a similar exponent for males and
females. The scale-free nature of the web of
human sexual contacts indicates that strat-
egic safe-sex campaigns are likely to be the
most efficient way to prevent the spread of
sexually transmitted diseases.

Many real-world networks1 typify the
‘small-world’ phenomenon5, so called
because of the surprisingly small average
path lengths between nodes6,7 in the 
presence of a large degree of clustering3,6

(Fig. 1). Small-world networks are classed
as single-scale, broad-scale or scale-free,
depending on their connectivity distribu-
tion, P(k), where k is the number of links
connected to a node8. Scale-free networks,
which are characterized by a power-law
decay of the cumulative distribution
P(k)!k!", may be formed as a result of
preferential attachment of new links
between highly connected nodes9,10.

We analysed the data gathered in a 1996
Swedish survey of sexual behaviour4. The
survey involved a random sample of 4,781
Swedes (aged 18–74 years) and used struc-
tured personal interviews and question-

naires. The response rate was 59%, which
corresponds to 2,810 respondents. Two
independent analyses of non-response error
revealed that elderly people, particularly
women, are under-represented in the sam-
ple; apart from this skew, the sample is rep-
resentative in all demographic dimensions.

Connections in the network of sexual
contacts appear and disappear as sexual
relations are initiated and terminated. To
investigate the connectivity of this dynamic
network, in which links may be short-lived,
we first analysed the number, k, of sex part-
ners over a relatively short time period —
the 12 months before the survey. Figure 2a
shows the cumulative distribution, P(k), for
female and male respondents. The data
closely follow a straight line in a double-
logarithmic plot, which is consistent with 
a power-law dependence. Males report a
larger number of sexual partners 
than females11, but both show the same 
scaling properties.

These results contrast with the exponen-
tial or gaussian distributions — for which
there is a well-defined scale — found for
friendship networks8. Plausible explana-
tions for the structure of the sexual-contact
network described here include increased
skill in acquiring new partners as the num-
ber of previous partners grows, varying
degrees of attractiveness, and the motiva-
tion to have many new partners to sustain
self-image. Our results are consistent with
the preferential-attachment mechanism of
scale-free networks: evidently, in sexual-
contact networks, as in other scale-free 
networks, ‘the rich get richer’9,10.

We next analysed the total number of

partners, ktot, in the respondent’s life up to
the time of the survey. This value is not 
relevant to the instantaneous structure of
the network, but may help to elucidate the
mechanisms responsible for the distribu-
tion of number of partners. Figure 2b shows
the cumulative distribution, P(ktot): for
ktot#20, the data follow a straight line in a
double-logarithmic plot, which is consis-
tent with a power-law dependence in the
tails of the distribution.

Our most important finding is the scale-
free nature of the connectivity of an 
objectively defined, non-professional social
network. This result indicates that the 
concept of the ‘core group’ considered in
epidemiological studies12 must be arbitrary,
because there is no well-defined threshold
or boundary that separates the core group
from other individuals (as there would be
for a bimodal distribution).

Our results may have epidemiological
implications, as epidemics arise and propa-
gate much faster in scale-free networks 
than in single-scale networks6,13. Also, the
measures adopted to contain or stop the
propagation of diseases in a network need
to be radically different for scale-free net-
works. Single-scale networks are not sus-
ceptible to attack at even the most
connected nodes, whereas scale-free net-
works are resilient to random failure but are
highly susceptible to destruction of the
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The web of human sexual contacts
Prom iscuous individuals are the vulnerable nodes to target in safe-sex cam paigns.

Figure 1 It’s a small world: social networks have small average

path lengths between connections and show a large degree of

clustering. Painting by Idahlia Stanley.

Figure 2 Scale-free distribution of the number of sexual partners for females and males. a, Distribution of number of partners, k, in the

previous 12 months. Note the larger average number of partners for male respondents: this difference may be due to ‘measurement bias’

— social expectations may lead males to inflate their reported number of sexual partners. Note that the distributions are both linear, 

indicating scale-free power-law behaviour. Moreover, the two curves are roughly parallel, indicating similar scaling exponents. For

females, "$2.54%0.2 in the range k#4, and for males, "$2.31%0.2 in the range k#5. b, Distribution of the total number of part-

ners ktot over respondents’ entire lifetimes. For females, "tot$2.1%0.3 in the range ktot#20, and for males, "tot$1.6%0.3 in the

range 20&ktot&400. Estimates for females and males agree within statistical uncertainty.
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F. Liljeros, et al.,“The web of human sexual contacts,” 
Nature 411, 907 (2001)

“superstars” are not outliers, but are predicted and 
consistent with empirical heavy tailed distributions 

Significant implications for theoretical models of 
disease propogation, quarantine, and treatment!

Superstars play an important role in society, as 
reputation hubs, as social trademarks used for 

economic gain, and as cultural role models
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Persistency and Uncertainty 
in the career trajectory

“publish or perish”

3. Empirical Facts

고집          and            위험
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The academic career trajectory: 
a tale of knowledge and reputation spillovers
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ball Association (NBA) careers during the 63-year period
1946–2008.

We model the career as an aggregation of output op-
portunities which arrive at the variable rate ni(t). Since
the reputation of a scientist is typically a cumulative rep-
resentation of his/her contributions, we consider the cu-
mulative production Ni(t) ≡

�t
t�=1 ni(t�) as a proxy for

career achievement. Fig. 1 shows the cumulative produc-
tion Ni(t) of six notable careers which display a scaling
relation Ni(t) ≈ Aitαi . However, there are also cases of
Ni(t), see Fig. S1, which do not exhibit such regular-
ity, instead displaying marked non-stationarity and non-
linearity arising from significant exogenous career shocks.
We justify this 2-parameter model in the SI text using
scaling methods and data collapse (see Figs. S2 and S3)
to show that most Ni(t) can be modeled by this common
functional form. Careers with αi ≈ 1 have relatively
constant ni(t), whereas careers with αi > 1 show accel-
erated growth which reflects the benefits of learning and
collaboration spillovers which constitute a portion of the
cumulative advantage held by experienced and reputable
individuals [7]. Fig. S4 shows the distribution P (αi)
with average exponent �α� > 1. For each dataset, we
calculate �αi� = 1.42 ± 0.29 (s. d.) [A], 1.44 ± 0.26 [B],
and 1.30± 0.31 [C].

Individuals are constantly entering and exiting the pro-
fessional market, with birth and death rates depending
on complex economic and institutional factors. Due to
the high level of competition and risk, early carer perfor-
mance has long lasting consequences [7, 10]. By analyz-
ing the careers that survive the highly competitive entry
and turnover process, we search for statistical patterns
that can give insight into the relative roles of persistency
and career shocks in the growth of careers. To better
understand career uncertainty portrayed by the common
saying “publish or perish,” we analyze the outcome fluc-
tuation

ri(t) ≡ ni(t)− ni(t−∆t) (1)

of career i in year t over the time interval ∆t = 1 year.
Output fluctuations arise naturally from the lulls and
bursts in both the mental and physical capabilities of
humans [11].

We define for each scientific career the normalized pro-
duction change

r�
i(t) ≡ [ri(t)− �ri�]/σi(r) , (2)

which is measured in units of a fluctuation scale σi(r)
that is unique to each individual. We calculate the av-
erage �ri� and standard deviation σi(r) using the first
Li available years for each scientist i. r�

i(t) is a better
measure for comparing career uncertainty, since individ-
uals have production factors that depend on the type of
research, the size of the collaboration team, and the po-
sition within the team. Figs. S5 and S6 show that the
distribution P (r�) is well approximated by a Gaussian
distribution. In academics, the production of scientific

publications depends on many factors, such as cumula-
tive advantage [7, 9, 12], which is an external institu-
tional mechanism, and the “sacred spark,” which is an
internal effect that represents an individual’s ambitious
internal drive for success [13, 14]. For instance, a re-
cent case study on the impact trajectories of nobel prize
winners has found that “scientific shocks” marked by the
publication of an individual’s “magnum opus” work(s)
can trigger future recognition and reward, resembling the
cascading dynamics of earthquakes [15].

Collaboration is a strong factor underlying the vary-
ing fluctuation scales σi(r) in career growth. In science,
the ability to attract future opportunities is strongly re-
lated to production spillovers and knowledge spillovers
[16–18] that are mediated by the collaboration network
[4, 5, 19, 20]. One reason to collaboration is the credibil-
ity signal associated with working with a leading scien-
tists, which can increase an individual’s reputation above
the track record of accomplishment [3]. But possibly the
most value in collaborations, which also applies to the
case for long-term employment, comes from increase re-
turns on investment, since it is over time and through
the scientific network that an individual benefits from
the spillovers she generates that can further accelerate
her career trajectory. In this sense, there is a tipping
point in a scientific career that occurs when (i) a scien-
tist becomes an attractor (as opposed to a pursuer) of
new collaboration-production opportunities and (ii) the
knowledge investment reaches a critical mass. To account
for production spillover via collaboration, we calculate
for each author the number ki(t) of distinct coauthors
per year and relate this fundamental input factor to the
annual output ni(t).

Fig. 2(a) shows the relation between the average an-
nual production �ni� and median annual coauthorship
Si ≡ Med[ki] used here as a proxy for the size Si of
each scientific career. This measure is more statistically
stable than the average ki(t) because there can be ex-
tremely large outlier ki(t) values in high-energy and as-
tronomy collaborations. For dataset [A] scientists we
find an input-output scaling relation �ni� ∼ Sψ

i with
ψ = 0.74 ± 0.04 (s.e.m.), which shows the increasing
economies of scale α > 1 for these prolific scientists may
be largely due to a relatively high collaboration efficiency.
In Fig. 2(b) we further test the growth fluctuation scaling
relation

σ2
i (r) ≈ V Sψ

i (3)

and calculate the scaling exponents ψ/2 ≈ 0.40 ± 0.03
(R = 0.77) for dataset [A], ψ/2 ≈ 0.22± 0.04 (R = 0.51)
[B], and ψ/2 ≈ 0.26 ± 0.05 (R = 0.45) [C]. The agree-
ment of the ψ values calculated in Fig. 2 (a) and (b) in-
dicates that the two consecutive n(t) values constituting
each r(t) value are drawn from an approximately stable
underling distribution Pi(n) with sequential production
values ni(t) and ni(t + 1) that are largely independent,
resulting in the empirical observation that σ2

i (n) ∼ σ2
i (r).

Professional athletes attract future opportunities
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ball Association (NBA) careers during the 63-year period
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We model the career as an aggregation of output op-
portunities which arrive at the variable rate ni(t). Since
the reputation of a scientist is typically a cumulative rep-
resentation of his/her contributions, we consider the cu-
mulative production Ni(t) ≡
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t�=1 ni(t�) as a proxy for

career achievement. Fig. 1 shows the cumulative produc-
tion Ni(t) of six notable careers which display a scaling
relation Ni(t) ≈ Aitαi . However, there are also cases of
Ni(t), see Fig. S1, which do not exhibit such regular-
ity, instead displaying marked non-stationarity and non-
linearity arising from significant exogenous career shocks.
We justify this 2-parameter model in the SI text using
scaling methods and data collapse (see Figs. S2 and S3)
to show that most Ni(t) can be modeled by this common
functional form. Careers with αi ≈ 1 have relatively
constant ni(t), whereas careers with αi > 1 show accel-
erated growth which reflects the benefits of learning and
collaboration spillovers which constitute a portion of the
cumulative advantage held by experienced and reputable
individuals [7]. Fig. S4 shows the distribution P (αi)
with average exponent �α� > 1. For each dataset, we
calculate �αi� = 1.42 ± 0.29 (s. d.) [A], 1.44 ± 0.26 [B],
and 1.30± 0.31 [C].

Individuals are constantly entering and exiting the pro-
fessional market, with birth and death rates depending
on complex economic and institutional factors. Due to
the high level of competition and risk, early carer perfor-
mance has long lasting consequences [7, 10]. By analyz-
ing the careers that survive the highly competitive entry
and turnover process, we search for statistical patterns
that can give insight into the relative roles of persistency
and career shocks in the growth of careers. To better
understand career uncertainty portrayed by the common
saying “publish or perish,” we analyze the outcome fluc-
tuation

ri(t) ≡ ni(t)− ni(t−∆t) (1)

of career i in year t over the time interval ∆t = 1 year.
Output fluctuations arise naturally from the lulls and
bursts in both the mental and physical capabilities of
humans [11].

We define for each scientific career the normalized pro-
duction change

r�
i(t) ≡ [ri(t)− �ri�]/σi(r) , (2)

which is measured in units of a fluctuation scale σi(r)
that is unique to each individual. We calculate the av-
erage �ri� and standard deviation σi(r) using the first
Li available years for each scientist i. r�

i(t) is a better
measure for comparing career uncertainty, since individ-
uals have production factors that depend on the type of
research, the size of the collaboration team, and the po-
sition within the team. Figs. S5 and S6 show that the
distribution P (r�) is well approximated by a Gaussian
distribution. In academics, the production of scientific

publications depends on many factors, such as cumula-
tive advantage [7, 9, 12], which is an external institu-
tional mechanism, and the “sacred spark,” which is an
internal effect that represents an individual’s ambitious
internal drive for success [13, 14]. For instance, a re-
cent case study on the impact trajectories of nobel prize
winners has found that “scientific shocks” marked by the
publication of an individual’s “magnum opus” work(s)
can trigger future recognition and reward, resembling the
cascading dynamics of earthquakes [15].

Collaboration is a strong factor underlying the vary-
ing fluctuation scales σi(r) in career growth. In science,
the ability to attract future opportunities is strongly re-
lated to production spillovers and knowledge spillovers
[16–18] that are mediated by the collaboration network
[4, 5, 19, 20]. One reason to collaboration is the credibil-
ity signal associated with working with a leading scien-
tists, which can increase an individual’s reputation above
the track record of accomplishment [3]. But possibly the
most value in collaborations, which also applies to the
case for long-term employment, comes from increase re-
turns on investment, since it is over time and through
the scientific network that an individual benefits from
the spillovers she generates that can further accelerate
her career trajectory. In this sense, there is a tipping
point in a scientific career that occurs when (i) a scien-
tist becomes an attractor (as opposed to a pursuer) of
new collaboration-production opportunities and (ii) the
knowledge investment reaches a critical mass. To account
for production spillover via collaboration, we calculate
for each author the number ki(t) of distinct coauthors
per year and relate this fundamental input factor to the
annual output ni(t).

Fig. 2(a) shows the relation between the average an-
nual production �ni� and median annual coauthorship
Si ≡ Med[ki] used here as a proxy for the size Si of
each scientific career. This measure is more statistically
stable than the average ki(t) because there can be ex-
tremely large outlier ki(t) values in high-energy and as-
tronomy collaborations. For dataset [A] scientists we
find an input-output scaling relation �ni� ∼ Sψ

i with
ψ = 0.74 ± 0.04 (s.e.m.), which shows the increasing
economies of scale α > 1 for these prolific scientists may
be largely due to a relatively high collaboration efficiency.
In Fig. 2(b) we further test the growth fluctuation scaling
relation
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and calculate the scaling exponents ψ/2 ≈ 0.40 ± 0.03
(R = 0.77) for dataset [A], ψ/2 ≈ 0.22± 0.04 (R = 0.51)
[B], and ψ/2 ≈ 0.26 ± 0.05 (R = 0.45) [C]. The agree-
ment of the ψ values calculated in Fig. 2 (a) and (b) in-
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values ni(t) and ni(t + 1) that are largely independent,
resulting in the empirical observation that σ2
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relation Ni(t) ≈ Aitαi . However, there are also cases of
Ni(t), see Fig. S1, which do not exhibit such regular-
ity, instead displaying marked non-stationarity and non-
linearity arising from significant exogenous career shocks.
We justify this 2-parameter model in the SI text using
scaling methods and data collapse (see Figs. S2 and S3)
to show that most Ni(t) can be modeled by this common
functional form. Careers with αi ≈ 1 have relatively
constant ni(t), whereas careers with αi > 1 show accel-
erated growth which reflects the benefits of learning and
collaboration spillovers which constitute a portion of the
cumulative advantage held by experienced and reputable
individuals [7]. Fig. S4 shows the distribution P (αi)
with average exponent �α� > 1. For each dataset, we
calculate �αi� = 1.42 ± 0.29 (s. d.) [A], 1.44 ± 0.26 [B],
and 1.30± 0.31 [C].

Individuals are constantly entering and exiting the pro-
fessional market, with birth and death rates depending
on complex economic and institutional factors. Due to
the high level of competition and risk, early carer perfor-
mance has long lasting consequences [7, 10]. By analyz-
ing the careers that survive the highly competitive entry
and turnover process, we search for statistical patterns
that can give insight into the relative roles of persistency
and career shocks in the growth of careers. To better
understand career uncertainty portrayed by the common
saying “publish or perish,” we analyze the outcome fluc-
tuation
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tist becomes an attractor (as opposed to a pursuer) of
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knowledge investment reaches a critical mass. To account
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per year and relate this fundamental input factor to the
annual output ni(t).

Fig. 2(a) shows the relation between the average an-
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each scientific career. This measure is more statistically
stable than the average ki(t) because there can be ex-
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number of publications in year t

[A] 100 “top” physicists  (ᾱ =1.28 ± 0.01 )

[B] 100 (prolific) control physicists (ᾱ =1.31 ± 0.01 )

[C] 100 asst. professors (physics) (ᾱ =1.15 ± 0.02 )

As a result of knowledge spillovers
(both in time and (collaboration) space) 
successful careers become “attractors”

A proxy for the “cumulative” reputation

다른 일  or 작은 폭포
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Publication impact:  the rank-citation profile ci(r)

A. M. Petersen,  H. E. Stanley, S. Succi. “Statistical regularities in the rank-citation profile of scientists.” 
(Nature) Scientific Reports 1, 181 (2011).

ci(r) is the rank-ordered 
(Zipf) citation distribution 
of the N papers published 
by individual i in his/her 

entire career
h-index line
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Reputation spillovers also contribute to increasing returns. Interestingly, even the top 
scientists have a significant number of papers that go relatively un-cited.
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A comparison of ci(r) the top-100 “champions” of PRL 
(Set A) with average h-index <h> = 61± 21 
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PLoS ONE 4: e4791 (2009).
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Scientific careers can be difficult to summarize since success and

the potential for future success are related to a large variety of

different factors. Here we analyze the complete publication ca-

reers of 200 scientists and find remarkable statistical regularity in

the functional form of the rank-citation profile ci(r) for each sci-

entist i. The quantifiable regularity suggests that there is a fun-

damental underlying mechanism for career development, which

presumably applies in general to many types of competitive ca-

reers. Specifically, we find that the rank-ordered citation distri-

bution ci(r) can be approximated by a discrete generalized beta

distribution (DGBD) over the entire range of ranks r, which allows

for the characterization and comparison of ci(r) using a common

framework. The functional form of the DGBD has two scaling ex-

ponents, βi and γi, which determine the scaling behavior of ci(r)
for both small and large rank r. The crossover between two scal-

ing regimes suggests a complex relation between the success of

a scientist’s most famous papers and the success of their com-

plementary papers, together constituting their career publication

works. We use the analytic properties of the DGBD to derive an

exact expression for the crossover value r∗ which highlights the

distinguished papers of a given author, characterized by the c-star

value ci(r∗), in analogy to the h-index. We compare the c(r∗), β,

γ, and h-index values, and several other metrics, for 200 success-

ful scientists from the physics community. Furthermore, we also

develop a new function, the “gap index" G(∆h), which has predic-

tive capability in estimating the future increase ∆h of the h-index

using the values of ci(r) for r ≈ h.

socio-physics | productivity | Zipf law | legacy

A
scientist’s career is subject over time to a myriad of random

factors. As a result, the path to success is neither simple nor

regular. The rank-citation profile ci(r), where ci(r) is the number

of citations of individual i to his/her paper r ranked in decreasing

order ci(1) ≥ ci(2) ≥ . . . ci(N), quantitatively summarizes the

publication career of a given scientist. In order to better understand

the statistical regularities of scientific careers, we analyze the career

citation data of 200 highly cited scientists.

We select a given scientist based upon the cumulative number of

citations he/she has obtained from his/her publications in the jour-

nal Physical Review Letters (PRL), comparing all scientists who have

published at least one article in PRL over the 50-year period 1958-

2008. Although all scientists analyzed here can be considered largely

successful, we separate the scientists into two data sets for compari-

son:

[A] The 100 most-cited scientists according to the citation shares met-

ric [1] (with a set average h-index �h� = 61 ± 21).

[B] 100 other “control" scientists, taken from the same PRL database

(with a set average h-index �h� = 44 ± 15).

We describe in more detail the selection procedure for these two sets

in the Methods section of the Supporting Information (SI) text.

There are many conceivable ways to quantify the impact of a

scientist’s N articles constituting ci(r). The h-index [2] is widely

acknowledged as a single number conveying an approximate quan-

tification of a scientist’s cumulative impact. The h-index of a given

scientist i is defined by a single point on the rank-citation profile ci(r)
satisfying

c(h) = h . [1]

In Fig. 1 we plot the number of citations ci(r) for the top 4 physi-

cists, ranked according to their h-indices. Additionally, we plot the

lines Hp(r) ≡ p r for 5 values of p = {1, 2, 5, 20, 80}. We use the

“generalized h-index" hp, proposed in [3] and further analyzed in [4],

defined as the intersection of Hp(r) with ci(r),

c(hp) = php [2 ]

with the relation hp ≤ hq for p > q. The value p ≡ 1 recovers the

h-index proposed by Hirsch so that h = h1. We will use the gener-

alized h-index to establish quantitative indicators of scale invariance

in the citation profiles, as well as the mobility of the h index.

Model for c(r)

For each scientist i analyzed, we find that ci(r) can be approximated

by the discrete generalized beta distribution (DGBD) [5, 6],

c(r) ≡ Ar
−β(N + 1− r)γ

. [3]

The parameters A, β, and γ and N are each defined for a given

ci(r) corresponding to an individual scientists i, however we suppress

the index i in equations to keep the notation concise. We estimate

the two scaling parameters β and γ using multiple linear regression

of log ci(r), replacing N with r1, the largest value of r for which

c(r) ≥ 1 (we find that r1/N ≈ 0.84 ± 0.01 for all careers ana-

lyzed). Fig. 1 demonstrates the excellent approximation of ci(r) by

the DGBD, for both large and small r. The regression correlation

coefficient R > 0.97 for all log ci(r) profiles analyzed.

The DGBD proposed in [5] is an improvement over the Zipf-law

(power-law) model and the stretched exponential model [2] since it

reproduces the varying curvature in ci(r) for both small and large

r. The DGBD has been successfully used to model numerous rank-

ordering profiles analyzed in [5, 6] which arise in the natural and

socio-economic sciences. Typically, an exponential cutoff is imposed

in the power-law model, and justified as a finite-size effect. The

DGBD does not require this assumption, but rather, introduces a sec-

ond scaling exponent γ which controls the curvature in ci(r) for large

r values. The relative values of the β and γ exponents are thought

to capture two distinct scales that contribute to the evolution of ci(r)
[5, 6]. In the case of citation statistics analyzed here, there is likely a

rank-dependent dynamics that distinguishes between “heavy-weight”

papers and “newborn” papers in the time evolution of ci(r).

The exponent β defines an approximate scaling regime that is

truncated for rank values larger than a rank cutoff rc ≡ (r1 + 1)/γ.

Reserved for Publication Footnotes
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<β> = 0.83 ± 0.23     and    <γ>  = 0.67 ± 0.19

Set A Set A

1/r’

Thursday, February 9, 2012



Further validation of the DGBD model, comparing the 
predicted and actual total number of citations, Ci
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S. Redner, “On the meaning of the h-index.” J. Stat. Mech. 2010, L03005 (2010).

C ≈ 4h2

β ≅ 1

Scaling 
relation 
between 

C, h, and β

*

*
Thursday, February 9, 2012



Competition for limited resources

4. Preferential Capture Model

• $$$ (funding, salary share)
• Fame  / Recognition
• production opportunities (publication)
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The analysis of citation patterns has become a widespread method
to measure scientific excellence, determining scientific careers and
the distribution of research money. Here, we show that ground-
breaking discoveries are not only acknowledged by citations of land-
mark papers. They also boost the success of previous publications.
Analyzing the citations rates of Nobel Prize Laureates and consid-
ering the rich-gets-richer effect in science, we show that innovations
create paradigm shifts or scientific revolutions through citation cas-
cades, which indicate a critical phenomenon. From the perspective
of attention economics, they are a result of a collective discovery
process. Our method allows one to discover scientific breakthroughs
and talents earlier on than classical citation indices. Understanding
the origin of scientific authority may also help to explain how so-
cial influence comes about and why the value of goods depends so
strongly on the attention they attract.

Ground-breaking papers are extreme events [1] in science.

They can transform the way in which researchers do science in

terms of the subjects they choose, the methods they use, and

the way they present their results. The related spreading of

ideas has been described as an epidemic percolation process in

a social network [2]. However, the impact of most innovations

is limited. There are only a few ideas, which gain attention all

over the world and across disciplinary boundaries [3]. Typ-

ical examples are elementary particle physics, the theory of

evolution, superconductivity, neural networks, chaos theory,

systems biology, nanoscience, or network theory.

It is not so clear, however, how a new idea succeeds, given

that it must beat the rich-gets-richer dynamics of already es-

tablished ideas. According to the Matthew effect [4, 5, 6],

famous scientists receive an amount of credit often dispro-

portionate to their actual contributions, to the detriment of

younger or less known scholars. This implies a great author-

ity of a small number of scientists, which is reflected by the

big attention received by their work and ideas, and of scholars

working with them [7].

The following results for 124 Nobel Prize Laureates in

chemistry, economics, medicine and physics suggest that in-

novations can successfully spread, mainly because a scientist’s

body of work overall enjoys a greater impact after the pub-

lication of a landmark paper. Not only do colleagues notice

a ground-breaking paper itself. It also attracts the attention

to other publications of the same author (see Fig. 1). Conse-

quently, future papers have an impact on past papers, as their
relevance is newly weighted.

We focus here on citations as indicator of scientific im-

pact [8, 9, 10, 11], studying data from the ISI Web of Science,

but the use of click streams [12] would be conceivable as well.

It is well-known that the relative number of citations cor-

relates with research quality [13, 14, 15]. Citations are now

regularly used in university rankings [16], in academic recruit-

ments and for the distribution of funds among scholars and

scientific institutions [17].

Results
We evaluated data for 124 Nobel Prize Laureates that were

awarded in the last two decades (1990-2009), which include

an impressive number of about 2 million citations. For all of

them and other internationally established experts as well, we

find peaks in the changes of their citation rates (Figs. 2 and

Figure 1. Illustration of the boosting effect. Typical citation trajectories of pa-

pers, here for Nobel Prize Laureate John Bennett Fenn, who received the award in

chemistry in 2002 for the development of the electrospray ionization technique used

to analyze biological macromolecules. The original article, entitled Electrospray
ionization for mass spectrometry of large biomolecules, coauthored by

M. Mann, C. K. Meng, S. F. Wong and C. M. Whitehouse, was published in Science
in 1989 and is the most cited work of Fenn, with currently over 3, 000 citations. The

diagram reports the growth in time of the total number of citations received by this

landmark paper (blue solid line) and by six older papers. The diagram indicates that

the number of citations of the landmark paper has literally exploded in the first years

after its appearance. However, after its publication in 1989, a number of other papers

also enjoyed a much higher citation rate. Thus, a sizeable part of previous scientific

work has reached a big impact after the publication of the landmark paper. We found

that the occurrence of this boosting effect is characteristic for successful scientific

careers.

c�2007 by The National Academy of Sciences of the USA

www.pnas.org — — PNAS Issue Date Volume Issue Number 1–5

scientific “career shocks” 
following big discovery can 

trigger future recognition and 
reward, resembling the 

cascading earthquake dynamics

Mazloumian A, Eom Y-H, Helbing D, 
Lozano S, Fortunato S (2011) How 
Citation Boosts Promote Scientific 
Paradigm Shifts and Nobel Prizes. 
PLoS ONE 6(5): e18975.
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Production opportunities falling down from heaven 

I = labor force size

A. M. Petersen, M. Riccaboni, H. E. Stanley, F. Pammolli. 
“ʻPersistence and Uncertainty in the Academic Career.” 
Under review.
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This distribution is a member of the family of Exponential power distributions which follow from the range of values

ψ ≥ 0 [23]. In general, if the scaling values are in the range ψ ≥ 0, then the exponential mixture leads to an

Exponential power distribution

P (r) =
β√

2σΓ(1/β)
exp[−

√
2(|r|/σ)

β
] (S15)

with shape parameter β in the range β ∈ (0, 2] [23]. The pure exponential P (r) with β = 1 corresponds to the case

ψ = 1. The pure Gaussian P (r) with β = 2 corresponds to the case ψ = 0.

Furthermore, if the annual production is logarithmically related to an underlying production potential, ni(t) ∝
lnUi(t), then ri(t) ∝ lnUi(t)− lnUi(t− 1) quantifies the logarithmic change (“growth rate”) of Ui(t). This forms the

analogy with growth dynamics of large institutions with size S � 1. For example, in the case of financial securities

such as the stock of a company i, the growth rate ri(t) measure the logarithmic change in the market’s expectations of

the company’s future earnings potential captured by the market capitalization and price [30]. As a result, distributions

P (r) of career growth fluctuation r, which we plot in Figs. S7 (a-d), can be seen as a bridge between the micro level

and the macro level of economic growth fluctuation. A theory of micro growth processes can help improve the growth

forecasts for economic organizations ranging in size from scientific collaborations to universities and firms [23, 25–30].

V. NONLINEAR PREFERENTIAL CAPTURE MODEL

Here we describe a stochastic system in which a finite number of opportunities are distributed to a system of

individual competing agents i = 1...I. The opportunities are distributed in batches of P opportunities per arbitrary

time interval. This model has two parameters.

(i) π determines the preferential capture mechanism (the value π = 1 corresponds to the traditional “linear”

preferential attachment model) and

(ii) c determines the performance timescale 1/c which is incorporated into the calculation of the capture rates of

each individual. The value c = 0 corresponds to a long-term memory and c� 1 corresponds to short-term memory.

We use this simple model to show that a system governed by a preferential capture can become dominated by

fluctuations when c is large. The value 1/c quantifies the “performance appraisal timescale”: a small c corresponds

to a labor system with long contracts, or some alternative mechanism that provides employment insurance through

periods of low production, so that the ability to attract future opportunities is largely based on the cumulative record

of career achievement. Conversely, a large c corresponds to a labor system with short contracts in which the ability to

attract future opportunities is largely based on the accomplishments in the near past, requiring an agent to maintain

relatively high levels of production in order to survive. In this latter case, we find that (natural) fluctuations in the

annual production can cause a significant fraction of the careers to “fizzle out” leaving behind only a few “super

careers” who attract almost all of the opportunities. In other words, short contracts can tip the level of competition

into dangerous territory whereby careers are largely determined by fluctuations and not persistency.

A. System of competing agents

1) The system consists of I ≡ 1000 agents competing for P opportunities that are allocated in a single period.

There is no entry, hence the number I is kept constant. Also, P is also kept constant, so there is no growth in

the labor supply.

2) We run the Monte Carlo (MC) simulation for T ≡ 100 time periods and all agents are by construction from the

same age cohort (born at same time).

3) Each time period corresponds to the allocation of P ≡
�I

i=1 n0,i opportunities, sequentially one at a time, to

randomly assigned agents i, where n0,i ≡ 1 is the potential production capacity of a given individual.

4) The assignment of a given opportunity is proportional to the time-dependent weight (capture rate) wi(t) of each

agent. Hence, the assignment of 1 opportunity to agent i at period t results in the production (achievement)

ni(t) to increase by one unit: ni(t) → ni(t) + 1. In the next time period t + 1, we update the weight wi(t + 1)

to include the performance ni(t) in the current period.

I = labor force size

A. M. Petersen, M. Riccaboni, H. E. Stanley, F. Pammolli. “ʻPersistence and Uncertainty in the Academic Career.” Under review.
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B. Initial Condition

The initial weight at the beginning of the simulation is wi(t = 0) ≡ nc for each agent i with nc ≡ 1. The value

nc > 0 ensures that competitors begin with a non-zero production potential, and corresponds to a homogenous system

where all agents begin with the same production capacity. Hence, we do not analyze the more complicated model

wherein external factors (i.e. collaboration factors) can result in a heterogeneous production capacity across scientists.

By construction, each agent begins with one unit of achievement ni(t = 1) ≡ 1.

C. System Dynamics

1) In each Monte Carlo step we allocate one opportunity to a randomly chosen individual i so that ni(t)→ ni(t)+1

2) The individual i is chosen with probability Pi(t) proportional to [wi(t)]π

Pi(t) =
wi(t)π

�I
i=1 wi(t)π

(S16)

where the value wi(t) is given by an exponentially weighted sum over the entire achievement history

wi(t) ≡
t−1�

∆t=1

ni(t−∆t)e−c∆t . (S17)

The parameter c ≥ 0 is a memory parameter which determines how the record of accomplishments in the past

affect the ability to obtain new opportunities in the current period, and therefore, the future. The limit c = 0

rewards long-term accomplishment by equally weighting the entire history of accomplishments. Conversely, when

c� 1 the value of wi(t) is largely dominated by the performance ni(t−1) in the previous period, corresponding

to increased emphasis on short-term accomplishment in the immediate past. Intermediate values 0 < c < 1

weight more equally the immediate past and the entire history of accomplishment.

3) The exponent π determines how the relative ability to attract opportunities Pi/Pj = [wi(t)/wj(t)]π depends

on the weights wi(t) and wj(t) between two individuals i and j. The linear capture case follows from π = 1,

uniform capture π = 0, super linear capture π > 1, and sub-linear capture π < 1.

4) At the end of each time period, the weight wi(t) is recalculated and used for the entirety of the next MC time

period corresponding to the allocation of the next I × nc achievement opportunities.

D. Model Results

We simulate this system for a realistic labor force size I = 1000 with the assumption that in any given period,

an individual has the capacity for one unit of production (nc ≡ 1). We evolve the system for T = 100 periods

corresponding to I×nc×T Monte Carlo time steps. The timescale T represents the (production) lifetime of individuals

with finite longevity. In this model we do not include exogenous shocks (career hazards) that can result in career

death [7]. Here we analyze four quantities:

1) The distribution P (N) of the total number of opportunities Ni(T ) ≡
�T

t=1 ni(t) captured by agent i over the

course of the T− period simulation.

2) The distribution P (α) of the career trajectory scaling exponent αi defined in Eq. S7 which quantifies the

(de)acceleration of production over the course of the career.

3) The distribution P (r) of production outcome change r defined in Eq. 1 which quantifies the size of endogenous

production shocks.

4) The distribution P (L) of career length Li which measures the active production period of each career starting

from t = 0. We define activity as the largest period value Li for which ni(Li) = 0, which in other words,

corresponds to truncating all 0 production values from the end of the trajectory ni(t) and defining Li as the

length of this time series.

*( appraisal = 값 매김 )
The details of the appraisal determines how much the past record of 
accomplishment determines the ability to capture new opportunities

Reputation is cumulative → what you do as a grad student matters!
Numerous Nobel Prizes awarded for work primarily done during the PhD

If the appraisal timescale is  too short, than a Nobel worthy phd 
thesis loses it's weight overnight ! In sports this is exemplified.

This is why “sudden death” careers 
occur in sports so frequently!
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to increased emphasis on short-term accomplishment in the immediate past. Intermediate values 0 < c < 1

weight more equally the immediate past and the entire history of accomplishment.

3) The exponent π determines how the relative ability to attract opportunities Pi/Pj = [wi(t)/wj(t)]π depends
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uniform capture π = 0, super linear capture π > 1, and sub-linear capture π < 1.

4) At the end of each time period, the weight wi(t) is recalculated and used for the entirety of the next MC time

period corresponding to the allocation of the next I × nc achievement opportunities.

D. Model Results

We simulate this system for a realistic labor force size I = 1000 with the assumption that in any given period,

an individual has the capacity for one unit of production (nc ≡ 1). We evolve the system for T = 100 periods

corresponding to I×nc×T Monte Carlo time steps. The timescale T represents the (production) lifetime of individuals

with finite longevity. In this model we do not include exogenous shocks (career hazards) that can result in career

death [7]. Here we analyze four quantities:

1) The distribution P (N) of the total number of opportunities Ni(T ) ≡
�T

t=1 ni(t) captured by agent i over the

course of the T− period simulation.

2) The distribution P (α) of the career trajectory scaling exponent αi defined in Eq. S7 which quantifies the

(de)acceleration of production over the course of the career.

3) The distribution P (r) of production outcome change r defined in Eq. 1 which quantifies the size of endogenous

production shocks.

4) The distribution P (L) of career length Li which measures the active production period of each career starting

from t = 0. We define activity as the largest period value Li for which ni(Li) = 0, which in other words,

corresponds to truncating all 0 production values from the end of the trajectory ni(t) and defining Li as the

length of this time series.

c → 0 : appraisal over the lifetime of achievements ( ~ tenure system)

c >1: appraisal over only recent achievements (short-term contract system)

*( apprasal = 값 매김 )
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Results for the linear (π = 1) preferential capture model
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c → 0 : appraisal over the lifetime of achievements ( ~ tenure system): career is better protected from 
intrinsic negative production shocks (periods of lull) and as a result, most careers sustain production 
throughout the career, reaching the maximum career lifespan T.

c >1: appraisal over only recent achievements (short-term contract system): most individuals 
experience “sudden death” termination relatively early in the career.  Meanwhile, a small number of 
“kings” survive the initial selection process, which is governed primarily by random chance, and dominate 
the system.
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“heavy tails” emerge

c → 0 : appraisal over the lifetime of achievements ( ~ tenure system): career is better protected from 
intrinsic negative production shocks (periods of lull) and as a result, most careers sustain production 
throughout the career, reaching the maximum career lifespan T.

c >1: appraisal over only recent achievements (short-term contract system): most individuals 
experience “sudden death” termination relatively early in the career.  Meanwhile, a small number of 
“kings” survive the initial selection process, which is governed primarily by random chance, and dominate 
the system.
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emergence of increasing returns / cumulative adv.

c → 0 : appraisal over the lifetime of achievements ( ~ tenure system): career is better protected from 
intrinsic negative production shocks (periods of lull) and as a result, most careers sustain production 
throughout the career, reaching the maximum career lifespan T.

c >1: appraisal over only recent achievements (short-term contract system): most individuals 
experience “sudden death” termination relatively early in the career.  Meanwhile, a small number of 
“kings” survive the initial selection process, which is governed primarily by random chance, and dominate 
the system.

Distributions of 4 career measures:
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c → 0 : appraisal over the lifetime of achievements ( ~ tenure system): career is better protected from 
intrinsic negative production shocks (periods of lull) and as a result, most careers sustain production 
throughout the career, reaching the maximum career lifespan T.

c >1: appraisal over only recent achievements (short-term contract system): most individuals 
experience “sudden death” termination relatively early in the career.  Meanwhile, a small number of 
“kings” survive the initial selection process, which is governed primarily by random chance, and dominate 
the system.
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“Sudden death” careers: associated with the unforeseeable 
future and the risks of stagnant production

Our model shows that high competition levels can make careers vulnerable to termination 
relatively early in the career as a result of negative production fluctuations and not necessarily 
due to lack of individual persistence. Many professions are marked by competitive features 
that can stunt the growth of inexperienced individuals and can lead to early career 
termination. 

On October 31, 2002, Science withdrew eight papers written by Schön

On December 20, 2002, Physical Review withdrew six papers

On March 5, 2003, Nature withdrew seven papers

Jan Hendrik Schön Scandal (2001)

Sudden career termination in 
science due to ethical scandals

Diederik Alexander Stapel Scandal (2011)
Social psychologist (ironically) made up data for at least 30 
publications according to preliminary investigation, which is 
still ongoing.

Thursday, February 9, 2012

http://en.wikipedia.org/wiki/Science_%28journal%29
http://en.wikipedia.org/wiki/Science_%28journal%29
http://en.wikipedia.org/wiki/Physical_Review
http://en.wikipedia.org/wiki/Physical_Review
http://en.wikipedia.org/wiki/Nature_%28journal%29
http://en.wikipedia.org/wiki/Nature_%28journal%29


Take home messages
• There are many analogies between the superstars in science and the superstars in 

professional sports, possibly arising from the generic aspects of competition.  

• There is a beautiful statistical regularity that “bridges the gap” between the relatively 
short careers and the extremely long “stellar” careers.

• Stellar careers are not an anomaly! They are predicted by pdf P(x)

• The Matthew “rich-get-richer” effect can be used to explain the extremely right-skewed 
probability distributions  that quantify both longevity and success.

• evidence in the decreasing time duration τ(n) between publications and a model that predicts 

two classes of P(x) depending on the choice of g(x)  There are many analogies 
between the superstars in science and the superstars in professional sports, 
possibly arising from the generic aspects of competition.  

• Knowledge and collaboration spillovers result in increasing returns within the scientific 
career trajectory

• An institutional setting that neglects the specific features of academic career trajectories 
(increasing returns from knowledge spillovers and cumulative advantage, collaboration 
factors, career uncertainty) may inadvertently expose temporarily “cold” careers, leaving 
them out to freeze.

• A quantitative picture of Science is emerging, but there are still many open questions!    
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Thank You!
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A special thanks to my collaborators:
Woo-Sung Jung, Orion Penner, Gene Stanley, Sauro Succi, Fengzhong Wang,

 Jae-Sook Yang, Massimo Riccaboni and Fabio Pammolli
http://physics.bu.edu/~amp17/ 
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How similar are “career atoms” to the 
analogous “atoms” in other socio-economic 

systems?

General principles of interacting systems?

5. Universal Growth Patterns 

VIII) A. M. Petersen, J. Tenenbaum, S. Havlin, H. E. Stanley. 
“ʻStatistical laws governing the fluctuations in word use from 
word birth to word death.” Submitted.
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Growth dynamics in complex systems: growing evidence of 
common underlying principles

Firm size / Country GDP [1] Word Use [2] Individual Productivity [3] Stock Price [4]

[1] D. Fu, et al., The Growth of Business Firms: Theoretical Framework and Empirical Evidence. PNAS 102, 18801 (2005).
[2] A M. Petersen, et al., Statistical Laws Governing Fluctuations in Word Use from Word Birth to Word Death, submitted.
[3] A M. Petersen, et al., Persistency and Uncertainty in the Academic Career, in preparation.
[4] B. Podobnik, et al., Common scaling behavior in finance and macroeconomics. Eur. Phys. J. B 76, 487 (2010).

• Size S(t) at time t

• Growth rate R(t) = 

• Laplace PDF

Excess number of large growth (+/-) events as compared to the Gibrat multiplicative growth model 
which predicts a Gaussian distribution for P(R)

Q: How do complex systems 
grow ?

Q: How big are the rare events 
(often neglected by simple 
models) ?
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Quantifying Statistical Regularities 
in the 

Career Achievements of Scientists and Athletes

Abstract: 

For many professions, the quantitative analysis of individual careers is made difficult by the lack of comprehensive data 
and the difficulty in defining measures for productivity and longevity. However, comprehensive career data is recorded in 
professional sports and is perfectly tailored for studying human productivity. Similarly, the publication careers of scientists 
are also quantifiable using similar measures. Since both professions are subject to the common forces of competition, one 
motivating question in this talk is: “What are the statistical regularities in career achievement across an entire cohort of 
competitors?”

In this talk I will discuss the statistical regularities that describe the everyday topic of career achievement using 
comprehensive career data. In the first part of the talk, I will discuss the topic of career longevity, using as example the 60+ 
year history of the National Basketball Association and 2700+ complete careers over the period 1946-2004. Surprisingly, 
we find that a common career longevity distribution describes the careers of  20,000+ athletes from 4 sports leagues and 
400,000+ scientists from 6 high-impact journals, where each journal serves as a generic arena for competition. In order to 
account for the regularities we observe across several professions, we develop an exactly solvable model for career 
longevity based on the Matthew “rich-get-richer” effect. Our model is in excellent agreement with empirical career 
longevity distributions for each profession analyzed. Our model follows from two general assumptions: (i) that there is 
random forward progress in the career, whereby it becomes easier to make progress the further along one is in his/her 
career, and (ii) that career termination follows from random hazards that are present throughout the career.  The findings 
suggests that there is a common underlying mechanism which underlies career development in competitive professions. In 
the second part of the talk, I will discuss the publication careers of 300 individual scientists (ranging from very the very 
famous to current Assistant professors) and find remarkable statistical regularity in the functional form of the rank-citation 
distribution (analogous to the Zipf rank-frequency distribution) for each scientist studied. 
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Common functional form also describes even           
Assistant Professors with average h-index <h> = 15± 7

Average values of the DGBD model parameters:        

<β> = 0.79 ± 0.38     and    <γ>  = 0.89 ± 0.36
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The β -vs- h parameter space
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For a given h, a large β value corresponds to a larger total citations, 
Ci ~ h1+ β , 

which is a proxy for career publication impact

Matthias Ernzerhof (U. Montreal)

c (1) = 16,314 
“Generalized gradient approximation made simple” 
Perdew, JP; Burke, K; Ernzerhof, M
PRL 1996 

H. E. Stanley

A.-L. Barabasi

P. W. Anderson
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