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ABSTRACT

This thesis applies statistical physics concepts and methods to quantitatively an-

alyze socioeconomic systems. For each system we combine theoretical models and

empirical data analysis in order to better understand the real-world system in rela-

tion to the complex interactions between the underlying human agents. This thesis is

separated into three parts: (i) response dynamics in financial markets, (ii) dynamics

of career trajectories, and (iii) a stochastic opinion model with quenched disorder.

In Part I we quantify the response of U.S. markets to financial shocks, which

perturb markets and trigger “herding behavior” among traders. We use concepts

from earthquake physics to quantify the decay of volatility shocks after the “main

shock.” We also find, surprisingly, that we can make quantitative statements even

before the main shock. In order to analyze market behavior before as well as after

“anticipated news” we use Federal Reserve interest-rate announcements, which are

regular events that are also scheduled in advance.

In Part II we analyze the statistical physics of career longevity. We construct

a stochastic model for career progress which has two main ingredients: (a) random

forward progress in the career and (b) random termination of the career. We incorpo-

rate the rich-get-richer (Matthew) effect into ingredient (a), meaning that it is easier

to move forward in the career the farther along one is in the career. We verify the

model predictions analyzing data on 400,000 scientific careers and 20,000 professional

sports careers. Our model highlights the importance of early career development,

showing that many careers are stunted by the relative disadvantage associated with

inexperience.

In Part III we analyze a stochastic two-state spin model which represents a system

of voters embedded on a network. We investigate the role in consensus formation of

v



“zealots”, which are agents with time-independent opinion. Our main result is the

unexpected finding that it is the number and not the density of zealots which deter-

mines the steady-state opinion polarization. We compare our findings with results

for United States Presidential elections.
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Chapter 1

Interdisciplinary Applications of

Statistical Physics: Econophysics

and Sociophysics

I often get two questions in succession from people who want to know, sincerely

or just for the sake of conversation, what it is that I do. The first question is the

commonplace, “So, what do you do?” The second follow-up question, regardless of

how I answer the first is, “And that’s physics?” My response to the second question is

where things typically get interesting, because I’m trying to explain that the physics

paradigm is to find a system, make measurements, and develop a theory that explains

the empirical data along the lines of the scientific method.

My explanation typically points out that the natural systems were the first sys-

tems of real practical use by such a scientific paradigm, because it was actually more

feasible to set up reliable and reproducible experiments on closed physical systems,

where one can usually (cleverly) eliminate or sufficiently reduce outside influences.

In contrast, however, most social or economic systems typically have a lot of back-

ground noise because it can be very difficult to effectively close such systems off from

their environmental factors. Hence, much more data is needed for open experimental

systems (e.g. social and economic systems), so that the fluctuations can be averaged

out, and the effective “signal-to-background-noise” increased.
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If the person is not from the social or natural sciences, they most likely are vexed by

the picture in their mind of college introductory physics, and the torturous memories

of drawing free-body diagrams for springs and blocks on inclines. These individuals

are typically satisfied with my answer, and are probably wondering why they didn’t

explore more of the physics courses since econophysics and sociophysics sounds “fun

and interesting.” The other, more scientifically inclined individuals, can get a bit

more defensive, claiming that there are fields that already apply the scientific method

to problems in the social and economic sciences. And it is in this scenario that I

am in the position of justifying interdisciplinary science, where instead of trying to

outperform another field at their own approach, the idea is to combine the expertise

of diverse fields in order to analyze problems using hitherto novel methods from other

fields.

Interdisciplinary science is a growing field, beginning with mergers like geophysics

and biophysics, which applies methods from various fields to address research topics

that have traditionally been analyzed by scientists within a specific field. Methods

from statistical physics are well-suited for interdisciplinary socioeconomic research

due to the similarity between physical systems consisting of interacting particles and

socioeconomic systems consisting of interacting agents. In this work, we analyze

three socioeconomic systems with emergent complexity arising from the interactions

between human agents:

(i) the macroscopic response dynamics in financial markets resulting from specu-

lative traders,

(ii) the career longevity of employees in competitive professions, and

(iii) the Voter model in the presence of “zealots”, voters with a fixed opinion, rep-

resenting quenched disorder in a stochastic opinion model.

We use statistical physics concepts such as scaling analysis, master-equation evolution,

and Monte-Carlo simulation to analyze these three systems. The purpose of this

research is to demonstrate the utility of these methods in explaining data recorded for

various complex social systems and to find statistical laws that quantify the statistical

regularities we observe.
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Our research is a combination of both theoretical modeling and experimental

observation. A wealth of data precisely recording various facets of economic and

social phenomena have become available in recent years, allowing scientists to search

for statistical laws that emerge from human interactions. We utilize comprehensive

data recorded for

(i) U.S. markets over the 2-year period 2001-2002, comprising the top 1,000 com-

panies, and over 1 billion financial transactions,

(ii) Six high-impact journals over the 50-year period 1958-2008 (CELL, the New

England Journal of Medicine, Nature, the Proceedings of the National Academy

of Science, Physical Review Letters, and Science), comprising 350,000 articles

and 600,000 scientists,

(iii) Four professional sports leagues (Major League Baseball, Korean Professional

Baseball League, National Basketball Association, English Premier League),

comprising over 20,000 athletes and over 200 seasons of league play.

and find several statistical laws. These empirical descriptions aid in the development

of appropriate theoretical models, which can provide further insight into the various

deterministic and stochastic mechanisms that give rise to real-world phenomena.



Part II

A Statistical Physics Approach to

Quantifying Market Dynamics

Before and After Financial Shocks



Chapter 2

Motivation

The application of statistical physics methods to economic markets began in the

1990s, mainly due to the availability of large data sets in our burgeoning era of tech-

nology and information. The first studies were focussed on determining the stochastic

aspects of the time series which described the price of a fundamental asset, such as

a stock or stock index, and the associated fractal or Hurst exponents that could de-

scribe the fluctuations [1]. Researchers in the 1990s were fascinated by fractal and

chaotic systems, and so complex economic markets seemed to be a natural terrain to

look for evidence of emergent complexity. However, it became quickly apparent that

there was much more room for statistical physics to contribute to the field, which was

soon termed “econophysics” by H. Eugene Stanley in the mid 1990s.

It had been known for some time that financial time series were odd creatures

as a result of work by mathematicians like Mandelbrot, who had brought these ob-

servations to light in the 1960s. However, it was unclear how the odd behavior of

financial market time series had anything to do with fundamental economics and/or

the theoretical pillars in economics which were the central dogma of economics de-

partments around the world. Some of the highly regarded theories are known as “the

efficient market hypothesis”, rational agent models, the Black-Scholes equations, op-

timal portfolio theory, etc. However, most of this work was based on mathematical

theory that was not fully stress-tested and that did not compare the ramifications of

the theory with empirical data. As a result, the initial econophysics findings were
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startling to some, and exciting to others.

Since the mid-1990s, there has been an explosion in the use of physics methods

applied to financial markets. Some examples are the application of random-matrix

theory from nuclear physics to quantify the cross-correlations of stock fluctuations,

agent-based models developed along the lines of statistical physics spin models to

model collective herding behavior, path-integral and field-theory methods from quan-

tum mechanics to price options and other financial contracts, and scaling methods

from critical phenomena theory to search for cross-market universality.

In this work, we apply methods developed in geophysics to describe the dynamic

response of geophysical systems to massive perturbations in which a fault line sud-

denly releases a large amount of stored energy, commonly known as earthquakes.

In financial markets, the corresponding events are financial crashes which can be

devastating, with the financial turmoil crippling not only the country of origin, but

potentially the international economy. This possibility for worldwide financial crisis

epidemic is almost certain with the recent globalization of financial markets. Thus,

understanding the dynamic response of financial markets to financial crashes is crucial

for the prevention and treatment of financial crises.

However, there is another startling analogy from earthquake physics that makes

the problem in finance much more difficult than trying to just prevent “the big one.”

Just as in earthquake physics there is the Guttenberg-Richter law which says that the

frequency of earthquakes follows a power-law, there is an analogous statistical law, the

“inverse-cubic law” of financial markets that also quantifies the frequency of financial

fluctuations with a power-law. The significance of the power-law formulation lies in

the scale-invariance of the underlying systems, such that there is no typical energy

or fluctuation scale that defines the system, and so physical shocks (and financial

shocks) are predicted to occur across a very large range of energies with a significant

probability of occurrence. In the case of financial shocks, not only are financial

crashes predicted to occur (contrary to the standard theory of economics) but also,

there should also be smaller financial crashes of every size according to the statistical

“inverse-cubic” law. This is bad and good. Although it means that there are more

than just a few extremely large events to expect, it also means that we can analyze

the smaller more frequent events, obtaining a large sample size, and hopefully use our
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understanding of the common mechanism of financial shocks to create preventative

and therapeutic measures for the “big ones.”

So what is a financial crash? Empirically, it corresponds to a time-period, typically

ranging from a day to a week, over which there are significant market losses across

the entire market. Such a downturn can result from endogenous herding or exogenous

events (e.g. the 9/11 World Trade Center attack) which affect the financial outlook.

During these events, there is a significant correlated response causing stock prices

to plunge across the market. In econophysics, the typical quantity of interest is not

necessarily the price p(t), but rather the logarithmic change in the price, also called

the returns, r(t) ≡ ln p(t) − ln p(t − δt) over the time-horizon δt which can range in

analysis from a second to a year. This quantity is considered a measure of fluctuation

in the system, and in a loose-sense, describes the systems non-equilibrium dynamics.

A group of N coupled stocks comprising an index fluctuate at any given moment,

sometimes independently, and sometimes collectively. As a simple null model of re-

sponse dynamics, a system of harmonic oscillators under a small perturbation are

governed by linear response theory, which predicts that the elements will have an ex-

ponential decay back to the “equilibrium state” in a fashion that is indistinguishable

from the response to noise. This is certainly not the case in financial markets, where

stocks individually and markets collectively show evidence of complex systems defined

by anomalous signatures often referred to as stylized facts such as long (power-law)

memory of autocorrelation and clustering of large events (cascading). These stylized

facts are also known to occur in other complex systems in diverse fields, e.g. heart

attacks and brain seizures (medicine), earthquakes (geophysical) and solar flares (stel-

lar). Hence, the hope is that there is a common mechanism that can describe complex

systems consisting of interacting components, and that there is a common system re-

sponse to both small and large perturbations. Here we investigate the statistical

regularities in the market dynamics at the 1-minute time resolution in order to better

understand the cascading dynamics that occur in financial markets.



Chapter 3

Case Study: Quantifying the

Market Response to Federal

Reserve Announcements

3.1 Summary

We study the behavior of U.S. markets both before and after U.S. Federal Open

Market Commission (FOMC) meetings, and show that the announcement of a U.S.

Federal Reserve rate change causes a financial shock, where the dynamics after the

announcement is described by an analogue of the Omori earthquake law. We quantify

the rate n(t) of aftershocks following an interest rate change at time T , and find power-

law decay which scales as n(t−T ) ∼ (t−T )−Ω, with Ω positive. Surprisingly, we find

that the same law describes the rate n′(|t − T |) of “pre-shocks” before the interest

rate change at time T . This is the first study to quantitatively relate the size of the

market response to the news which caused the shock and to uncover the presence of

quantifiable preshocks. We demonstrate that the news associated with interest rate

change is responsible for causing both the anticipation before the announcement and

the surprise after the announcement. We estimate the magnitude of financial news

using the relative difference between the U. S. Treasury Bill and the Federal Funds
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Effective rate. Our results are consistent with the “sign effect,” in which “bad news”

has a larger impact than “good news.” Furthermore, we observe significant volatility

aftershocks, confirming a “market underreaction” that lasts at least 1 trading day.

3.2 Introduction

Interest rate changes by the Federal Reserve provide a significant perturbation

to financial markets, which we analyze from the perspective of statistical physics

[2, 3, 4, 5, 6, 7]. The Federal Reserve board (Fed), in charge of monetary policy as the

central bank of the United States, is one of the most influential financial institutions

in the world. During Federal Open Market Commission (FOMC) meetings, the Fed

determines whether or not to change key interest rates. These interest rates serve as

a benchmark and a barometer for both American and international economies. The

publicly released statements from the scheduled FOMC meetings provide grounds for

widespread speculation in financial markets, often with significant consequences.

In this thesis, we show that markets respond sharply to FOMC news in a com-

plex way reminiscent of physical earthquakes described by the Omori law [8, 9]. For

financial markets, the Omori law was first observed in market crashes by Lillo and

Mantegna [10], followed by a further study of Weber et al. [11], which found the

same behavior in medium-sized aftershocks. However, the market crash is only an

extreme example of information flow in financial markets. This thesis extends the

Omori law observed in large financial crises to the more common Federal Reserve an-

nouncements, and suggests that large market news dissipates via power-law relaxation

(Omori law) of the volatility. In addition to the standard Omori dynamics following

the announcement, we also find novel Omori dynamics before the announcement.

The market dynamics following the release of FOMC news are consistent with

previous studies of price-discovery in foreign exchange markets following marcroe-

conomic news releases [12, 13]. Furthermore, we hypothesize that the uncertainty

in Fed actions, coupled with the pre-announced schedule of FOMC meetings, can

increase speculation among market traders, which can lead to the observed market

underreaction [14]. Market underreaction, meaning that markets take a finite time to

readjust prices following news, is not consistent with the efficient market hypothesis;
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Several theories have been proposed to account for this phenomenon [15].

We analyze all 66 scheduled FOMC meetings in the eight-year period 2000-2008

using daily data from http://finance.yahoo.com. Also, for the two-year period 2001-

2002, we analyze the intraday behavior for 19 FOMC meetings using Trades And

Quote (TAQ) data on the 1-minute time scale.

The section is organized as follows: In Section 3.3 we describe the FOMC meetings

and the Fed interest rate relevant to our analysis. In Section 3.4.1 we analyze the

response of the S&P100, the top 100 stocks (ranked by 12-month sales according

to a 2002 BusinessWeek report) belonging to the 2002 S&P 500 index, over the

2000-2008 period using daily data. Using the relative spread between the 6-Month

Treasury Bill and the Federal Funds Effective rate, we relate the speculation prior to

the FOMC meetings to the daily market volatility, measured here as the logarithmic

difference between the intraday high and low price for a given stock on the day of

the announcement. In Section 3.4.2 we study high-frequency intraday TAQ data

on the 1-min scale for the S&P100, and find an Omori law with positive exponent

immediately following the announcement of Fed rate changes. Further, we relate

the intraday market response, (quantified by both the Omori exponent and Omori

amplitude), to the change in market expectations before and after the announcement.

3.3 FOMC Meetings, Fed Interest Rates and Trea-

sury Bills

There are many economic indicators that determine the health of the U.S. econ-

omy. In turn, the health of the U.S. economy sets a global standard due to the

ubiquity of both the U.S. dollar and the economic presence maintained through im-

ports, exports, and the Global Market [16]. The U.S. Federal Reserve Target rate,

along with the Effective “overnight” rate, set the scale for interest rates in the United

States and abroad. The Target rate is determined at FOMC meetings, which are

scheduled throughout the year, with detailed minutes publicly released from these

meetings. The Effective rate is a “weighted average of rates on brokered trades” be-

tween the Fed and large banks and financial institutions, and is a market realization

of the Target rate [17]. In Fig. 3.1 we plot the Federal interest rates over the 8-year



11

period 2000-2008.

Our analysis focuses on the FOMC meetings after January 2000. Historically,

the methods for releasing the meeting details have varied. In the 1990s, there was

a transition from a very secretive policy towards the current transparent policy [18].

Since the year 2000, the Fed has released statements detailing the views and goals of

the FOMC. This increase in public information has led to an era of mass speculation

in the markets, revolving mainly around key economic indicators such as the unem-

ployment rate, the Consumer Price Index, the money supply, etc. These economic

indicators also influence the FOMC in their decision to either change or maintain key

interest rates. Speculation has assumed many forms and new heights, evident in the

implementation of new types of derivatives based on federal securities. For instance,

options and futures are available at the Chicago Board of Trade which are based

on Federal Funds, Treasury Bills, and Eurodollar foreign exchange. These contracts

can be used to estimate the implied probability of interest rate changes, utilizing so-

phisticated methods focussed on the price movement of expiring derivative contracts

[19, 20, 21, 22, 23].

In the next section, we outline a simple method to measure speculation prior

to a scheduled FOMC meeting using the 6-Month Treasury Bill and the Federal

Funds Effective (“overnight”) rate. These data are readily available and are updated

frequently at the website of the Federal Reserve [17]. Because each FOMC meeting

is met with speculation (in the weeks before the meeting) and anticipation (in the

hours before the announcement), we identify the decision to change or not to change

key interest rates as a market perturbation. The market response results from the

systematic stress associated with the speculation and anticipation, which are not

always in line with the FOMC decision.

3.4 Empirical Results

3.4.1 Response to FOMC Meetings on Daily Time Scale

In this section we analyze the daily activity before and after 66 scheduled FOMC

meetings over the 8-year period 2000-2008, where scheduled meetings are publicly

announced at least a year in advance [17]. We do not consider unscheduled meetings
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Figure 3.1: An illustration of the close relation between the Treasury Bill and the

Federal Funds rate. (a) Time series of the Federal Reserve Target rate, R(t), and

the Federal Reserve Effective rate, F (t), for Federal Funds (F.F.) dating from Jan.

2000 to Apr. 2008. The 6-Month Treasury Bill, T (t), tends to anticipate the effective

rate, with speculation about future changes causing deviations in the relative values.

United States Treasury Bills carry little risk, and are considered to be one of the most

secure investments. (b) A typical illustration of the Federal Funds Effective rate and

the Treasury Bill, where both gravitate around the Federal Funds Target rate. The

change in the relative spread δ(t), defined in Eq. (3.1), between the Treasury bill and

the Federal Funds Effective rate, indicates changes in market speculation. (c) The

relative spread, δ(t), 15 days before and 15 days after the scheduled FOMC meeting

on Dec. 14, 2004, which corresponds to ∆t = 0. Note that the average value of

the relative spread increases after the announcement, indicating a shift in market

consensus and speculation.
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resulting in rate change, which contain an intrinsic element of surprise, and are his-

torically infrequent (only 4 unexpected Target rate changes over the same period).

Of primary importance, is the FOMC committee’s decision to change or not change

the Target rate R(t) by some percent ∆R(t), where the absolute relative change

|∆R(t)/R(t − 1)| has typically filled the range between 0.0 and 0.25. This section

serves as an initial motivation for the intraday analysis, and will also serve as a guide

in developing a metric that captures market speculation. In this section we use the

intraday high-low price range to quantify the magnitude of price fluctuations. In

particular, we analyze the companies belonging to the S&P 100, and also the subset

of 18 banking and finance companies referred to here as the “Bank” sector.

In Fig. 3.1(a) we plot T (t), the time series for the 6-Month Treasury Bill, along

with F (t), the Federal Funds Effective rate, and R(t), the Federal Funds Target rate,

over the 8-year period beginning in January 2000. The relative difference between

the 6-Month Treasury Bill and the Federal Funds Effective rate is an indicator of

the future expectations of the Federal Funds Target rate [18]. Note that the 6-

Month Treasury Bill has anticipatory behavior with respect to the Federal Funds

Target (and hence Effective) rates. Other more sophisticated models utilize futures

on Federal Funds and Eurodollar exchange, but these markets are rather new, and

represent the highly complex nature of contemporary markets and hedging programs

[19, 20, 21, 22, 23]. Hence, we use a simple and intuitive method for estimating

market speculation and anticipation by analyzing the relative difference between the

6-Month Treasury Bill and the Federal Funds Effective rate.

Fig. 3.1(b) exhibits the typical interplay between the 6-Month T-Bill and the

Federal Funds Effective rate before and after a FOMC meeting. The change in the

value of the Effective rate results from market speculation, starting approximately

one trading week (5 trading days) prior to the announcement. This change follows

from the forward-looking Treasury Bill, which in the example in Fig. 3.1(b), is priced

above the Federal Funds rate even 15 trading days before the announcement.

In order to quantify speculation and anticipation in the market prior to each

scheduled FOMC meeting, we analyze the time series δ(t) of the relative spread

between F (t) and T (t),

δ(t) ≡ ln
(F (t)

T (t)

)

. (3.1)
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As an example of this relation, in Fig. 3.1(c) we plot δ(t) for the 15 days before

and after a typical FOMC meeting resulting in a rate change. In order to study

the speculation preceding the ith scheduled FOMC meeting, we calculate the average

relative spread over the L1 = 15 day period. We weight the days in the L1-day period

leading up to the FOMC meeting day exponentially, such that the relative spread on

the ∆tth day before the announcement has the weight w(∆t) = e−∆t/λ. Without loss

of generality, we choose the value of λ = 10 days corresponding to two trading weeks.

For the calculation of Θ and ∆, we choose values of L and λ to be on the order of a

couple trading weeks prior to the announcement, so that we isolate fresh speculation

leading into the meeting. The parameter λ provides an effective cutoff period, after

which the weights begin to decrease quickly. Conversely, the weights corresponding

to days close to the meeting, ∆t = 0, are effectively constant. The values of Θ and

∆ do not change much with varying choice of L ∈ [5, 15] or λ ∈ [5, 15]. Without loss

of generality, we choose L = 15 days, and λ = 10 days. We define the speculation

metric,

Θi = δ(t)i ≡
∑

∆t δ(ti − ∆t)w(∆t)
∑

∆t w(∆t)
, (3.2)

which is a weighted average of δ(t) before the announcement, where the sums are

computed over the range ∆t ∈ [1, L1]. The metric Θi for the ith FOMC meeting can

be positive or negative, depending on the market’s forward-looking expectations.

In order to quantify the market response to the speculation Θi, we analyze the

market volatility around each FOMC meeting. For a particular stock around the ith

scheduled FOMC meeting, we take the daily high price phi(ti +∆t), and the daily low

price plow(ti + ∆t), for ∆t ∈ [−20, 20], where ∆t = 0 corresponds to ti, the day of the

meeting. We then compute the high-low range for each trading day,

r(ti + ∆t) ≡ ln
( phi(ti + ∆t)

plow(ti + ∆t)

)

. (3.3)

For each stock and each meeting, we scale the range by 〈r〉, the average range over the

41-day time sequence centered around the meeting day, resulting in the normalized

volatility v(ti + ∆t) ≡ r(ti + ∆t)/〈r〉. Similarly, we use Φ(ti + ∆t), the time series

for the volume traded over the same period, to compute a weight for each stock

corresponding to the normalized volume on the day of the FOMC meeting. We
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calculate this weight as φi ≡ Φ(ti)/〈Φ〉i, where 〈Φ〉i is the average daily volume over

the 41-day time sequence centered around the ith meeting day. We use a volume

weight in order to emphasize the price-impact resulting from relatively high trading

volume, since there are significant cross-correlations between volume change and price

change [24]. Finally, we compute the weighted average volatility time series over all

stocks and all meetings,

〈v(∆t)〉 ≡
∑

v(ti + ∆t)φi
∑

φi
. (3.4)

In Fig. 3.2 we plot the trend of average daily volatility defined in Eq. (3.4) for the 10

days before and after the scheduled announcements.

We observe a peak in 〈v(∆t)〉 on FOMC meeting days, corresponding to ∆t = 0,

with a more pronounced peak in the bank sector (Fig. 3.2). Stocks in the bank sector

are strongly impacted by changes in Fed rates, which immediately influence both

their holding and lending rates. On average there is a 15-20% increase in volatility

on days corresponding to FOMC meetings.

In order to quantify the impact of a single FOMC announcement on day ti, we

define the average market volatility

Vi = 〈v(ti)〉 ≡
∑(i) v(ti)φi

∑(i) φi

. (3.5)

Here, 〈· · ·〉i and
∑(i) refer to the average and sum over records corresponding only

to the day ti. Again, φi ≡ Φ(ti)/〈Φ〉 is a normalized weight, where now 〈Φ〉 is the

average daily volume over the entire 8-year period, since we compare many meetings

across a large time span.

In Fig. 3.3 we plot the average volatility Vi of the (a) S&P100 and (b) the subset

of 18 banking stocks versus Θi. For negative values of Θi, for which T (t) > F (t)

corresponding to an expected rate increase, we observe a less volatile market response.

Conversely, for larger positive values of Θi, for which T (t) < F (t) corresponding to

a rate cut, there tends to be larger market fluctuations. Hence, the market responds

differently to falling and rising rates, where the direction in rate change often reflects

the overall health of the economy as viewed by the FOMC. Typically, the FOMC

implements rate increases to fight inflation, whereas rate decreases often follow bad

economic news or economic emergency. Hence, our findings are consistent with the
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Figure 3.2: Average daily volatility trend defined in Eq. (3.4) exhibits increased

market volatility on the day of FOMC meetings, corresponding to ∆t = 0. “Bank”

refers to the portfolio of 18 stocks that belong to the S&P100. There is a 15-20%

increase in volatility on days corresponding to FOMC meetings. Standard devia-

tion σ(v(∆t)) ≈ 0.4 can be assigned to each data point in the time series, and are

calculated by randomizing the daily volatility time series of each company. (Inset)

Probability density function (pdf) of normalized volatility v ≡ r(t)/〈r〉, where the

quantity r(t) ≡ ln(phi(t)/plow(t)) is the range of the price time series of a given stock

for a particular day. We plot the pdf of volatility values for the S&P100 on the set of

days with FOMC meetings and for the set of all “other” days. The distributions are

approximately log-normal, with a shift towards higher average volatility on FOMC

days. The average values for the two data sets are 〈v〉FOMC = 1.12 and 〈v〉other = 1.00.
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Figure 3.3: Demonstration of the relation between speculation of interest rate change

and market volatility in the S&P100 and for the subset of Banking stocks. We relate

Θi, the speculation in the market before a FOMC meeting defined in Eq. (3.2), to

the market volatility Vi defined in Eq. (3.5). A large absolute value of Θi reflects

the high probability that an interest rate change will happen. Interestingly, there are

many instances where Θi ≈ 0, followed by large volatility. These values correspond to

FOMC decisions to maintain interest rate levels (∆R = 0), and suggest a fundamental

difference in the dynamics following decisions to change versus decisions not change

the Federal Funds Target rate. Also, there is an underlying symmetry in ∆R, since in

the case of either a rate increase or a rate decrease, the FOMC also has the option of

no increase. Hence, ∆R = 0 can occur as either “good” or “bad” news, whereas typ-

ically decisions of ∆R > 0 reflect situations with positive market sentiment whereas

decisions of ∆R < 0 reflect situations with negative market sentiment. Hence, the

asymmetry in market volatility is consistent with the “sign effect” [13]. Although

the correlation between Θi and Vi is dominated by residual error, it is nevertheless

supporting that the regression captures the crossover at (θ, V ) = (0, 1). Including all

data points, the regression correlation coefficient is r2 = 0.34, and the slope of the

regression is m = 0.36 ± 0.13 for panel (a) and r2 = 0.30 and m = 0.54 ± 0.22 for

panel (b). All linear regressions pass the ANOVA F-test, rejecting the null hypothesis

that m = 0 at the α = 0.05 significance level.
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empirical “sign effect”, in which “bad” news has a greater impact in markets than does

“good” news [13]. Furthermore, there is also a tendency for large average volatility

even when Θi is small, possibly stemming from the extreme surprise characteristic

of some FOMC decisions. In these cases, more sophisticated methods are needed to

improve the predictions of market movement.

3.4.2 Intraday response to FOMC decision via an Omori Law

In the previous section we studied the market response on the daily scale. Now we

ask the question, “What is the intraday response to FOMC news?” Here we analyze

the TAQ data over the 2-year period Jan. 1, 2001 to Dec. 31, 2002. The reported

times for the FOMC announcement are listed in Table 1. We find historical informa-

tion about FOMC meetings using resources at the Federal Reserve websit and using

newspaper archives. Intraday time of announcement, T , are often quoted in New

York Times finance articles by Richard W. Stevenson the day after FOMC announce-

ments. They are also evident in the intraday Omori plots of N(t) in Fig. 4. Inspired

by the non-stationary nature of financial time series, methods have been developed

within the framework of non-equilibrium statistical mechanics to describe phenom-

ena ranging from volatility clustering [25, 26, 27] to financial correlation matrices

[28, 29, 30].

We use the Omori law, originally proposed in 1894 to describe the relaxation of

after-shocks following earthquakes, to describe the response of the market to FOMC

announcements. Defined in Ref. [10], the Omori law quantifies the rate n(t) of

large volatility events following a singular perturbation at time T . The shock may

be exogenous (resulting from external news stimuli) or endogenous (resulting from

internal correlations, e.g. “herding effect”) [31, 32, 33, 34, 35]. This rate is defined

as,

n(|t − T |) ∼ |t − T |−Ω , (3.6)

where Ω is the Omori power-law exponent.

Here we study the rate of events greater than a volatility threshold q, using the

high-frequency intraday price time series p(t). The intraday volatility (absolute re-

turns) is expressed as v(t) ≡ | ln(p(t)/p(t − δt))|, where we use δt = 1 minute. To

compare stocks, we scale each raw time series in terms of the standard deviation over
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the entire period analyzed, and then remove the average intraday trading pattern as

described in Ref. [11]. This establishes a common volatility threshold q, in units of

standard deviation, for all stocks analyzed.

In the analysis that follows, we focus on N(|t − T |), the cumulative number of

events above threshold q,

N(|t − T |) =

∫ t

T

n(|t′ − T |)dt′ ≡ β(|t − T |)1−Ω , (3.7)

which is less noisy compared to n(|t−T |). Using N(|t−T |), we examine the intraday

market dynamics for 100 S&P stocks, before (t < T ) and after (t > T ) the ith FOMC

announcement at Ti, which typically occurs at 2:15 PM ET (285 minutes after the

opening bell) for scheduled meetings.

In Figs. 3.4(a,b) we plot the average volatility response N(t) of the S ≡ 100

stocks analyzed, where

N(t) ≡ 1

S

S
∑

j=1

N j(t) . (3.8)

This average is obtained by combining the individual Omori responses, N j(t), of the S

stocks. Such averaging does not cancel the Omori law, but allows for better statistical

regression. This is especially useful for an Omori law corresponding to large volatility

threshold q, where a single stock might not have a sufficient number of events. In Fig.

3.4(c) we plot the trade pattern N j(t) of Merrill Lynch on Tuesday 08/21/01, and

also in Fig. 3.5 for the following three days, demonstrating that the Omori relaxation

can persists for several days.

The abrupt change in the curvature of N(t) illustrates the volatility clustering

which begins around the time of the announcement T , corresponding to the vertical

line at t = 285 minutes in Figs. 3.4(a-c). For comparison, we find that the average

〈N(t)〉 time series calculated from all days without FOMC meetings is approximately

linear with time throughout the entire day, indicating that the sudden increase in

excess volatility before and after announcement times T results from the FOMC

news. Volatility clustering in financial data sampled at the 1-minute scale persists for

several months, with a significant crossover in the observed power-law autocorrelations

occurring around 600 minutes (≈ 1.5 days) [36, 37, 38].

In order to compare the dynamics before and after the announcement, we first

separate the intraday time series N(t) into two time series Nb(t|t < T ), and Na(t|t >
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FOMC Date Rnew (%) ∆R ∆R
Rold

T

01/03/01** 6 -0.5 -0.077 210

01/31/01 5.5 -0.5 -0.083 285

03/20/01 5 -0.5 -0.091 285

04/18/01** 4.5 -0.5 -0.100 90

05/15/01 4 -0.5 -0.111 285

06/27/01 3.75 -0.25 -0.063 285

08/21/01 3.5 -0.25 -0.067 285

09/17/01** 3 -0.5 -0.143 0

10/02/01 2.5 -0.5 -0.167 285

11/06/01 2 -0.5 -0.200 285

12/11/01 1.75 -0.25 -0.125 285

01/30/02 1.75 0 0.00 285

03/19/02 1.75 0 0.00 285

05/07/02 1.75 0 0.00 285

06/26/02 1.75 0 0.00 285

08/13/02 1.75 0 0.00 285

09/24/02 1.75 0 0.00 285

11/06/02 1.25 -0.5 -0.286 285

12/10/02 1.25 0 0.00 285

Table 3.1: Reported times of market perturbations in the form of FOMC news.

Dates of 19 FOMC meetings in the 2-year period between Jan. 2001 - Dec. 2002,

where the Federal Funds Target rate Rnew was implemented by the rate change ∆R

at T minutes after the opening bell at 9:30 AM ET. The absolute relative change

| ∆R
Rold

| ≡ |∆R(t)/R(t − 1)| has typically filled the range between 0.0 and 0.25. Note:

Date** refers to unscheduled meetings, in which the announcement time did not

correspond to 2:15 PM ET (T = 285 minutes).
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Figure 3.4: The cumulative volatility time series N(t) demonstrates Omori-law re-

sponse dynamics, here in response to FOMC announcements occurring at the time

T indicated by a vertical solid line. The abrupt change in the curvature of N(t)

around time t ≈ T illustrates the increased volatility caused by the announcement.

The significant aftershocks which occur until the end of the trading day are consis-

tent with “market underreaction” [12, 13]. Market underreaction and other market

inefficiencies can result from increased levels of uncertainty among traders following

market news [14]. Each time series N(t) is calculated for a given volatility threshold

q, where larger q values correspond to N(t) curves with smaller amplitude (smaller

rate of large volatility events). Panels (a,b,c) illustrate the dynamics around a sched-

uled announcement made at T = 285 minutes (2:15 PM ET). For the S&P 100, we

calculate N(t) on 05/15/01 for (a) 1-minute volatility and (b) 1-minute total volume

using Eq. (3.8). (c) We calculate N j(t) for Merrill Lynch (MER) on 08/21/01. (d)

The Omori law also occurs for unscheduled FOMC announcements, as illustrated for

the Bank sector N(t) on 04/18/01, when the surprise rate change was announced at

T = 90 minutes (11:00 AM ET), resulting in raised levels of volatility throughout

the entire trading day. For panels (a-d), the dashed lines are power-law fits begin-

ning immediately after the announcement, with the corresponding exponents Ωa(q)

appearing in parentheses within the legends.
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Figure 3.5: The Omori law relaxation can extend for several days. We compare

the Omori exponents Ωa(q) (indicated in legends) calculated for (a) the time series

Na(τ) of the Bank sector and (b) the time series N j
a(τ) of Merrill Lynch for the

three days (1275 minutes) after the announcement on Tuesday 08/21/01 at 2:15 pm

(τ = 0 minutes corresponding to T = 285 minutes). For the remaining 3 days of the

trading week, the Omori law relaxation corresponding to an individual stock (MER)

is quantitatively similar to the the Omori law relaxation of the Bank sector over the

final 105 minutes of the initial trading day. We do not use the Bank sector Na(τ)

over the same 1275-minute time period for comparison because “opening effects”

occurring during the first 60 minutes of each trading day makes power-law regression

of conjoined Na(τ) problematic.
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Figure 3.6: An illustration of the method used to calculate (a) Nb,i(τ) = Ni(Ti) −
Ni(|t− Ti|) and (b) Na,i(τ) = Ni(t− Ti) −Ni(Ti) for each intraday time series Ni(t).

The displaced time τ = |t − Ti| is defined symmetrically around the time of the

announcement Ti. We plot the same data as in Fig. 3.4 (a), corresponding to the

announcement on 05/15/01 which occurred at T = 285 minutes. Panels (c) and (d)

show that Nb,i(τ) and Na,i(τ) are approximately linear on logarithmic scale.

T ). Then, to treat the dynamics symmetrically around the ith intraday announcement

time Ti [35, 39], we define the displaced time τ = |t − Ti| ≥ 1 as the temporal

distance from the minute Ti. As an illustration, we plot N(τ) in Fig. 3.6 for the 4

corresponding N(t) curves exhibited in Fig. 3.4(a). We then employ a linear fit to

both Nb,i(τ) = Ni(Ti)−Ni(|t−Ti|) and Na,i(τ) = Ni(t−Ti)−Ni(Ti) on a log-log scale

to determine the Omori power-law exponents Ωb before the news and Ωa after the

news. In analogy, we define the amplitude β before as βb and after as βa, as defined

in Eq. (4.6).

Typically Ωa > 0, which reflects the pronounced increase in the rate of events

above the volatility threshold q after the time of the announcement. We also observe

Ω < 0, which corresponds to a time series in which the pre-shocks or after-shocks

farther away from the announcement (for large τ) are dominant over the volatility
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cascade around time τ ≈ 0. For comparison, n(τ) is constant for stochastic processes

with no memory, corresponding to Ω ≡ 0. Hence, for an empirical value Ω ≈ 0, the

rate n(τ) is indistinguishable from an exponential decay for τ < t, where t is the

characteristic exponential time scale. However, for larger values of Ω, the exponen-

tial and power-law response curves are distinguishable, especially if several orders of

magnitude in τ is available.

For all meetings analyzed, we find that Ω ≡ Ω(q) increases with q, meaning

that the relatively large aftershocks decay more quickly than the relatively small

aftershocks. Hence, the largest volatility values cluster around the announcement

time T . For comparison, Ω(q) values are calculated in [10] using q = 4, 5, 6, 7 and

in [11] using q = 3, 4 for large financial crashes. For our data set, the cumulative

probability P (v > q) that a given volatility value is greater than volatility threshold

q is P (v > 3) = 0.18 and P (v > 5) = 0.087. Furthermore, we reject the null

hypothesis that q > 5 volatilities are distributed evenly across all days, finding that

5% of the volatility values greater than q = 5 are found on FOMC meeting days,

whereas only 4% are expected under the null hypothesis that large volatilities are

distributed uniformly across all trading days. The 25% increase for q = 5 indicates

that FOMC meetings days are more volatile than other days at the α ≈ 0 significance

level. We also observe that the amplitudes of the Omori law generally obey the

inequality βb < βa, resulting from the large response immediately following the news.

Although we focus mainly on price volatility v(t) in this thesis, we also observe

Omori dynamics in the high-frequency volume time series ω(t), defined as the cumu-

lative number of shares traded in minute t. In Figs. 3.7 (a-d) for the S&P 100 and

Figs. 3.7 (e-h) for the bank sector, we compare the average of Omori exponents Ωb

and Ωa for both volatility and volume dynamics, and for volatility threshold value

q = 3. We compute the average Omori exponents using two averaging methods, the

“individual” method and the “portfolio” method.

To analyze the time series Na,i after the announcement i, we first average the

exponents Ωj
a obtained for each individual stock j, yielding 〈Ωa〉. This “individual”

method provides an error bar corresponding to the sample standard deviation σ(Ωa).

The second “portfolio” method determines a single Ωa from N(t) in Eq. (3.8). Com-

paring the open-box (individual method) and closed-box (portfolio method) symbols
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in Fig. 3.7, we observe that both methods yield approximately the same average

value of Ωa. Note that for the subset i = {1,8} of the unscheduled FOMC meetings,

Ωa is smaller than usual, capturing the intense activity following surprise announce-

ments. Hence, unexpected FOMC announcements can produce an inverse Omori law

exhibiting convex relaxation (Ωa < 0) over a short horizon if the news contains a

large amount of inherent surprise. The 8th meeting corresponds to the opening of

U.S. markets a week after the terrorist attacks on the World Trade Center on Sept.

11, 2001.

For the time series Nb,i before the announcement i, individual stocks often do

not have sufficient activity to provide accurate power-law fits. Hence, to estimate

the sample standard deviation σ(Ωb), we produce partial combinations, 〈N(τ)〉b,i ≡
1
M

∑M
j=1 N j

b,i(τ) using M ≡ 5. We then compute a standard deviation σ(Ωb) from the

Ωb values calculated from 〈N(τ)〉b,i. The σ(Ωb) values correspond to the error bars

for 〈Ωb〉 in Fig. 3.7.

We also compute a single Ωb value from the portfolio average Nb,i(τ), which cor-

responds to the limit M = S. The values of Ωb using the two methods are consistent.

Interestingly, the values of Ωb calculated from volume data are all close to zero. How-

ever, using the Student T-test we reject the null hypothesis that each average value

〈Ωb〉 is equal to zero at the α = 0.01 significance level for 15 out of 17 dates.

Fig. 3.7 shows the range of Ω values for each of the 19 FOMC meetings we

analyze. There are 8 panels comparing the Ω values (i) between the dynamics before

and after T , (ii) between the volatility and volume dynamics, and (iii) between set

of all stocks comprising the S&P100 and the set of stocks comprising the banking

sector. We hypothesize that the differences in the Omori Ω values, before and after the

announcement, are related to the anticipation and perceived surprise of the FOMC

news. Furthermore, for the dynamics after the news, we find anomalous negative Ωa

values for two surprise FOMC announcements i = 1 and i = 8. Also, we find that

volume Ω values are more regular across all meeting events, suggesting that volume

and price volatility contain distinct market information [40, 41].

In order to find potential variations in the response dynamics for different stock

sectors, in Fig. 3.8(a) we compare the Ωa values after the announcement for 5 ap-

proximately equal-sized sectors using volatility threshold q = 3. We observe that the
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Figure 3.7: Comparison of Omori law exponents for both volatility dynamics and

volume dynamics on the day of 19 FOMC meetings during the two-year period Jan.

2001- Dec. 2002. Panels (a-d) correspond to the S&P 100 and panels(e-h) correspond

to the bank sector. The similarity in exponents for 1-minute volatility and 1-minute

cumulative volume suggest a universal underlying mechanism. Solid symbols (� and

•) refer to Ω computed from N(t). Open symbols (� and ©) refer to 〈Ω〉 computed

from S individual Omori exponents Ωj , with Sbank = 18. Note the relatively low value

of Ωa and 〈Ωa〉 for unscheduled FOMC announcements i = 1 and 8, which indicates

that volatility rate following the announcement increased throughout the day.
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differences in the average values of the sectors are fairly small, indicating a broad

market response. We also observe that the technology sector (Tech.), composed of

hardware, software, and IT companies, often has the largest average Ωa value. Larger

exponents, which correspond to shorter relaxation times, could result from the intense

trading in the Tech sector during the Tech/IT bubble, which peaked in the year 2000.

In follow-up analysis, we find in [42] that stocks with higher trading activity, quanti-

fied as the average number of transactions per minute, have larger Ωj in response to

market shocks, and thus, faster price discovery. In order to compare the variation in

the individual values of Ωj
a, we plot the pdf of exponents for all stocks and meetings

in Fig. 3.8(b) using the shifted variable xj ≡ Ωj
a,i − Ωa,i. We conclude from a Z-test

at the α = 0.0005 significance level that Tech sector Omori exponents are larger on

average, 〈x〉Tech > 〈x〉SP100.

Motivated by the metric Θi defined in Eq. (3.2), which quantifies speculation

and anticipation in the market preceding FOMC meetings, we now develop a sec-

ond metric to describe surprise through the change in market speculation following

the announcement. This metric ∆i compares the anticipation leading up to the an-

nouncement with the revised speculation following the FOMC decision. This can be

quantified through the relative change in δ(t), which provides a rough measure of

the market stress that is released in the financial shock. Qualitatively, ∆i relates the

average value of the spread before and after the ith scheduled meeting. We define,

∆i ≡
(

δ(t)i,a − δ(t)i,b

)

× S(∆Ri) (3.9)

≡
(

∑

δ(ti − ∆t) w(∆t)
∑

w(∆t)
−

∑

δ(ti + ∆t) w(∆t)
∑

w(∆t)

)

× S(∆Ri) , (3.10)

where the sum is computed over the range ∆t ∈ [1, L2] trading days, with L2 = 15

trading days and λ2 = 10 trading days. The factor S(∆Ri) = 1 when the Fed increases

or maintains the Target rate R(t), while S(∆Ri) = −1 when the Fed decreases the

Target rate.

In Figs. 3.9 (a-d) we relate the amplitudes 〈βb〉 and 〈βa〉, and also the exponents

〈Ωb〉 and 〈Ωb〉 to the speculation metric Θ and the surprise metric ∆. We observe that

larger Θ and larger ∆ are related to larger amplitude 〈βb〉 quantifying the preshock

dynamics. However, we do not find a statistically significant relation between Θ or

∆ and the aftershock parameters, suggesting that the relaxation dynamics following
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Figure 3.8: (a) A comparison of Ωa for 5 sectors with volatility threshold q = 3

suggests a broad universal market response to FOMC news. The Tech sector tends

to have the largest average Ωa, where large Ω values corresponds to faster relaxation.

The horizontal straight line represents the mean Ωa = 0.24 ± 0.08, averaged over all

stocks in the S&P100 and all scheduled meetings (excluding the unscheduled meetings

i = {1, 4, 8}). (b) Probability density function P (x) of the variable x ≡ xj
a,i =

Ωj
a,i − 〈Ωa,i〉, which correspond to individual Ωj

a,i values centered around the average

exponent 〈Ωa,i〉 of a given meeting i. Tech sector Omori exponents are larger on

average, and since larger Ω values correspond to shorter relaxation time, we find that

the Tech sector stocks responds more quickly to FOMC news, possibly as a result of

relatively intense trading activity among these stocks.
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FOMC news are less predictable. Nevertheless, the aftershock dynamics are consis-

tently more pronounced, with 〈βa〉 > 〈βb〉. We interpret Figs. 3.9(a) and (c) as

follows: when Θ < 0, corresponding to “good” market sentiment and possible rate

increase, the dynamics before the announcement have small βb and small Ωb reflecting

low activity. After the announcement, the values of βa and Ωa increase, correspond-

ing to a fast response of medium size. In the case of Θ > 0, corresponding to “bad”

market sentiment resulting from speculation of a rate cut, the dynamics before the

announcement have large βb and large Ωb, corresponding to a strong but quick buildup

of volatility. After the announcement, the dynamics have large βa and small Ωa, cor-

responding to a strong and lasting relaxation dynamics. The interpretation of Figs.

3.9(b) and (d) is similar to the interpretation of Figs. 3.9(a) and (c), in that both

surprise (∆ > 0) and expected (∆ ≈ 0) bad news, correspond to a stronger and

longer-lasting relaxation dynamics.

3.5 Discussion

Information flows through various technological avenues, keeping the ever-changing

world up-to-date. All news carries some degree of surprise, where the perceived mag-

nitude of the news certainly depends on the recipient. In financial markets, where

speculation on investment returns results annually in billions of dollars in transac-

tions, news plays a significant role in perturbing the complex financial system both

on large and small scales, reminiscent of critical behavior with divergent correlation

lengths [43]. Perturbations to the financial system are easily transmitted throughout

the market by the long-range interactions that are found in the networks of market

correlations [28, 29, 30]. Afterwards, the effects of the perturbation may persist via

the long-term memory observed in volatility time series [36, 37, 38], with fluctuation

scaling obeying the empirical Taylor’s law [44, 45].

We have shown that the Omori law describes the dissipation of information fol-

lowing the arrival of Federal Open Market Commission (FOMC) news. This type

of relaxation is consistent with the substructure of financial crash aftershocks ob-

served on various scales [11]. In particular, we systematically study the dynamical

response of the stock market to perturbative information in the form of a Federal
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Figure 3.9: The relation between the size of the financial shock, quantified by the

S&P 100 volatility Omori law parameters 〈βb〉, 〈βa〉, 〈Ωb〉, 〈Ωa〉, and ∆(〈Ω〉) = 〈Ωa〉−
〈Ωb〉, and the size of the FOMC news, quantified through the metrics Θ representing

market anticipation and ∆ representing market surprise. All trends are consistent

with the hypothesis that a strong anticipation of an interest rate change, and the

element of surprise inherent in the FOMC decision, result in a market perturbation

that is significant in scale, and broad across the market. Linear regressions of S&P100

data (a,b) and bank sector data (c,d) are provided for visual aide. Linear regressions

that pass the ANOVA F-test (rejecting null hypothesis that regression slope m = 0)

at the α = 0.05 significance level are solid; regressions that fail to pass the F-test at

the α = 0.05 significance level are dashed.
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Reserve FOMC interest rate announcements, which can be expected (scheduled) or

unexpected (as in cases of emergency).

In the case of unexpected news, as in Fig. 3.4(d), a pronounced response may

result from reduced market liquidity, since traders do not have ample time to prepare

and adjust [13]. Our findings suggest that the dynamics of “rallies” based on other

forms of news, such as earning reports, upgrades and downgrades of stocks by major

financial firms, unemployment reports, merging announcements etc., might also be

governed by the Omori law with parameters that depend on the type of news. The

impact of macroeconomic news has been analyzed for foreign exchange markets [13],

where it is found that high levels of volatility are present following both scheduled

and surprise news.

According to the efficient market hypothesis [15], the time scale over which news

is incorporated into prices should be very small. However, consistent with previous

studies, we find “market underreaction” [14] evident in the finite time scale (found

here to be at least 1 trading day) over which the volatility aftershocks are significant.

Moreover, we quantify the dynamics before and after, and show that the Omori

parameters are related to investor sentiment [14], here measured by comparing the

6-month the Treasury Bill and the Federal Funds rates.

It is also conceivable that Omori law decay of market aftershocks also exists in

the traded volume time series and the bid-ask spread time series [39, 46] . Recently,

Joulin et al. [33] use a similar method to describe the relaxation of trading following

news streaming from feeds such as Dow Jones and Reuters, and compare their findings

with the relaxation following anomalous volatility jumps. They also find Omori law

relaxation, with exponent Ωa ≈ 1 following a news source, and Ωa ≈ 0.5 following

an endogenous jump; interestingly, they find that the amplitude of the Omori law is

larger for news sources than for endogenous jumps. For further comparison, Weber

et al. [11] find Ωa ≈ 0.69 for the 38 market days following the market crash on

September 11, 1986. One distinct difference between these studies, is the source

of the news: Joulin et al. pool together thousands of news sources, some possibly

pertaining to only a single stock; we focus on one particular type of news, the FOMC

Target rate decision, which has a broad impact on the whole market and economy. It

is possible that the difference between anticipated news and idiosyncratic news is the
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important criterion to consider when analyzing market response functions in relation

to exogenous events. Here, we find novel dynamics before anticipated announcements.

In the case of FOMC news, speculation can be quantified by measuring the relative

difference between the effective Federal Funds rate and the Treasury Bill in the weeks

leading up to a scheduled meeting. We develop a speculation metric, Θ, and relate it

to V , the volatility on the day of the meetings, finding that the market behaves more

erratically when the Treasury Bill predicts a decrease in the Federal Funds Target

rate. A rate decrease often occurs in response to economic shocks, whereas a rate

increase is often used to fight inflation. Hence, the asymmetric response in Fig. 3.3

to rising and falling rates is consistent with the “sign effect”, where it has been found

that bad news causes a larger market reaction than good news [13], and that the

asymmetry may result from the increased uncertainty in expectations among traders.

We analyze the four Omori-law parameters Ωb, Ωa, βb and βa calculated for 19

FOMC meetings. We conjecture that the Omori-law parameters are related to the

market’s speculation, anticipation and surprise on the day of the FOMC meeting. In

order to quantify speculation of rate cuts and rate increases, we define the measure Θ,

which is the relative spread between the Treasury Bill and the Federal Funds rates,

before the meeting. In order to quantify surprise, we develop ∆, which measures the

change in the relative spread between the Treasury Bill and the Federal Funds rates,

before and after the meeting. We relate both Θ and ∆ to the dynamical response

of the market on the day of the meeting. We find that relatively small Ω values and

relatively large amplitude β values, corresponding to longer relaxation time and large

response, follow from “bad” news, as in the case of the market reaction to the World

Trade Center attacks in 2001. In all, these results show that markets relax according

to the Omori law following large crashes and Federal interest rate changes, suggesting

that the perturbative response of markets belongs to a universal class of Omori laws,

independent of the magnitude of news.



Chapter 4

Regularities in the Stock Market

Response to 219 Financial Shocks

4.1 Summary

We study the cascading dynamics immediately before and immediately after 219

market shocks. We define the time of a market shock Tc to be the time for which

the market volatility V (Tc) has a peak that exceeds a predetermined threshold. The

cascade of high volatility “aftershocks” triggered by the “main shock” is quantita-

tively similar to earthquakes and solar flares, which have been described by three

empirical laws — the Omori law, the productivity law, and the Bath law. We an-

alyze the most traded 531 stocks in U.S. markets during the two-year period 2001-

2002 at the 1-minute time resolution. We find quantitative relations between (i) the

“main shock” magnitude M ≡ log V (Tc) occurring at the time Tc of each of the

219 “volatility quakes” analyzed, and (ii) the parameters quantifying the decay of

volatility aftershocks as well as the volatility preshocks. We also find that stocks with

larger trading activity react more strongly and more quickly to market shocks than

stocks with smaller trading activity. Our findings characterize the typical volatility

response conditional on M , both at the market and the individual stock scale. We

argue that there is potential utility in these three statistical quantitative relations
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with applications in option pricing and volatility trading.

4.2 Introduction

Financial fluctuations have been a topic of study for economists [47, 48], mathe-

maticians [49], and physicists [2, 3, 4, 5, 6, 50]. Here we study financial fluctuations

using concepts developed in the field of seismology [8, 9] and analogies from turbu-

lent dynamics in our description of market main shock magnitudes in order to analyze

the dynamic response of markets to financial shocks. We identify parallels between

energy cascades and information cascades, and also between turbulent bursts and

the clustering of volatility [51]. Our results demonstrate three statistical regularities

which relate the volatility magnitude M ≡ log V (Tc) to the market response before

and after market shocks.

Common financial “shocks” are relatively smaller in the volatility magnitude, the

duration, and the number of stocks affected, than the extremely large and infrequent

financial crashes. Devastating financial shocks such as Black Monday (20 October,

1987) have significant aftershocks that can last for several months, and this “dynamic

relaxation” is similar to the aftershock cascade following an earthquake [10]. Here

we aim to better understand market shocks over a range of M values. While the

previous studies have focussed on at most a few large crashes, we use a large data set

of 219 financial “main shocks” observed in American markets over the 2-year period

2001-2002. We analyze 531 frequently traded stocks corresponding to approximately

44,000,000 volatility records at a 1-minute time resolution. We find three quantitative

relations which enable answering such questions as:

(i) How does the rate of volatility aftershocks decay with time, and how do the

decay parameters relate to the main shock magnitude M?

(ii) How many aftershocks above a given threshold can be expected after a main

shock of magnitude M?

(iii) What is the relation between the value of the main shock volatility V (Tc) and

the second largest aftershock (or preshock)?
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These three questions have been studied for geophysical earthquakes, and the corre-

sponding statistical laws are referred to respectively as the Omori law, the produc-

tivity law, and the Bath law.

The Omori law was first investigated in the context of financial crashes by Lillo

and Mantegna [10], who found a power-law relaxation of fluctuations at a 1-min

time resolution for the S&P500 over the 100-day period following the Black Monday

crash. Power-law relaxation of aftershocks is also observed for long periods following

several other medium-size crashes [11], and also for short periods up to several days

following U.S. Federal Reserve interest rate change announcements [52]. One key

feature of long-range relaxation dynamics is the scale-free decay of large fluctuations

that is typical of a system with memory, and which is complemented by self-similarity

in the decay substructure [11].

We find similar perturbation-response dynamics in the intraday volatility (abso-

lute return) time series for many single stocks on numerous days, indicating that

markets respond in a common way to perturbations that range in size from everyday

market fluctuations to infrequent market crashes. Interestingly, the market is very

responsive to Federal Open Market Commission (FOMC) news, either in the form of

subtle hints from the Fed or actual rate changes (expected or unexpected), because

Fed Target rates serve as a benchmark and barometer for both U.S. and World mar-

kets [52]. This connection between macroeconomic factors and financial markets is a

tribute to the complexity and connectivity of economic systems. It is a further indi-

cator that news, in addition to complex order-book dynamics, can play a significant

role in explaining the large rate of occurence of large fluctuations in markets.

Here we quantify the rate n(|t − Tc|) of aftershocks at time t both before and

after a market shock occuring at time Tc. In order to determine Tc, we develop a

method for selecting a critical time Tc from a set of candidate times {tc} for which

the collective market volatility of S individual stocks is above a given threshold. For

19 particular dates corresponding to days with FOMC announcements, we compare

the values of calculated Tc with the reported values of T analyzed in [52], and we

find good prediction of T using this method. After this calibration, we study the

relaxation dynamics of S = 531 stocks, analyzing the Omori law, the productivity

law, and the Bath law for the dynamics both before (t < Tc) and after (t > Tc) the
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main market shock.

In Section 4.3 we discuss the data, the quantitative methods used to calculate

n(|t − Tc|), and define collective market movement. In Section 4.4.1 we quantify

the threshold for selecting candidate cascades and calibrate using known values of

Tc corresponding to FOMC meetings. In Section 4.4.2 we describe the method for

choosing Tc from each significant cascade we identify. In Section 4.5 we discuss the

Omori-law parameters α and Ω, the productivity parameter Π, and the Bath law

parameter B. We note that both Π and B are independent of the dynamical model,

and hence do not depend on for n(|t − Tc|), the functional form of the relaxation

dynamics. For each of the statistical laws, we compare the results we obtain for the

market average with the results we obtain for individual stocks.

4.3 Data Analyzed

For the two-year period 2001-2002, we analyze Trades and Quotes (TAQ) data

of more than 500 stocks listed on the NASDAQ and NYSE. In order to analyze

the most important subset of stocks, we rank each stock by the average number of

transactions per minute. We find S = 531 stocks with an average of more than 3

transactions per minute, S = 136 stocks with an average of more than 10 transactions

per minute, and S = 20 stocks with an average of more than 50 transactions per

minute. Unless otherwise stated, our results correspond to the top S = 531 stocks,

but all results become more statistically significant for smaller subsets of more heavily

traded (larger) stocks.

In this section, we study the volatility vj(t) of the intraday price time series pj(t)

for stock j. The intraday volatility (absolute returns) is expressed as

vj(t) ≡ | ln(pj(t)/pj(t − δt))| , (4.1)

where here we choose δt = 1 minute so that we can analyze the dynamics imme-

diately before and immediately after market shocks. To compare stocks, we scale

each volatility time series by the standard deviation over the entire period analyzed.

We then remove the “U”-shaped intraday trading pattern (averaged over 531 stocks)

from each time series. This establishes a normalized volatility in units of standard

deviation for all minutes during the day and for all stocks analyzed (see Ref. [11]).
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We introduce a volatility threshold q which defines a binary volatility time series

nj(t) for each stock j, which we calculate from the normalized volatility time series

vj(t) as

nj(t) ≡
{

1 , vj(t) ≥ q

0 , vj(t) < q .
(4.2)

We find that a volatility threshold q ≡ 3σ is large enough to distinguish between

significant fluctuations and normal background activity. We also choose this value

q ≡ 3σ to provide comparison with the analysis performed in [52]. The rate n(t)

measures the fraction of the market exceeding q at time t,

n(t) ≡ 1

S

S
∑

j=1

nj(t) . (4.3)

The rate nj(t) quantifying the volatility of a single stock j corresponds to the limit

S → 1. We define the average market volatility V (t) similarly by

V (t) ≡ 1

S

S
∑

j=1

vj(t) . (4.4)

A market shock at time Tc may result from exogenous (external) news or endoge-

nous herding [31, 32]. In many cases, the market shocks can be linked to exogenous

news using archived news feeds that cover and summarize daily market events [53].

In order to analyze market dynamics symmetrically around a market shock at time

Tc, we analyze the per unit time rate n(|t− Tc|) around the time Tc. It has been em-

pirically observed that the response dynamics in financial markets show a power-law

decay [10, 11, 52, 39, 33, 46],

n(|t − Tc|) ∼ α|t − Tc|−Ω , (4.5)

where Ω is called the Omori power-law exponent, α is the cascade amplitude, t < Tc

corresponds to before the main shock, and t > Tc corresponds to after the main shock.

For comparison, n(|t− Tc|) is constant for stochastic processes with no memory, cor-

responding to Ω ≡ 0. Hence, for an empirical value Ω ≈ 0, the rate n(|t − Tc|) is

indistinguishable from an exponential decay for |t − Tc| < t, where t is the charac-

teristic exponential time scale. However, for larger values of Ω, the exponential and
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Figure 4.1: Typical volatility curves on 01/11/2002 with market shock at Tc = 256

minutes. (a) The cumulative volatility N j(t) for the stock of several large companies

have varying behavior before Tc, but each stock shown begins to cascade soon after

Tc. The market average N(t) over all S = 531 stocks analyzed demonstrates a distinct

change in curvature at t = Tc. (b) The average market volatility V (t) demonstrates

a sharp peak at Tc, and also two precursor events at t ≈ 190 and ≈ 230 minutes.
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Figure 4.2: (a) An illustration of Nb(τ) and Na(τ) for the same set of curves plotted

in Fig. 4.1. The displaced time τ = |t−Tc| is defined symmetrically around Tc = 256

minutes on 01/11/2002. (b) log Nb(τ) and log Na(τ) are linear with log τ over two

orders of magnitude on a logarithmic scale. The Omori parameters in Eq. (4.5)

calculated from N(t) are Ωb = 0.09 ± 0.01, αb = 0.21 ± 0.01 and Ωa = 0.32 ± 0.01,

αa = 0.81 ± 0.01 .
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Figure 4.3: The fraction n(t) of the market above the volatility threshold q is

non-stationary through the trading day. We plot in (a) the average daily trading

pattern n(t) for S = 136 stocks and in (b) the corresponding standard deviation, to

demonstrate the trends we remove in the normalized quantity n′(t). In practice, we

use the smoothed average of these curves in order to diminish statistical fluctuations

on the minute-to-minute scale. For comparison, we compute nsh(t) ≈ 0.23 and σsh ≈
0.09 for shuffled vi(t). The values of n(t) provide an estimate for the background

market co-movement that can be attributed to random fluctuations.
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power-law response curves are distinguishable, especially if several orders of magni-

tude in τ is available.

Instead of analyzing n(|t−Tc|), we perform our quantitative analysis on N(|t−Tc|),
the cumulative number of events above threshold q at time t minutes, where by

definition

N(|t − Tc|) =

∫ t

Tc

n(|t′ − Tc|)dt′ ∼ β(|t − Tc|)1−Ω (4.6)

for market co-movement and

N j(|t − Tc|) =

∫ t

Tc

nj(|t′ − Tc|)dt′ ∼ βj(|t − Tc|)1−Ωj . (4.7)

for the activity of stock j. We perform our regression analysis on N j(|t−Tc|) because

it is less noisy and more monotonic as compared to nj(|t − Tc|).

Hence, for a given day, we calculate the cumulative time series N j(t) from nj(t)

for each stock j, where t = 0 corresponds to the opening bell at 9:30 AM ET. For

comparison, we also analyze the average market response N(t) of the S stocks under

consideration, which complements the study of individual stocks.

To demonstrate our approach, in Fig. 4.1 we plot V (t), N(t) and also N j(t) for four

single stocks on 01/11/2002, a day when there was a large market shock corresponding

to a publicized comment by the Fed chairman Alan Greenspan concerning economic

recovery which occurred at approximately Tc = 255 minutes after the opening bell.

In order to compare the dynamics before and after the market shock, we first

separate the intraday time series N(t) into two time series Nb(t|t < Tc), and Na(t|t >

Tc). Then, to treat the dynamics symmetrically around Tc, we define the displaced

time τ = |t − Tc| ≥ 1 as the temporal distance from Tc. As an illustration, we plot

in Fig. 4.2 the time series on 01/11/2002 as a function of τ . We then employ

a linear fit to find the τ dependence of both Nb(τ) ≡ N(Tc) − N(|t − Tc|) and

Na(τ) ≡ N(t − Tc) − N(Tc) on a log-log scale to estimate the Omori power-law

exponents Ωb before the news and Ωa after the news. By analogy, we define α to be

the amplitude α = β(1 − Ω) before Tc as αb and after the shock as αa.
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4.4 Method for Determining Tc

4.4.1 Calibration using FOMC announcements

We use n(t) to quantitatively determine times Tc in which the market is moving

together, possibly in response to a market shock. In Fig. 4.3 we plot the average

daily pattern for n(t) and the standard deviation σ(t). The values of n(t) and σ(t)

are not stationary, so we remove the daily trend from n(t) by defining the detrended

quantity n′(t) ≡ (n(t) − n(t))/σ(t). In order to distinguish significant moments of

market co-movement from background fluctuations, we use a significance threshold

which we obtain from the distribution of market activity over the entire data set

analyzed. Hence, we analyze the quantity x(t) defined as,

x(t) ≡ n(t)
n(t) − n(t))

σ(t)
, (4.8)

which is the product of n(t) and n′(t). The value of n(t) quantifies the size of the mar-

ket co-movement, while n′(t) quantifies the significance of the market co-movement.

Because n(t)) is not constant during the day, we consider the normalized quantity

n′(t) in order to remove the intraday pattern. Then, to restrict our analysis to rela-

tively large market co-movements, we eliminate times toward the beginning and end

of each day, when average market activity is lower (significant morning activity is

often related to overnight news [54]). We analyze the quantity x(t), which is large

only if both n(t) and n′(t) are large. Fig. 4.4 demonstrates how the quantity x(t) is

useful for amplifying market co-movement and provides an illustration of a significant

shock with substantial preshock and aftershock dynamics.

We analyze the time series x(t) in order to select the set of times {t} of the

market shocks that are large in the fraction of the market involved (large n(t)) as

well as significant with respect to the time in which they occur (large n′(t)). We

determine a significance threshold xc from the probability density function (pdf) of

x(t) as in Fig. 4.5. As a null model, we shuffle the order of each intraday time series

vj(t) and obtain a shuffled market volatility rate nsh(t) for each day. This preserves

the empirical pdf of vj(t) but removes the correlations that exist in the temporal

structure of vj(t). We also plot nsh(t) ≈ 0.23 in Fig. 4.3 which corresponds to the fact

that there is a residual 0.23 co-movement due to random fluctuations. We compare
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Figure 4.5: Using the volatility threshold q = 3 and S = 136 stocks, we determine

the market co-movement threshold xc from the pdf of x(t) ≡ n(t)n′(t). (a) The pdf for

the 190,000 minutes analyzed of the volatility rate n(t) corresponding to the fraction

of the market with volatility vi(t) > q. (b) The pdf of x(t), where in the quantity

x(t) we have removed the average daily trend of n(t), so that x(t) is relatively large

when market co-movement is large and significant. For comparison, we also plot the

pdf of xsh(t) computed from randomly shuffled volatility time series vi(t). We find a

divergence between the pdf of x(t) and of xsh(t) for x > 1.0, which we define as the

co-movement threshold xc ≡ 1 in our analysis.
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the pdfs for x(t) and xsh(t) in Fig. 4.5(b), and observe a significant divergence for

x(t) > 1.

We calibrate our method for determining Tc from candidate cascades by using the

known reported values T corresponding to Fed announcements. We choose the value

xc = 1.0 which reproduces with the best accuracy the values of T that we provide

for comparison in Table 4.1. The value of xc = 1.0 results in 5, 804 minutes out of

190, 000 minutes analyzed for which x(t) > xc, or roughly 3% of the 2-year period

with significant market co-movement.

4.4.2 Determining Tc from candidate cascades

In a typical trading day there are many large fluctuations, for both individual

stocks and indices such as the S&P 500 and DOW. This fact is evident in the robust

probability density function of volatility which has a stable power-law tail for a wide

range of time scales ranging from 1-minute to several days [2, 5, 56, 38]. We select

market cascades that are above a “spurious fluctuations” threshold, which we define

by randomizing the order vi(t). We use the corresponding shuffled values nsh(t) as a

proxy for background noise.

We find on average approximately 12 minutes per day above the threshold xc ≡
1.0. So here we develop a method for selecting the most likely time Tc from all

candidate times with x(t) > xc. For a given day, we collect all values of x(t) > xc into

a subset {x′(t)} of size z. From this subset, we divide the z values into k cascades

{x′(t)}i, which we define as localized groups using the criterion that a cascade ends

when the time between the last x′ in cascade i is separated from the first x′ in cascade

i+1 by a time window greater than ∆t ≡ 60 minutes. We next assign to each cascade

group {x′(t)}i a weight equal to the sum of the x′(t) values belonging to the given

cascade group, and select the cascade group with the largest weight as the most

significant cascade. Within the most significant cascade group, we choose the time

corresponding to the maximum value of x′(t) as the time Tc of the main shock. We

calibrate this method using the reported times for the 19 FOMC interest rate meeting

announcements, and find that the values ∆t ≡ 60 and xc = 1.0 best reproduce the

known set {T}, which we provide for comparison in Table 4.1.

Using the parameter values xc = 1.0 and ∆t ≡ 60, we find 373 days with market
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FOMC Date Rnew (%) ∆R
∆R

Rold

T Tc

01/03/01** 6 -0.5 -0.077 210 227

01/31/01 5.5 -0.5 -0.083 285 290

03/20/01 5 -0.5 -0.091 285 286

04/18/01** 4.5 -0.5 -0.100 90 88

05/15/01 4 -0.5 -0.111 285 287

06/27/01 3.75 -0.25 -0.063 285 285

08/21/01 3.5 -0.25 -0.067 285 286

09/17/01** 3 -0.5 -0.143 0 16

10/02/01 2.5 -0.5 -0.167 285 288

11/06/01 2 -0.5 -0.200 285 292

12/11/01 1.75 -0.25 -0.125 285 287

01/30/02 1.75 0 0.00 285 289

03/19/02 1.75 0 0.00 285 293

05/07/02 1.75 0 0.00 285 287

06/26/02 1.75 0 0.00 285 286

08/13/02 1.75 0 0.00 285 291

09/24/02 1.75 0 0.00 285 291

11/06/02 1.25 -0.5 -0.286 285 286

12/10/02 1.25 0 0.00 285 295

Table 4.1: Comparison of announcement times T (as reported in New York Times)

with the market clustering times Tc calculated using a threshold xc = 1.0, cascade

window ∆t = 60 min., and S = 136 stocks. The value of x(Tc) corresponds to

the largest value out of all the candidate {x} in the most significant cascade of the

particular day. Dates of 19 FOMC meetings in the 2-year period between Jan. 2001

– Dec. 2002, where the Federal Funds Target rate (Rnew) was implemented by the

rate change (∆R) at (T ) minutes after the opening bell at 9:30 AM ET. The absolute

relative change | ∆R
Rold

| ≡ |∆R(t)/R(t − 1)| has typically filled the range between 0.0

and 0.25. Note: Date** refers to unscheduled meetings, in which the announcement

time did not correspond to 2:15 PM ET (T = 285 minutes).



47

shocks, out of 495 days studied. If the values of x′(t) were distributed uniformly across

all days, then the probability of finding 122 days without one x′(t) is vanishingly small,

which confirms that the x′(t) group together forming cascades. We remove all days

where Tc is within 90 minutes of opening (t = 0) or closing (t = 390), and all Tc that

occur on half-days (days before or after the 4th of July, Thanksgiving or Christmas),

resulting in the data set {Tc} constituting 219 individual days.

Furthermore, in order to test the dependence of the data set {T (1)
c } found for

the time resolution δt = 1 minute used in this thesis, we also compare the values of

{T (5)
c } and {T (10)

c } found using a volatility series with δt = 5 min. and δt = 10 min.

resolution, respectively (see Eq. (4.1)). For each of the 219 days with a Tc value we

calculate the absolute difference in the time value T
(δt)
c using two values of δt. We use

similar values of xc for each time resolution so that the number of days with market

shocks for each resolution are approximately equal. The difference in T
(δt)
c depends

on the resolution δt and the locality δTc associated with each market shock. The

average of the absolute differences for three values of δt are |T (5)
c − T

(1)
c | = 9 minutes

and |T (10)
c − T

(1)
c | = 15 minutes. We estimate the standard error for a particular

time resolution δT
(δt)
c ≈ 2δt, which implies that δT

(1)
c ≈ 2 min. for the 1-min. time

resolution. Hence, the use of Tc ± δTc does not significantly change the results of this

section. In the next Section, we analyze the empirical laws that quantify the response

dynamics both before and after significant market shocks.

4.5 Results

The analysis performed in this section is largely inspired by the analogies between

financial market crashes and earthquakes. A recent study finds significant evidence

of Omori power-law relaxation both before and after common FOMC interest rate

announcements [52]. The dynamics before the announcements, which are regularly

scheduled and pre-announced, are consistent with market anticipated surprise in the

Fed news, while the dynamics after the announcements are related to the perceived

surprise in the Fed news. We use the relationship between the overnight Effective rate

and the U.S. 6-month Treasury Bill to estimate the magnitude of the financial news

shock. Here we identify all cascades that meet our significance criterion, and analyze
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the dynamics both before and after Tc, using the framework developed in earthquake

research [57, 58, 59, 60, 61, 62, 63]. We estimate the magnitude M of each market

shock where M ≡ log V (Tc).

Closely related to the Omori relaxation of aftershocks is the productivity law,

which establishes a power-law relationship between the number of aftershocks or

preshocks that follow or precede a main shock of magnitude M . To the best of our

knowledge, this is the first analysis of financial markets to analyze the productivity

law, where we use M ≡ log(V (Tc)). This is analogous to earthquake analysis, where

M = log E and E is the energy associated with the stress released by the main shock.

We justify our analogy between market volatility V and earthquake energy E by

comparing the cumulative distribution

P (V > s) ∼ s−ηV (4.9)

of volatility in financial markets with the cumulative distribution

P (E > s) ∼ s−ηE (4.10)

of energy E in seismic earthquakes. Both cumulative distributions are asymptotically

power laws, with ηV ≈ 3 [56, 38] and the Gutenberg-Richter law ηE ≈ 1 [60].

For the set of 219 market shocks we analyze, we find a wide range of V (Tc), and

hence a wide range of cascade dynamics. In Fig. 4.6 we plot the pdf of Omori

parameter values Ωa,b and αa,b obtained from the power-law fits of Nb(τ) and Na(τ).

Figs. 4.6(a) and 4.6(b) show the distribution of parameter values calculated for the

average market responses Nb(τ) and Na(τ) corresponding to Eq. (4.6), while 4.6(c)

and 4.6(d) show the distribution of parameter values calculated from the individual

stock responses N j
b (τ) and N j

a(τ). The pdfs for individual stock values of Ω and α

have a larger dispersion, as the response to each market shock is not uniform across

all stocks. For the average market response N(τ) in Figs. 4.6(a) and 4.6(b) the pdfs

of Ω and α are shifted to larger values for t > Tc as compared to t < Tc. This is

indicative of the stress that can build prior to anticipated announcements and the

surprise that is inherent in the news. Larger Ω values correspond to faster relaxation

times, while larger α values correspond to higher activity. We also observe Ω < 0,

which corresponds to particular time series in which the pre-shocks or after-shocks
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Figure 4.6: (a,b) Comparison of the probability density functions P (α) and P (Ω)

of Omori parameters α and Ω computed from the average market response Na,b(τ).

(c,d) The analogous pdf plots computed from individual stock response N j
a,b(τ). The

average and standard deviation of each data set are (a) Ωa = 0.09 ± 0.07 , Ωb =

0.06±0.07 (b) αa = 0.35±0.11 , αb = 0.28±0.09 (c) Ωa = 0.08±0.20 , Ωb = 0.03±0.22

and (d) αa = 0.53±0.25 , αb = 0.46±0.24. Values of both Ωa and αa are consistently

larger than Ωb and αb, indicating that the response time after Tc is shorter than the

activation time leading into Tc. However the response cascade after Tc has, generally,

a larger amplitude.
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Figure 4.7: In order to account for the dispersion in the pdfs plotted in Figs. 4.6(c)

and 4.6(d) for individual stocks, we compare the average values αa,b and Ωa,b computed

from all N j
a,b(τ) with the αa,b and Ωa,b computed from the corresponding average

market response Na,b(τ) for each of the 219 Tc. The visually apparent correlation

indicates that the parameters quantifying Na,b(τ) are a good representation of the

average N j
a,b(τ). The correlation coefficient r for each linear regression is provided in

each panel.
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farther away from the main shock (for large τ) are dominant over the volatility cascade

around Tc. The values of the Omori parameters we find on averageing over all market

shocks are given in the figure caption.

Although there is a wide distribution of Omori parameter values when considering

all 219 market shocks, there is a strong correlation between the individual stock

dynamics for a given market shock. In Fig. 4.7 we relate the values of α and Ω

calculated for the average market response to the average and standard deviation

of α and Ω calculated for individual stocks for a given Tc. The strong correlation

between these quantities over 219 different dates indicates that the dispersion in the

values of α and Ω for individual stocks, as demonstrated in Figs.4.6(a) and 4.6(c),

result from the broad range of magnitudes of V (Tc), and further, that the dispersion

does not result merely from the range of stocks analyzed.

In Fig. 4.8 we plot the relation between the magnitude M of each main shock

and the resulting Omori exponents Ωa,b calculated from both market Na,b(τ) and

individual stock N j
a,b(τ) response curves. Figs. 4.8(a) and 4.8(c) show a positive

relation between M and the decay exponent Ωa, which indicates that the market

responds faster to large shocks on the intraday time scale. Figs. 4.8(b) and 4.8(d)

show a significant dispersion across all stocks for a given date. Interestingly, we

find a crossover at M
x
≈ 0.5 above which Ωa,b increases sharply to positive values.

The values Ω ≈ 0 for M < M
x

correspond to a dynamical cascade n(τ) that is

indistinguishable from an exponential decay. Typically, small values of Ω correspond

to stocks with relatively low trading activity which are less sensitive to market shocks.

For individual stocks, we define M to be the logarithm of the largest volatility within

∆t ≡ 3 minutes of the main shock Tc measured for the average market response

N(τ). This accounts for the possibility of a stock-specific anticipation or delay time

in the volatility as a result of the mainshock V (Tc). There is also the possibility that

a spurious value of Ω ≈ 0 can arise from a stock which has high levels of activity

throughout the entire time period analyzed.

In Fig. 4.9 we plot the relation between the magnitude M and the Omori-law

amplitude αa,b for both market Na,b(τ) and individual N j
a,b(τ) response curves. Inter-

estingly, the relation between α and M is stronger, with less residual error than the

relation between Ω and M , even for αb, indicating a higher information content in
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Figure 4.8: The relation between the magnitude M ≡ log V (Tc) and the Omori

exponents Ωa,b. In panels (a) and (c) we compare values calculated from the average

market response Na,b(τ), and in panels (b) and (d) we compare values calculated from

individual stock response N j
a,b(τ). (a) Weak relation before Tc, where we validate the

linear regression model at p = 0.001 significance level, but with correlation coefficient

r = 0.22. The dispersion may result from the variability in anticipation preceding

the market shock at Tc. (c) The relation between Ωa and M is stronger after Tc

than before Tc, with linear regression significance p ≈ 0, correlation r = 0.40, and

regression slope m = 0.19 ± 0.03. The increasing trend demonstrates that a faster

response, quantified by larger Ωa, follows a larger M . Data points in panels (a) and

(c) denoted by the symbol x correspond to values of Ωa,b calculated for randomly

selected Tc on those 118 days analyzed without a single value of x(t) > xc. In panels

(b) and (d) there is much dispersion in the Ω values of individual stocks for given

V (Tc). However, the average trends demonstrate a significant crossover at M
x
≈ 0.5

from Ωa,b < 0 to Ωa,b > 0. The case of Ω < 0 can occur when there is more volatility

clustering for large τ than for small τ , whereas the case of Ω > 0 occurs for large

volatility cascading around τ >
∼ 0. This crossover could result from the difference

between anticipated and surprise shocks at Tc.
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Figure 4.9: The relation between the magnitude M ≡ log V (Tc) and the Omori

amplitudes αa,b. In panels (a) and (c) we compare the values calculated from the

average market response N(τ) and in panels (b) and (d) we compare values calculated

from individual stock response N j
a,b(τ). (a) The increasing relation between αb and

M is statistically stronger than the relation between Ωb and M in Fig. 4.8(a), with

significance p ≈ 0, correlation coefficient r = 0.52 and regression slope m = 0.35 ±
0.04. (c) The relation between αa and M is strong, with significance p ≈ 0, r = 0.84,

and regression slope m = 0.68 ± 0.03. Data points in panels (a) and (c) denoted by

the symbol x correspond to values of αa,b calculated for randomly selected Tc on those

118 days analyzed without a single value of x(t) > xc. The result that α increases

with increasing V (Tc) holds even for random times. In panels (b) and (d) there is

much dispersion in the α values of individual stocks for given V (Tc). However the

average trends demonstrate a significant crossover at M
x
≈ 0.5 from αa,b ≈ 0.2 for

M < 0.5 to αa,b > 0.2 for M > 0.5. This crossover occurs at a similar location as the

crossover observed in Figs. 4.8(b) and (d) for Ωb,a. The average amplitude value α

increases sharply for M > M
x
, consistent with first order phase transition behavior.
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the amplitude of the Omori law. The strong relation for the average market response

suggests that it is possible to identify precursors of market shocks with statistical

certainty. However, since often Tc corresponds to anticipated market news, the sig-

nificant activity prior to the main shock is a natural biproduct of trader anticipation.

Interestingly, we also observe a critical threshold for M
x
≈ 0.5, above which the aver-

age response amplitude αa,b increases suddenly, analogous to a first order transition.

In Fig. 4.10 we plot the relation between V (Tc) and the productivity Pa(∆t)

(or Pb(∆t)), defined as the cumulative number of aftershocks (or preshocks) greater

than the threshold q ≡ 3 within ∆t ≡ 90 minutes of Tc. Motivated by the power-

law relationship observed for earthquakes we fit the relations Pa(∆t) ∼ MΠa and

Pb(∆t) ∼ MΠb , and find statistically significant values for the market response

Πb = 0.38±0.07 and Πa = 0.48±0.04, and for individual stocks Πb = 0.23±0.01 and

Πa = 0.25± 0.01. For earthquakes, [60] reports a range of Πa ≈ 0.7− 0.9 values that

are larger than observed here for financial markets, meaning that the productivity

of physical earthquakes increases “faster” with main shock magnitude than does the

productivity of market shocks. Since for earthquakes Πa < ηE, this inequality estab-

lishes the relative importance of small fluctuations as compared to large fluctuations

[60]. In other words, this inequality indicates that small earthquakes play a larger

role than large earthquakes in producing the observed number of large earthquake

shocks. Using an analogous argument for market volatility, since the cumulative dis-

tribution exponent ηV ≈ 3 is robust across many markets [56, 38], then the total

number NTot(V ) of aftershocks triggered by a main shock of size V ,

NTot(V ) = P (V )Pa(∆t) ∼ 10(Πa−ηV ) log V , (4.11)

is a decreasing function of V . Hence, we also find that aftershock cascades are con-

trolled by the contributions of many smaller V . Thus, the medium-sized market

shocks (analyzed here) play a larger role than the large market shocks in producing

the observed heavy-tailed distribution of market shocks. We further note that the

productivity is a combination of the relationships of both α and Ω with V (Tc), which

can be written as

Pa(∆t) ≡ Na(∆t) ∼ (∆t)1−Ωa αa/(1 − Ωa) ∼ V (Tc)
Πa , (4.12)

with equivalent relation before the shock for Pb(∆t).
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Figure 4.10: The increasing relation between the productivity Pa,b(∆t) of each mar-

ket shock and the size of the main shock M ≡ log V (Tc) with ∆t ≡ 90 min. As is found

in earthquakes, we find a power-law relationship between M and V (Tc) described by

a productivity exponent Πb before and exponent Πa after the market shock. Data

points in panels (a) and (c) denoted by the symbol x correspond to values of Pa,b(∆t)

calculated for randomly selected Tc on those 118 days analyzed without a single value

of x(t) > xc. The result that P (∆t) increases with increasing V (Tc) holds even for

random times. For the average market response Nb,a(∆t), we find (a) Πb = 0.38±0.07

and (c) Πa = 0.48 ± 0.04. For the productivity of individual stocks corresponding to

N j
b,a(∆t) we find (b) Πb = 0.23± 0.01 and (d) Πa = 0.25± 0.01. For comparison, the

power-law exponent value pertaining to earthquake aftershocks is Πa ≈ 0.7−0.9 [60].
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In Fig. 4.11 we plot the values Ω, α, and P (∆t), both before and after the main

shock at time Tc. Surprisingly, while there is little statistical relation between Ωb

and Ωa, there is a strong relation between αb and αa as well as between Pb(∆t) and

Pa(∆t), for both ∆t = 90 and ∆t = 120 minutes. This result could be of interest

for volatility traders and options traders who would like to anticipate the market

dynamics after an announcement, given the dynamics before the announcement.

In Fig. 4.12 we relate the size of the largest shock V1 ≡ V (Tc) to the sizes of

the second largest shock V2, both before and after Tc. The Bath law parameter B

quantifies the relation between V1 and V2 as

M1 − M2 = log V1 − log V2 = B . (4.13)

This functional form implies the relation

V2/V1 = CB (4.14)

and hence B = − log CB. Fig. 4.12(c) is a scatter plot of V1 and V2,a which shows a

linear relation corresponding to Ba = − log(0.90) = 0.046. Surprisingly, Fig. 4.12(a)

also shows a strong relation between V1 and V2,b with Bb = − log(0.81) = 0.092.

Comparing the values of Bb and Ba, the difference between the V1 and V2 is smaller

after Tc than before Tc. Interestingly, both Bb and Ba are significantly smaller than

the value BE ≈ 1.2 observed for earthquake aftershocks [59], meaning that the largest

preshock and aftershock are of comparable magnitude to the main shock. This signif-

icant difference between earthquakes and market shocks is largely due to the relative

probabilities of observing first and second-largest events x1 and x2. The conditional

probability P (x1|x2) = P (x1 > x2) is given by the corresponding cumulative distri-

bution function. Hence, using Eq. (4.9) and Eq. (4.10), the ratio of the conditional

probabilities for E1 and V1 is

P (V1|V2)

P (E1|E2)
=

P (V1 > V2)

P (E1 > E2)
∼ V −3

2

E−1
2

, (4.15)

which roughly explains the 102 factor difference BE ≈ 102BV .

We also compare the volatilities V1 and V2 for individual stocks in Fig. 4.12(b)

before Tc and in Fig. 4.12(d) after Tc. We compute the average value 〈V2〉 for linear

bins, and find V1 > 〈V2〉 for V1 > 20, both before and after Tc. Also, Fig. 4.12 shows
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Figure 4.11: A comparison of Omori parameters before and after Tc for N(τ) and

varying ∆t indicate that αb and Pb(∆t) are better conditional estimators for the

dynamics after Tc. (a) Weak relationship between Ωb and Ωa for ∆t = 90 and 120.

(b) Strong relationship between αb and αa for ∆t = 90 and 120, with both linear

regressions passing the ANOVA F-test at the p < 0.001 confidence level. (c) Strong

relationship between Pb(∆t) and Pa(∆t) for ∆t = 90 and 120 min. at the p < 0.001

confidence level.
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Figure 4.12: The increasing relation between the size of the main shock V (Tc) and

the size of the second largest aftershock (or preshock) V2(∆t) within ∆t minutes of Tc

demonstrates that the volatility of the largest aftershock (or preshock) increases with

mainshock volatility. As with the Bath law for earthquakes, we observe a proportional

relation V2,a(∆t) ≡ CBV (Tc) which corresponds to a Bath parameter B = − log CB.

For the average market response Nb,a(∆t) we calculate CB for (a) the dynamics before,

CB = 0.81 with correlation coefficient r = 0.70 and χ2 = 212, and for (c) the dynamics

after CB = 0.9 with r = 0.87 and χ2 = 109. For the Bath law corresponding to

individual stocks we find that a linear function best fits the relation between V (Tc)

and the average value V 2(∆t) calculated for equal-sized bins as indicated by circles

with one standard deviation error bars. We calculate the regression slope for the Bath

law (b) before is m = 0.65 ± 0.02 and (d) after is m = 0.40 ± 0.01
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Figure 4.13: Relations between individual stock trading activity and dynamic re-

sponse parameters (a-d) after Tc and (e-h) before Tc, averaged over all the days with

a market shock. We measure the trading activity 〈ω〉 for each stock, defined as the

average number of transactions per minute over the 2-year period 2001-2002. We find

that stocks with large trading activity react both more strongly (larger α and larger

P (∆t)) and quickly (larger Ω) to market shocks. However, panel (d) shows that there

is little relation between 〈ω〉 and the average size of the largest aftershock 〈v2〉.

that 〈V2,a〉 > 〈V2,b〉 for most values of V (Tc). Hence, the reaction to surprise causes

larger volatility fluctuations than the anticipation of surprise.

We further ask the question, how the response parameters analyzed here depend on

the variations between individual stock trading patterns. To answer this question, we

quantify the trading capacity of each stock by 〈ω〉, the average number of transactions

per minute, with 3 ≤ 〈ω〉 ≤ 163 for the S = 531 stocks analyzed. We hypothesize that

〈ω〉 is closely related to firm size and market impact. Fig.4.13(a) shows that 〈α〉, 〈ω〉
and 〈P (∆t)〉 after Tc increase with 〈ω〉, indicating that stocks with a large trading

base respond to market shocks with large volatility 〈v(Tc)〉 (shown in Fig.4.13(b)),

but also relax more quickly, corresponding to larger Ω values. However, we find no
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statistical relation between 〈ω〉 and 〈v2,a〉. Interestingly, Fig. 4.13(b) shows that this

positive relation also applies to the dynamic response parameters before Tc.

4.6 Discussion

Cascading avalanche dynamics are a common phenomena in complex systems

ranging in scale from solar flares [57, 58] and earthquakes [8, 9, 61, 62] to microscopic

vortices in turbulent fluids [64]. Similar bursting phenomena are also observed in

human organs, such as the heart [65, 66], lungs [67, 68], and brain [69, 70, 71], and

also for common social [35, 72, 73, 74] and economic systems [10, 11, 33, 39, 40, 41, 46,

51, 52]. Neural avalanches in the brain are frequent even in the resting state, and are

a signature of healthy brain functioning within the neural network. In fact, the ability

to process and disseminate information is largely attributed to the network structure

of neuronal correlations which, if inhibited by disease, lead to altered disfunctional

states such as in the case of schizophrenia. Extending by analogy, the frequency

of cascades in financial markets could also be viewed as a “healthy” optimal state

for processing information and eliminating arbitrage among the many the degrees

of freedom. Recent work [75] on the switching dynamics around highs and lows in

finanancial time series shows further evidence of Omori power-law scaling before and

after microtrend extrema, in analogy to the market shocks at Tc developed here.

Interestingly, this work on switching dynamics finds cascading trends on time scales

ranging from seconds to hundreds of days.

Financial markets are subject to constant information flow, resulting in a large

rate of significant events, such as quarterly earnings, splits and dividends announce-

ments, mergers and acquisitions, institutional reports. This information can arrive as

“expected” or come as a “surprise”. Interestingly, there are precursors extending more

than a day in advance of expected announcements such as earnings announcements

[40]. Economists have long been interested in the interplay between informed and

uninformed traders, and the dissemination of information across a market consisting

of rational agents. Early work focusses on the relationship between trading volume

and price change, and the relationship between these quantities and the qualitative

notions of surprise, importance, and precision of the information [41].
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Using methods from statistical physics and geophysics, we analyze the absolute

returns of price because of the long-memory property, and the universality of fluctu-

ations in this quantity across diverse markets [37, 38, 38]. Ref.[41] postulates that

price changes reflect the average change in market expectations, whereas trading

volume reflects idiosyncratic reactions across all traders. Recent work further quanti-

fies trading volume fluctuations and finds that they are similar to price fluctuations,

and furthermore, finds significant cross-correlation between volume change and price

change [24]. Omori relaxation dynamics are also shown for trading volume in [52].

Here we also observe significant volume cascading as evident in Fig. 4.4. The anal-

ysis of volume and transaction dynamics is an avenue of future research, and could

highlight the relationship between volume and price fluctuations by studying their

correlation around market shocks.

To summarize, we analyzed the cascade dynamics of price volatility, which has

potential applications in options pricing and the pricing of other derivatives. The

Black-Scholes equation in its simple form assumes that the fluctuations in the price

are constant during the duration of the option [76]. However, more sophisticated

methods [77] incorporate time dependent price volatility, and are more realistic de-

scriptions of the non-stationarity of financial time series. The results in this section

are of potential interest for traders modeling derivatives on short time scales around

expected market shocks, e.g earnings reports, etc. The statistical regularity of both

market and individual stock behavior before and after a market shock of magnitude

M ≡ log V (Tc) provides information that could be used in hedging, since we observe

a crossover in the cascade dynamics for M ≈ 0.5. Knowledge of the Omori response

dynamics provides a time window over which aftershocks can be expected. Similarly,

the productivity law provides a more quantitative value for the number of aftershocks

to expect. And, finally, the Bath law provides conditional expectation of the largest

aftershock, given the size of the main shock, and even the largest preshock. Of par-

ticular importance, from the inequality of the productivity law scaling exponents and

the pdf scaling exponent for price volatility, we find that the role of small fluctuations

is larger than the role of extremely large fluctuations in accounting for the prevalence

of aftershocks.



Part III

A Statistical Physics Approach to

Quantifying Career Longevity



Chapter 5

Motivation

A typical course on history, art, music, politics, sports, etc. usually focusses

on the underlying social and political driving forces that brought about an era, and

such a course usually highlights some of the most influential individuals behind the

movement. In any type of quantitative approach, such a course of study suffers

from extreme statistics bias, since only the relatively rare but monumental events are

considered. This is not really a failure of history or science, but rather a problem

with data measurement and storage. It is inconceivable that the history of every

individual be known, nor is it conceivable that even a tiny fraction every history

be recorded. Hence, exhaustive studies of longitudinal careers have been impossible

before the information age. With a limited storage capacity, our old technology of

written and oral history was doomed to focus on just a few select individuals such as

Plato, Da Vinci, Mozart, Napoleon, and Babe Ruth, who were no doubt all stellar in

their own right. However, in a new era of data storage and manipulation, a plethora

of longitudinal data encompassing individual careers is available.

When data are available on not only the stellar elite, but also an entire labor force,

a very simple question arises: What is the distribution of success in a given profession?

We are used to thinking of professional athletes as heroic larger-than-life images of

refined physical prowess. However, these professional athletes are not playing for

free; they are working, just like everybody else. Hence, the same social and economic

forces that apply to any given labor market should also apply to professional sports.

The same can be said for scientists who also work in a generic competitive arena of
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Academia, where “publish-or-perish” is the name of the game.

So how rare were Babe Ruth and Einstein? Phrased in a more quantitative way:

Is the distribution of success in such competitive arenas bimodal, where one (smaller)

class of individuals corresponds to the greats, and another (larger) class of individuals

corresponds to everyone else? A second alternative scenario for the distribution of

success is that there are multiple modes of achievement. A third alternative is that

there is a non-monotonic decreasing distribution of achievement, resulting in a smooth

bridge between the successful “haves” and the unsuccessful “have-nots.” Surprisingly,

it turns out that this third scenario applies to the two competitive professions we

analyze. Such a result is only possible when analyzing the entire labor force, even the

relatively insignificant careers that lasted a very short time.

We analyze two competitive professions, professional sports and academia, where

individual career data for both longevity and success is easily quantifiable and readily

available. As a result, we find statistical scaling laws which quantitatively capture the

empirical data. Using the empirical data and the Matthew effect (also known as the

“rich-get-richer” effect) concept from sociology, we develop a stochastic model which

describes the distribution of career longevity in a competitive labor force. We use

master equation methods from statistical physics to solve the a Poisson process model

for career progress, resulting in an exactly solvable prediction that depends on only

two parameters. Due to the simplicity of the model and the relative freedom of our

assumptions, this generic mechanism can conceivably be applied to other professions

and even to other systems, such as the dynamics of friendship. And finally, aside

from being a “fun” topic, we provide a unifying framework to relate the superstars in

professional sports to the “mathletes” of science.



Chapter 6

Case Study: Career Longevity in

Major League Baseball 1920–2000

6.1 Summary

Statistical analysis is a major aspect of baseball, from player averages to historical

benchmarks and records. Much of baseball fanfare is based around players exceeding

the norm, some in a single game and others over a long career. Career statistics

serve as a metric for classifying players and establishing their historical legacy. How-

ever, the concept of records and benchmarks assumes that the level of competition in

baseball is stationary in time. Here we show that power-law probability density func-

tions, a hallmark of many complex systems that are driven by competition, govern

career longevity in baseball. We also find similar power laws in the density functions

of all major performance metrics for pitchers and batters. The use of performance-

enhancing drugs has a dark history, emerging as a problem for both amateur and pro-

fessional sports. We find statistical evidence consistent with performance-enhancing

drugs in the analysis of home runs hit by players in the last 25 years. This is cor-

roborated by the findings of the Mitchell Report [78], a two-year investigation into

the use of illegal steroids in major league baseball, which recently revealed that over

5 percent of major league baseball players tested positive for performance-enhancing
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drugs in an anonymous 2003 survey.

Baseball is a game of legends, mystique, euphoria and heartbreak. It is also a

game of numbers and records. Here we analyze approximately 10,000 players who

ended their careers between the years 1920 and 2000, where 1920 is the year widely

considered as the beginning of the modern era of baseball. We utilize Sean Lahman’s

Baseball Archive [79], an exhaustive database consisting of Major League Baseball

player statistics dating back to 1871. This database was meticulously constructed,

going so far as to extract data from old newspaper reels. We find that baseball players

have universal properties despite the distinct eras in which they played. Specifically,

we find that the probability density functions of career totals obey scale-free power

laws over a large range for all metrics studied. As usual, the probability density

function P (x) is defined such that the probability of observing an event in the interval

x + δx is P (x)δx. Power law density functions, P (x) ∼ x−α, arise in many complex

systems where competition drives the dynamics [3, 43, 80, 81, 82, 83, 84]. A key

feature of the scale-free power law is the disparity between the most probable value

and the mean value of the distribution [85]. For a Gaussian distribution, these two

values coincide. However, with a power law, the most probable value xmp = 1, while

the mean value 〈x〉 diverges for α ≤ 2. Thus, in power law distributed phenomena,

there are rare extreme events that are orders of magnitude greater than the most

common events. This leads naturally to the notion of record events and the statistical

analysis of sample extremes [86].

6.2 Metrics for career longevity

We begin this section with an analysis of career longevity in American baseball.

Because the legacy of a player is based mainly upon his career totals, we also discuss

the implications of the power-law behavior found in common career metrics. We

conclude with empirical evidence, found in home run statistics, which is consistent

with modern performance-enhancing factors including widespread use of performance-

enhancing drugs.

In Fig. 6.1 we present the longevity of a player’s career measured in at-bats (AB)
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Figure 6.1: Probability density function of player longevity. Longevity is defined

as the number of outs-pitched (pitchers), and the number of at-bats (all batters) for

players ending their career in the years 1920-2000. Power law extends over more than

three orders of magnitude, with α ≈ 1. For reference: straight line represents the

power-law P (x) ∼ x−1.
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and innings-pitched measured in outs (IPO). For these two metrics, we find truncated

power-law distributions that range over three decades, marked by a sharp exponen-

tial cutoff at a value corresponding to around twenty seasons. It should be noted

that unlike a complete power-law distribution with α ≈ 1, which has a divergent

first and second moment, a truncated distribution has a definite mean and second

moment. To our surprise, we find that the distributions for career longevity have

their maxima around 1 appearance. This implies that most players who make it to

the major leagues do not remain for very long, possibly making their professional

debut and exit in a single pinch-hit or relief appearance. This leads to a perplexing

feature of scale-free power laws, namely that it is just as hard to reach your 10th

appearance from your debut appearance as a rookie as it is to reach your 10,000th

appearance from your 1000th appearance as a seasoned veteran. In other words, the

ratio P (x2)/P (x1) = (x2/x1)
−α depends only on the scale-free ratio of x2/x1 and the

universal exponent α. This raises a fundamental question addressing longevity in

American baseball: How is it possible that the same level of competition can elim-

inate some players after one appearance while sustaining others for more than two

decades? American baseball has a 3-tier farm system, collectively known as the mi-

nor leagues. These developmental leagues filter talent up to the major leagues, with

only the best players staying at the major league level. Occasionally there are op-

portunities for minor league players to be promoted to the major leagues for short

unguaranteed stints, either if their major league affiliate has a roster vacancy due to

injury or if their major league affiliate is not in a position to make the post-season.

The long regular season provides ample opportunity for these major league tryouts,

thus accounting for the high frequency of short careers.

In Fig. 6.2 we plot the distribution of career batting and pitching totals for all

players who ended their careers between the years of 1920-1960 and 1960-2000 (we

restrict our analysis to completed careers). Separating players into two subsets al-

lows us to compare careers belonging to each era, where 1961 marks the beginning of

the first expansion era in major league baseball. We also find truncated power-law

behavior with exponent α ≈ 1 for all major career metrics. This should not be too

surprising since each opportunity (defined in this section as an at-bat or out-pitched)
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Figure 6.2: Probability density function of career statistics in four categories. (a)

Hits, (b) Runs Batted In, (c) K (strikeouts), (d) Wins. Plotted for each statistical

metric are the distribution of career totals for players whose career ended in the

periods 1920-1960 and 1960-2000. The pairs of distributions are all qualitatively

similar, with the exponential cutoffs occurring at the same critical value, indicating

that the competition level in baseball has been relatively constant with respect to

these career metrics.

is capitalized upon at a player’s personal rate (defined in this section as his prowess);

each success then contributes to the player’s career statistical tally. Thus, the expo-

nent from the career longevity power-law should carry over naturally into the density

functions of career metrics [87]. In the case of batting statistics, we make no distinc-

tion between pitchers and other fielders who are on record for their at-bats. One can

also do a statistical analysis on players who do not arise in the pitching database,

but the distributions are not qualitatively different. Thus, career longevity measured

in at-bats indicates that there is a large disparity between the “iron-horses” and the

“one-hit wonders”. It is perplexing that there is such a wide range of career lengths

despite the typical prowess that distinguishes the upper echelon of baseball talent. It
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should also be noted that in the game of baseball there are two classes of pitchers,

those that start games, and those that finish games. Pitchers of the first type have

routine schedules, pitching once every four or five games in a maintained rotation.

Pitchers of the second type pitch more frequently, with game sessions that are shorter,

hardly ever exceeding 2 innings (6 outs pitched). Despite these two classes of pitch-

ers, the longevity measure of outs-pitched does not have any evidence of bimodal

behavior. One can even notice the fluctuations in the beginning of the distribution

for outs-pitched with sharp peaks corresponding to 1 inning (3 outs) and 2 inning (6

outs) stints. Comparing pitchers and batters, there is the remarkable similarity in

power-law exponent corresponding to longevity, following from the fact that it is very

difficult to reach, and to remain, at the major league level. Moreover, the distribu-

tions are nearly equivalent, with the exponential cutoff occurring at approximately

the same value. This justifies both the 3000-hit and the 3000-strikeout benchmarks

for both batters and pitchers, and suggest that career longevity results from a uni-

versal mechanism that is invariant with respect to player type. Baseball relies on

precision play, requiring quick physical and mental reflex. The flow of the game is

characterized by periods of lull, interlaced with bursts of activity, with both offense

and defense capitalizing on sprinting, diving, and sliding plays [88]. In addition,

throwing a baseball is very strenuous on the arm. Thus, although not a contact sport

in the sense of hockey, rugby, or American football, baseball players are still prone

to injury, some of which are career-ending. The perpetual hazard of career-ending

replacement or injury provides the main ingredient for explaining the observed power

laws. In Ref.[87] we propose a simple stochastic mechanism for career longevity in

professional sports which reproduces both the power-law behavior and the exponen-

tial cutoff. We follow the explanation of Reed et al. [89], which shows that stochastic

processes with exponential growth produce power-laws when the process is subject

to random stopping times.
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Figure 6.3: Probability density function of seasonal home-run prowess (pitchers are

excluded from this analysis). The exponential distribution, representing players in

the years 1920-1979, is skewed towards smaller rates, indicating that even at the

major league level, the ability to consistently hit home runs is rare. Players from

the last 25 years have increased their ability to hit home runs, possibly as a result

of modern training regimens, performance-enhancing drugs, expansion-based dilution

of talent, and other hypothetical factors. (Inset) Probability density function of sea-

sonal prowess for several key metrics over the seasons 1920-2000. These are centered

distributions with a mean 〈x〉, and standard deviation σ, that define the talent level

in the major leagues.

In Fig. 6.3 we analyze seasonal home run prowess, defined as the rate per at-

bat in which a particular player hits a home run. Pitchers are excluded from this

analysis. We also restrict our analysis to players who exceed N appearances in a given

season, and use N = 100 to eliminate statistical fluctuations arising from short-lived

success. The seasonal prowess distributions for some common batting and pitching
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metrics are relatively unskewed, defined by a characteristic standard deviation around

a central mean (Fig. 6.3, inset). Thus, there is a typical success rate that defines

not only the players, but also the relative level of competition between pitcher and

batter at the major league level. In contrast, the seasonal prowess distributions

for home runs are more exponentially distributed (Fig. 6.3). These distributions are

skewed towards small values, indicating that it is rare for players to have prowess that

consistently produces home runs. We also note that the distributions for home-run

prowess over the past 26 years reveals a shift towards players with higher home-run

ability. This increase in home-run prowess could result from modern natural weight-

training programs with or without the use of performance-enhancing drugs. Other

theories suggest that maple bats, a reduced strike-zone, and league expansion all

contribute to the increased home run performance of modern players in the “Steroid

Era”. A recent study by R. Tobin [90] demonstrates that a reasonable increase in

a player’s muscle-mass, say a 10 percent increase, can produce a significant increase

in home run production, ranging from 30-70 percent increase, depending on systemic

parameters. Thus, our findings are consistent not only with the factual revelations of

the Mitchell Report, but also with the aforementioned Monte-Carlo simulations.

6.3 Empirical evidence for inflation of home-run

rates in MLB

It has been known for some time that home run rates over the last two decades

have been rising [91], accompanied by home run records falling. In Fig. 6.4 we plot

the average prowess of several metrics over 5 year windows from 1900-2005 in order

to investigate the evolution of home run prowess. If in a single season player i has

prowess Pi = xi/yi , then we compute the weighted average over all players

〈P 〉T =

∑

i xi
∑

i yi

=
∑

i∈T

wiPi

where

wi =
yi

∑

i yi
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The index i runs over all individual player seasons during the period T , and
∑

i yi is

the total number of events y during the same period. The first era of increasing home-

run prowess followed the 1920 revision of the rules (such as the outlaw of the “spit-

ball”) which made the batter and pitcher more equally competitive. This was followed

by the emergence of sluggers such as Babe Ruth, who popularized the herculean

feat of hitting home runs [92]. The first expansion era 1961-1969 saw 8 new teams,

accompanied by a decrease in average home-run prowess. It is important to note that

expansion within a league has two main effects. On the player level, expansion dilutes

the talent in pitching and batting. This allows excellent players to take advantage

of their weaker foe, and has been proposed as a possible factor responsible for the

increased home run rate during the 1990’s [93]. On the team level, the authors of

Ref. [94] show that the level of team competition measured in team-versus-team upset

probability increases during expansion eras. The second expansion era 1993-1998 saw

4 new teams, accompanied by an increase in average home-run prowess following

approximately 20 years of stagnancy.

Because career statistics serve as key metrics for classifying players and estab-

lishing their historical legacy, we separate the players in Fig. 6.5 into two subsets,

players ending their careers before and after 1980, in order to compare career home

run totals. We find that the last 25 years account for many more players with large

career home-run tallies. Interestingly, there is similar evidence in the strikeout tallies

of pitchers (Fig. 6.2c), which suggests that modern sluggers may be “swinging for the

fences” with reckless abandon. We should note that the difference in career statistics

for strikeouts is confined to the highly sensitive exponential tail, whereas the differ-

ences in the career statistics for home runs extends into the bulk of the distribution.

The use of steroids was most recently documented in the Mitchell Report [78], a

two-year investigation into the use of performance-enhancing drugs in major league

baseball. This report determines a lower-limit to the extent of steroid use in major

league baseball at 5 percent, the results of a set of anonymous 2003 blood test that

confirmed the widespread use of performance-enhancing drugs among major league

players. Other Mitchell Report assessments, based on personal accounts, suggest

much higher percentages of steroids use in professional baseball. Steroids and other

performance-enhancing drugs can be used for two general reasons, to gain strength
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and to reduce recovery-time from both workouts and injury. One might expect that

performance-enhancing drugs would raise the level of competition across the board,

for pitchers as well as batters, since both increased strength and speedy recovery can

contribute to high career tallies. However, in our analysis of career statistics, we see

evidence for a competitive advantage mainly in the case of home runs. This suggests

that the level of competition between pitcher and batter is tipping in the favor of the

batter.

Major league baseball is a unique sport, relying on team play while also maintain-

ing a platform for individual play, namely pitcher versus batter. It also has a deep

developmental minor league system that filters out the best talent, and serves as a

emergency source for randomly depleted team rosters. This provides an explanation

for the abundance of hitters and pitchers who experience both their debut and finale

in the same game. In [87] we analyze career longevity in Korean baseball, American

basketball, and English football. We find the same power-law behavior with expo-

nential cutoff governing career statistics in all these professional sports, and provide

a stochastic mechanism to explain the distribution of career length in competitive

environments that are subject to random exit times. It should also be noted that

performance-enhancing drugs are not a problem unique to American baseball. A sep-

arate study of English football also revealed widespread use of performance-enhancing

drugs [95]. Moreover, it is not just a problem pertaining to professionals, but am-

ateurs and adolescents as well [96], as performance-enhancing drugs are the core of

a pandemic that not only poses personal health risk, but also places the integrity of

sports in jeopardy [97, 98]. And finally, crossing over into the academic world, a recent

study in the journal Nature[99] reveals that cognitive-enhancing drugs are prevalent

in the sciences, and pose the same ethical questions that apply to accomplishments

in sports [100].
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Figure 6.4: Average league prowess 〈P 〉 calculated for 5-year periods starting in

1900. The trendline for HR/AB has been multiplied by a factor of 4 for clarity.

The difference in the trendlines for Hr per Hit for batter and pitcher are essentially

constant over the years. Following from the form of our weighted average, this suggests

that the changes in home run prowess are not due to fluctuations in the talent pool

arising from expansion dilution. If more home runs were being hit by veteran batters

against poor pitching, then a spread would appear, assuming that poor pitchers don’t

stay at the major league level very long. Instead, we see that veteran hitters (with

a large fraction of the total hits) are hitting more home runs off of veteran pitchers

(with a large fraction of hits surrendered, and thus many innings pitched).
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Figure 6.5: Statistical evidence in career home run distributions consistent with

performance enhancement drugs. Probability density function of home runs hit over a

player’s career ending in two different time periods, before and after 1980 (pitchers are

excluded). More home runs are being collected in the extreme part of the distribution

by individuals ending their careers in the last 25 years, 1980-2004, marked by the

“steroids era”.



Chapter 7

Quantifying the Matthew Effect: A

Model for Career Longevity

7.1 Summary

The Matthew effect refers to the adage written some two-thousand years ago in

the Gospel of St. Matthew: “For to all those who have, more will be given.” Even

two millennia later, this idiom is used by sociologists to qualitatively describe indi-

vidual progress and the interplay between status and reward. Quantitative studies of

professional careers are traditionally limited by the difficulty in measuring progress

and the lack of data on individual careers. However, in some professions, there are

well-defined metrics that quantify career longevity, success, and prowess, which to-

gether contribute to the overall success rating for an individual employee. Here we

demonstrate testable evidence, inherent in the remarkable statistical regularity of

career longevity distributions, of the age-old Matthew “rich get richer” effect, in

which longevity and past success lead to a cumulative advantage. We develop an

exactly solvable stochastic model that quantitatively incorporates the Matthew effect

and validate our model predictions for several competitive professions. These results

demonstrate that statistical laws can exist at even the microscopic social level, where

the collective behavior of individuals can lead to emergent phenomena. We test our



78

model on the careers of 400, 000 scientists using data from six high-impact journals.

We further confirm our findings by testing the model on the careers of more than

20, 000 athletes in four sports leagues.

The rate of individual progress is fundamental to career development and success.

In practice, the rate of progress depends on many random factors. Using a stochastic

model, here we find that the relatively small rate of progress at the beginning of the

career plays a crucial role in the evolution of the career length. Our quantitative

model describes career progression using two fundamental ingredients: (i) random

forward progress “up the career ladder”, and (ii) random stopping times, terminating

a career. This model quantifies the “Matthew effect” by incorporating the everyday

property that it is easier to move forward in the career the further along is one

in the career. A direct result of the increasing progress rate with career position

is the large disparity in the numbers of successful long tenures from unsuccessful

short stints. We test this model for both scientific and sports careers, two careers

where accomplishments are methodically recorded. We analyze publication careers

within six high-impact journals: Nature, Science, the Proceedings of the National

Academy of Science (PNAS), Physical Review Letters (PRL), New England Journal

of Medicine (NEJM) and CELL. We also analyze sports careers within four distinct

leagues: Major League Baseball (MLB), Korean Professional Baseball, the National

Basketball Association (NBA), and the English Premier League.

Career longevity is a fundamental metric that influences the overall legacy of an

employee because for most individuals the measure of success is intrinsically related,

although not perfectly correlated, to his/her career length. Common experience in

most professions indicates that time is required for colleagues to gain faith in a new-

comer’s abilities. Qualitatively, the acquisition of new opportunities mimics a stan-

dard positive feedback mechanism (known in various fields as Malthusian growth,

cumulative advantage, preferential attachment, the ratchet effect, and the Matthew

“rich get richer” effect [101, 102, 103, 104, 105, 106]), which endows greater rewards

to individuals who are more accomplished than to individuals who are less accom-

plished. Here we use career position as a proxy for individual accomplishment, so

that the positive feedback captured by the Matthew effect is related to increasing

career position. There are also other factors that result in selective bias, such as
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the “relative age effect”, which has been used to explain the skewed birthday distri-

butions in populations of athletes. Several studies find that being born in optimal

months provides a competitive advantage, and hence a relatively higher chance of

succeeding, at several levels of competitive sports ranging from secondary school to

the professional level [107, 108].

In this section we study the everyday topic of career longevity, and reveal surpris-

ing complexity arising from the competition within social environments. We develop

an exactly solvable stochastic model, which predicts the functional form of the prob-

ability density function (pdf) P (x) of career longevity x in competitive professions,

where we define career longevity as the final career position corresponding to an

effective time duration. The underlying stochastic process depends on only two pa-

rameters, α and xc. The first parameter, α, represents the power-law exponent that

emerges from the pdf of career longevity. This parameter is intrinsically related to

the rate early in the career during which professionals establish their reputations

and secure future opportunities. The second parameter, xc, is a time scale which

distinguishes newcomers from veterans.

7.2 Quantitative Model

In this model, every employee begins his/her career with approximately zero cred-

ibility, and must labor through a common learning curve. At each position x in a

career, there is an opportunity for progress as well as the possibility for no progress.

A new opportunity, corresponding to career position x + 1, can refer to a day at

work or, more generally, to any assignment given by an employing body. For each

particular career, the change in career position ∆x has an associated time-frame.

Optimally, an individual makes progress by advancing in career position at an equal

rate as advancing in time t so that ∆x ≡ ∆t. However, in practice, an individual

makes progress ∆x in a subordinate time frame, given here as the career position x.

In this framework, career progress is made at a rate that is slower than the passing

of work time, representing the possibility of career stagnancy.

As a first step, we postulate that the stochastic process governing career progress

is similar to a Poisson process, where progress is made at any given step with some
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approximate probability. Each step forward in career position contributes to the

employee’s resume and reputation. Hence, we refine the process to be a spatial

Poisson process, where the probability of progress g(x) depends explicitly on the

employee’s position x within the career. Career longevity is then defined as the final

location along the career ladder at the time of retirement T .

Employees begin their career at the starting career position x0 ≡ 1, and make

random forward progress through time to career position x ≥ 1, as illustrated in Fig.

7.2. Let P (x|T ) be the conditional probability that at stopping time T an individual

is at career position x. For simplicity, we assume that the progress rate g(x) depends

only on x. As a result, P (x|T ) assumes the familiar Poisson form, but with the

insertion of g(x) as the rate parameter,

P (x|T ) =
e−g(x)T (g(x)T )x−1

(x − 1)!
. (7.1)

We derive the spatial Poisson pdf P (x|T ) in the following sections.

According to the Matthew effect, it becomes easier for an individual to excel with

increased success and reputation. Hence, the choice of g(x) should reflect the fact that

newcomers, lacking the familiarity of their peers, have a more difficult time moving

forward, while seasoned veterans, following from their experience and reputation,

often have an easier time moving forward. For this reason we choose the progress

rate g(x) to have the functional form,

g(x) ≡ 1 − exp[−(x/xc)
α] . (7.2)

This function exhibits the fundamental feature of increasing from approximately zero

and asymptotically approaching unity over some time interval xc. Furthermore,

g(x) ∼ xα for small x ≪ xc. In Fig. 7.3, we plot g(x) for several values of α,

with fixed xc = 103 in arbitrary units. We will show that the parameter α is the same

as the power-law exponent α in the pdf of career longevity P (x) (Fig. 7.3 inset).

The random process for forward progress can also be recast into the form of random

waiting times, where the average waiting time 〈τ(x)〉 between successive steps is the

inverse of the forward progress probability, 〈τ(x)〉 ≡ 1/g(x).

We now address the fact that not every career is of the same length. Nearly every

individual is faced with the constant risk of losing his/her job, possibly as the result of
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Figure 7.1: Graphical illustration of the stochastic Poisson process quantifying ca-

reer progress with position-dependent progress rate g(x). A new opportunity, corre-

sponding to career position x + 1, can refer to a day at work or, even more generally,

to any assignment given by an employing body. In this framework, career progress is

made at a rate g(x) that is slower than the passing of work-time, representing the pos-

sibility of career stagnancy. The traditional Poisson process corresponds to a constant

progress rate g(x) ≡ λ. Here, we use a functional form for g(x) ≡ 1 − exp[−(x/xc)
α]

that is increasing with career position x, which captures the salient feature of the

Matthew effect, that it becomes easier to make progress the further along the career.
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poor performance, bad health, economic downturn, or even a change in the business

strategy of his/her employer. Survival in the workplace requires that the individual

maintain his/her performance level with respect to all possible replacements. In

general, career longevity is influenced by many competing random processes which

contribute to the random termination time T of a career [109]. The pdf P (x|T )

calculated in Eq. [7.1] is the conditional probability that an individual has achieved a

career position x by his/her given termination time T . Hence, to obtain an ensemble

pdf of career longevity P (x) we must average over the pdf r(T ) of random termination

times T ,

P (x) =

∫ ∞

0

P (x|T )r(T )dT . (7.3)

We next make a suitable choice for r(T ). To this end, we introduce the hazard rate,

H(T ), which is the Bayesian probability that failure will occur at time T + δT , given

that it has not yet occurred at time T . This is written as H(T ) = r(T )/S(T ) =

− ∂
∂T

ln S(T ) , where S(T ) ≡ 1 −
∫ T

0
r(t) dt is the probability of a career surviving

until time T . The exponential pdf of termination times,

r(T ) = xc
−1exp[−(T/xc)] , (7.4)

has a constant hazard rate H(T ) = 1
xc

, and thus assumes that hazards are equally

distributed over time in competitive professions. Substituting Eq. [7.4] into Eq. [7.3],

we obtain

P (x) =
g(x)x−1

xc(
1
xc

+ g(x))x
≈ 1

g(x)xc
e−

x
g(x)xc . (7.5)

The theoretical prediction given by Eq. [7.5] is much different than the null model (in

which there is no Matthew effect) where the progress rate g(x) ≡ λ is a constant value

for each individual. In the case of constant progress rate, the pdf P (x) is exponential

with a characteristic career length lc = λxc. Later we further consider the null model

where the constant progress rate λi of individual i is distributed over a given range.

We find again that P (x) is exponential, which is quite different than the prediction

given by Eq. [ 7.5].

In order to account for aging effects, another variation of this model could include

a time-dependent H(T ). To incorporate a non-constant H(T ) one can use a more
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general Weibull distribution for the pdf of termination times

r(T ) ≡ γ

xc
(
T

xc
)γ−1exp[−(

T

xc
)γ] , (7.6)

where γ = 1 corresponds to the exponential case [110]. In general, the hazard rate of

the Weibull distribution is H(T ) ∝ T γ−1, where γ > 1 corresponds to an increasing

hazard rate, and γ < 1 corresponds to a decreasing hazard rate. We note that the

timescale xc appears both in the definition of g(x) in Eq. [7.2] as a crossover between

early and advanced career progress rates, and also as the timescale over which the

probability of survival S(T ) approaches 0 in the case of γ ≥ 1 as in the case of

Eq. [7.4]. It is the appearance of the quantity xc in the definition of S(T ) that results

in a finite exponential cutoff to the longevity distributions. Although the timescales

defined in g(x) and S(T ) could be different, we observe only one timescale in the

emprical data. Hence we assume here for simplicity that the two time scales are

approximately equal.

From the curves plotted in the inset of Fig. 7.3, one observes that αc = 1 is a

special crossover value for P (x), between a bimodal P (x) for α > 1, and a monoton-

ically decreasing P (x) for α < 1. This crossover is due to the small x behavior of

the progress rate g(x) ≈ xα for x < xc, which serves as a “potential barrier” that a

young career must overcome. The width xw of the potential barrier, defined such that

g(xw) = 1/xc, scales as xw/xc ≈ x
−1/α
c . Hence, the value αc = 1 separates convex

progress (α > 1) from concave progress (α < 1) in early career development. In the

case α > 1, one class of careers is stunted by the barrier, while the other class of

careers excels, resulting in a bimodal P (x). In the case α < 1, it is relatively easier

to make progress in the beginning of the career, resulting in a remarkable statisti-

cal regularity which bridges the gap between very short and very long careers. This

statistical regularity for α < 1 can be approximated in two regimes,

P (x) ∝
{

x−α x <
∼ xc

e−(x/xc) x >
∼ xc .

(7.7)

It has been shown [89] that random stopping times can explain power law behavior in

many stochastic systems that arise in the natural and social sciences, with predicted

exponent values α ≥ 1. Our results provide a mechanism which describes systems
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Figure 7.2: A demonstration of the fundamental relationship between the progress

rate g(x) and the career longevity pdf P (x). The progress rate g(x) represents the

probability of moving forward in the career to position x+1 from position x. The small

value of g(x) for small x captures the difficulty in making progress at the beginning

of a career. The progress rate increases with career position x, capturing the role

of the Matthew effect. We plot five g(x) curves with fixed xc = 103 and different

values of the parameter α. The parameter α emerges from the small-x behavior

in g(x) as the power-law exponent in P (x). (Inset) Probability density functions

P (x) resulting from inserting g(x) with varying α into Eq. [7.5]. The value αc ≡ 1

separates two distinct types of longevity distributions. The distributions resulting

from concave career development α < 1 exhibit monotonic statistical regularity over

the entire range, with an analytic form approximated by the Gamma distribution

Gamma(x; α, xc). The distributions resulting from convex career development α > 1

exhibit bimodal behavior. One class of careers is stunted by the difficulty in making

progress at the beginning of the career, analogous to a “potential” barrier . The second

class of careers forges beyond the barrier and is approximately centered around the

crossover xc on a log-scale.
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with α ≤ 1. Moreover, our model provides a quantitative meaning for the power-law

exponent α characterizing the pdf of career longevity.

7.3 Empirical Evidence

The two essential ingredients of our stochastic model, namely random forward

progress and random termination times, are general and should apply in principle to

many competitive professions. The individuals, some who are championed as legends

and stars, are judged by their performances, usually on the basis of measurable metrics

for longevity and success, which vary between professions.

In scientific arenas, and in general, the metric for career position is difficult to de-

fine, even though there are many conceivable metrics for career longevity and success

[111, 112, 113]. We compare author longevity within individual journals, which mimic

an arena for competition, each with established review standards that are related to

the journal quality. As a first approximation, the career longevity with respect to a

particular journal can be roughly measured as the duration between an author’s first

and last paper in that journal, reflecting his/her ability to produce at the top tiers

of science. This metric for longevity should not be confused with the career length

of the scientist, which is probably longer than the career longevity within any par-

ticular journal. Following standard lifetime data analysis methods [114], we collect

“completed” careers from our data set which begins at year Y0 and ends at year Yf .

For each scientific career i, we calculate 〈∆τi〉, the average time between publi-

cations in the particular journal. A journal career which begins with a publication

in year yi,0 and ends with a publication in year yi,f is considered “complete”, if the

following two criteria are met: (a) yi,f ≤ Yf − 〈∆τi〉 and (b) yi,0 ≥ Y0 + 〈∆τi〉.
These criteria eliminate from our analysis incomplete careers which possibly began

before Y0 or ended after Yf . We then estimate the career length within journal j as

Li,j = yi,f −yi,0 +1, with a year allotted for publication time, and do not consider ca-

reers with yi,f = yi,0. This reduces the size of each journal data set by approximately

25% (see Table 5.1). In [115] we further analyze the scientific careers of the authors

in these six journal data bases, developing normalized metrics for career success (“ci-

tation shares”) and productivity (“papers shares”), and we find further evidence of
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Figure 7.3: Extremely right-skewed pdfs P (x) of career longevity in several high-

impact scientific journals and several major sports leagues. Solid curves represent

least-squares best-fit functions corresponding to the functional form in Eq. [7.5]. (A)

Baseball fielder longevity measured in at-bats (pitchers excluded): we find α ≈ 0.77,

xc ≈ 2500 (Korea) and xc ≈ 5000 (USA). (B) Basketball longevity measured in

minutes played: we find α ≈ 0.63, xc ≈ 21000 minutes. (C) Baseball pitcher longevity

measured in innings-pitched measured in outs (IPO): we find α ≈ 0.71, xc ≈ 2800

(Korea), and xc ≈ 3400 (USA). (D) Soccer longevity measured in games played:

we find α ≈ 0.55, xc ≈ 140 games. (E and F) High-impact journals exhibit similar

longevity distributions for the “journal career length” which we define as the duration

between an author’s first and last paper in a particular journal. Deviations occur for

long careers due to data set limitations (for comparison, least-square fits are plotted

in panel (E) with parameters α ≈ 0.40, xc = 9 years and in panel (F) with parameters

α ≈ 0.10, xc = 11 years).
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the Matthew effect in the decreasing inter-publication time τ(x) with increasing pub-

lication x for individual authors within a given journal. Several other metrics for

quantifying career success [116, 112], such as the h-index [111] and generalizations

[117, 118], along with methods for removing time and discipline-dependent citation

factors [119] have been analyzed in the spirit of developing unbiased rating systems

for scientific achievement.

In athletic arenas, the metrics for career position, success and success rate are

easier to define [120]. In general, a career position in sports can be measured by

the cumulative number of in-game opportunities a player has obtained. In baseball,

we define an opportunity as an “at bat” (AB) for batters, and an “inning pitched in

outs” (IPO) for pitchers, while in basketball and soccer, we define the metrics for

opportunity as “minutes played” and “games played ”, respectively.

In Fig. 7.4 we plot the distributions of career longevity for 20, 000 professional

athletes in four distinct leagues and roughly 400, 000 scientific careers in six distinct

journals (data is publicly available at [121, 122]). We observe universal statistical

regularity corresponding to α < 1 in the career longevity distributions for three

distinct sports and several high-impact journals (see Table S2 for a summary of least

squares parameters). The disparity in career lengths indicates that it is very difficult

to sustain a competitive professional career, with most individuals making their debut

and finale over a relatively short time interval. The exponential cutoff in P (x) that

follows after the crossover value xc, arises from the finite human lifetime, and is

reminiscent of any real system where there are finite-size effects that dominate the

asymptotic behavior. The scaling regime is less pronounced in the curves for journal

longevity. This results from the granularity of our data set, which records publications

by year only. A finer time resolution (e.g. months between first and last publication)

would reveal a larger scaling regime. However, regardless of the scale, one observes

the salient feature of there being a large disparity between the frequency of long and

short careers.

In science, an author’s success metric can be quantified by the total number of

papers or citations in a particular journal. Publication careers have the important

property that the impact of scientific work is time dependent. Where many papers

become outdated as the scientific body of knowledge grows, there are instances where
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“late-blooming” papers make significant impact a considerable time after publication

[123]. In [115] we find that the pdf of total number of normalized citation shares for a

particular author in a single journal over his/her entire career follows the asymptotic

power law P (z)dz ∼ z−2.5dz.

In sports, however, career accomplishments do not wax or wane with time. In

Fig. 7.4 we plot the pdf P (z) of career success z for common metrics in baseball

and basketball. Remarkably, the power-law regime for P (z) is governed by a scaling

exponent which is approximately equal to the scaling exponent of the longevity pdf

P (x). Later we show that the pdf P (z) of career success z follows directly from a

simple Mellin convolution of the pdf P (x) for longevity x and the pdf P (y) of prowess

y.

The Gamma pdf P (x) ≡ Gamma(x; α, xc) ∝ x−α e−x/xc is commonly employed in

statistical modeling, and can be used as an approximate form of Eq. [7.7]. One advan-

tage to the gamma pdf is that it can be inverted in order to study extreme statistics

corresponding to rare stellar careers. In [124], we further analyze the relationship

between the extreme statistics of the Gamma pdf and the selection processes for Hall

of Fame museums. In general, the statistical regularity of these distributions allows

one to establish robust milestones, which could be used for setting the correspond-

ing financial rewards and pay scales, within a particular profession. Interestingly, we

also find in [124] that the pdfs for career success in MLB are stationary even if we

quantitatively remove the time-dependent factors that influence success. This sta-

tionarity implies that the right-skewed statistical regularity we observe in P (z) arises

from both the intrinsic talent and the longevity of professional athletes, and does not

result from changes in technology, economic factors, training improvements, etc.

In summary, a wealth of data recording various facets of social phenomena have

become available in recent years, allowing scientists to search for universal laws that

emerge from human interactions [125]. Theoretical models of social dynamics, em-

ploying methods from statistical physics, have provided significant insight into the

various mechanisms that can lead to emergent phenomena [126]. An important lesson

from complex system theory is that oftentimes the details of the underlying mech-

anism do not affect the macroscopic emergent phenomena. For baseball players in

Korea and the United States, we observe remarkable similarity between the pdfs of
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career longevity (Fig. 7.4) and the pdfs of prowess (Fig. 7.5), despite these players

belonging to completely distinct leagues. This fact is consistent with the hypothe-

sis that universal stochastic forces govern career development in science, professional

sports and presumably in a large class of competitive professions.

Here we demonstrate strong empirical evidence for universal statistical laws that

describe career progress in competitive professions. Universal power-law behavior also

occurs in many other social complex systems [6, 35, 81, 85, 127, 128, 129, 130, 131, 132,

133]. Stemming from the simplicity of the assumptions, the mechanism developed in

this section could apply elsewhere in society, such as the duration of both platonic

and romantic friendships. Indeed, long relationships are harder to break than short

ones, with random factors inevitably terminating them forever. Also, supporting

evidence for the applicability of this model can be found in the similar truncated

power-law pdfs with α < 1, that describe the dynamics of connecting within online

social networks [133].

7.4 Derivation of the Spatial Poisson Distribution

The master equation for the evolution of P (x, N) is

P (x + 1, N + 1) − P (x + 1, N)

= f(x)P (x, N) − f(x + 1)P (x + 1, N) , (7.8)

with initial condition,

P (x + 1, 0) = δx,0 . (7.9)

Here f(x) represents the probability that an employee obtains another future oppor-

tunity given his/her resume at career position x. We next write the discrete-time

discrete-space master equation in the continuous-time discrete-space form,

∂P (x + 1, t)

∂t
= g(x)P (x, t) − g(x + 1)P (x + 1, t) , (7.10)

where g(x) = f(x)/δt and t = Nδt (for an extensive discussion of master equation

formalism see Ref. [134]). Taking the Laplace transform of both sides one obtains,

sP (x + 1, s) − P (x + 1, t = 0) =

g(x)P (x, s) − g(x + 1)P (x + 1, s) . (7.11)
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From the initial condition in Eq. [7.9] we see that the second term above vanishes for

x ≥ 1. Solving for P (x + 1, s) we obtain the recurrence equation

P (x + 1, s) =
g(x)

s + g(x + 1)
P (x, s) . (7.12)

If the first derivative d
dx

g(x) is relatively small, we can replace g(x + 1) with g(x) in

the equation above. Then, one can verify the ansatz

P (x, s) =
g(x)x−1

(s + g(x))x
, (7.13)

which is the Laplace transform of the spatial Poisson distribution P (x, t; λ = g(x))

([135]). The Laplace transform is defined as L{f(t)} = f(s) =
∫ ∞

0
dtf(t)e−st. Invert-

ing the transform we obtain

P (x, t) =
e−g(x)t(g(x)t)x−1

(x − 1)!
. (7.14)

The pdf in Eq. [7.14] corresponds to a particular time t that is common to all obser-

vations of x. In this section, we define the time t ≡ T to be a conditional stopping

time T which characterizes a given subset of careers. We average over a distribution

r(T ) of stopping times to obtain the empirical longevity pdf P (x) which is comprised

of careers with varying T .

7.5 Data and methods

The publication data analyzed in this section was downloaded from ISI Web of

Knowledge in May 2009. We restrict our analysis to publications termed as “Arti-

cles”, which excludes reviews, letters to editor, corrections, etc. Each article summary

includes a field for the author identification consisting of a last name and first and

middle initial (eg. the author name John M. Doe would be stored as “Doe, J” or

“Doe, JM” depending on the author’s designation). From these fields, we collect the

career works of individual authors within a particular journal together, and analyze

metrics for career longevity and success.

For author i we combine all articles in journal j for which he/she was listed as

coauthor. The total number of papers for author i in journal j over the 50-year period
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is ni. Following methods from lifetime statistics [114], we use a standard method to

isolate “completed” careers from our data set which begins at year Y0 and ends at year

Yf . For each author i, we calculate 〈∆τi〉, the average time ∆τi between successive

publications in a particular journal. A career which begins with the first recorded

publication in year yi,0 and ends with the final recorded publication in year yi,f is

considered “complete”, if the following two criteria are met:

(1) yi,f ≤ Yf − 〈∆τi〉

(2) yi,0 ≥ Y0 + 〈∆τi〉.

This method estimates that the career begins in year yi,0 − 〈∆τi〉 and ends in year

yi,f + 〈∆τi〉. If either the estimated beginning or ending year do not lie within the

range of the data base, than we discount the career as incomplete to first approxima-

tion. Statistically, this means that there is a significant probability that this author

published before Y0 or will publish after Yf . We then estimate the career length

within journal j as Li,j = yi,f − yi,0 + 1, and do not consider careers with yi,f = yi,0.

This reduces the size of the data set by approximately 25% (compare the raw data

set sizes N to the pruned data set size N∗ in Table 7.1).

There are several potential sources of systematic error in the use of this database:

(i) Degenerate names → increases career totals. Radicchi et al. [112] observe that

this method of concatenated author ID leads to a pdf P (d) of degeneracy d

which scales as P (d) ∼ d−3.

(ii) Authors using middle initials in some but not all instances of publication →
decreases career totals.

(iii) A mid-career change of last name → decreases career totals.

(iv) Sampling bias due to finite time period. Recent young careers are biased toward

short careers. Long careers located towards the beginning Y0 or end Yf of the

database are biased towards short careers.
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7.6 A Robust Method for Classifying Careers

Professional sports leagues are geared around annual championships that celebrate

the accomplishments of teams over a whole season. On a player level, professional

sports leagues annually induct retired players into “halls of fame” in order to celebrate

and honor stellar careers. Induction immediately secures an eternal legacy for those

that are chosen. However, there is no standard method for inducting players into a

Hall of Fame, with subjective and political factors affecting the induction process. In

[124] we quantitatively normalize seasonal statistics so to remove time-dependent fac-

tors that influence success. This provides a framework for comparing career statistics

across historical eras.

In this section we propose a generic and robust method for measuring careers. We

find that the pdf for career longevity can be approximated by the gamma distribution,

Gamma(x; α, xc) =
x−αe−x/xc

x1−α
c Γ(1 − α)

, (7.15)

with moments 〈xn〉 = xn
c

Γ(1−α+n)
Γ(1−α)

, where we restrict our considerations to the case of

α ≤ 1, with xc >> 1. This distribution allows us to calculate the extreme value x∗

such that only f percentage of players exceed this value according to the pdf P (x),

f =

∫ ∞

x∗

x−αe−x/xc

x1−α
c Γ(1 − α)

dx =
Γ[1 − α, x∗

xc
]

Γ(1 − α)
= Q[1 − α,

x∗

xc

] , (7.16)

where Γ[1−α, x∗

xc
] is the incomplete gamma function and Q[1−α, x∗

xc
] is the regularized

gamma function. This function can be easily inverted numerically using computer

packages, e.g. Mathematica, which results in the statistical benchmark

x∗ = xc Q−1[1 − α, f ]. (7.17)

In [124] we use the maximum likelihood estimator (MLE) for the Gamma pdf to

estimate the parameters α and xc for each pdf. The values we obtain using MLE are

systematically smaller for α values and for xc values, but the relative differences are

negligible.

In Table 7.2 we provide statistical benchmarks x∗ corresponding to career longevity

and career metrics for several sports. For the calculation of each x∗ we use the

parameter values α and xc calculated from a least-squares fit to the empirical pdf P (x)
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using the functional form of Eq. [7.5], and the significance level value f calculated

from historical induction frequencies in the American Baseball Hall of Fame (HOF)

in Cooperstown, NY USA. The baseball HOF has inducted 276 players out of the

14,644 players that exist in Sean Lahman’s baseball database between the years 1879-

2002, which corresponds to a fraction f ≡ 0.019. It is interesting to note that

the last column, x∗

σ
≡ β ≈ 3.9 for all the gamma distributions analyzed. This

approximation is a consequence of the universal scaling form of the gamma function

Gamma(x) ≡ U(x/xc), where the standard deviation σ of the Gamma pdf has the

simple relation σ = xc

√
1 − α. Hence, for a given f and α, the ratio

x∗/σ =
Q−1[1 − α, f ]√

1 − α
(7.18)

is independent of xc. Furthermore, this approximation is valid for all statistics in MLB

since α is approximately the same for all pdfs analyzed. Thus, the value x∗ ≈ 4σ is

a robust approximation for determining if a player’s career is stellar at the f ≈ 0.02

significance level. The highly celebrated milestone of 3,000 hits in baseball corre-

sponds to the value x∗ = 1.26 βσhits. Only 27 players have exceeded this benchmark

in their professional careers, while only 86 have exceeded the arbitrary 2,500 bench-

mark. Hence, it makes sense to set the benchmark for all milestones at a value of

x∗ = βσ corresponding to each distribution of career metrics.

We check for consistency by comparing the extreme threshold value x∗ calculated

using the gamma distribution with the value x∗
d derived from the database of career

statistics. Referring to the actual set of all baseball players from 1871-2006, to achieve

a fame value fd ≈ 0.019 with respect to hits, one should set the statistical benchmark

at x∗
d ≈ 2250, which account for 146 players (this assumes that approximately half of

all baseball players are not pitchers, whom we exclude from this calculation of fd). The

value of x∗
d ≈ 2250 agrees well with the value calculated from the gamma distribution,

x∗ ≈ 2366. Of these 146 players with career hit tallies greater than 2250, 126 players

have been eligible for at least one induction round, and 82 of these players have been

successfully inducted into the American baseball hall of fame. Thus, a player with

a career hit tally above x∗ ≈ x∗
d has a 65% chance of being accepted, based on just

those merits alone. Repeating the same procedure for career strikeouts obtained by
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pitchers in baseball we obtain the milestone value x∗
d ≈ 1525 strikeouts, and for career

points in basketball we obtain the value x∗
d ≈ 16, 300 points. Nevertheless, the overall

career must be taken into account, which raises the bar, and accounts for the less

than perfect success rate of being voted into a hall of fame, given that a player has

had a statistically stellar career in one statistical category.

7.7 Career Metrics

In Fig. 7.4 we plot common career metrics for success in American baseball and

American basketball. Note that the exponent α for the pdf P (z) of total career

successes z is approximately equal to the exponent α for the pdf P (x) of career

longevity x (see Table 7.2). In this section, we provide a simple explanation for the

similarity between the power law exponent for career longevity (Fig. 7.3) and the

power law exponent for career success (Fig. 7.4).

Consider a distribution of longevity that is power law distributed, P (x) ∼ x−α

for the entire range 1 ≤ x ≤ xc < ∞. The cutoff xc represents the finiteness of

human longevity, accounted for by the exponential decay in Eq. [7.7]. Also, assume

that the prowess y has a pdf P (y) which is characterized by a mean and standard

deviation, which represent the talent level among professionals (see Ref. [120] for the

corresponding prowess distributions in major league baseball). In the first possible

case, the distribution is right-skewed and approximately exponential (as in the case

of home-runs). In other cases, the distributions are essentially Gaussian. Regardless

of the distribution type, the prowess pdfs P (y) are confined to the domain δ ≤ y ≤ 1,

where δ > 0.

Assume that in any given appearance, a person can apply his/her natural prowess

towards achieving a success, independent of past success. Although prowess is refined

over time, this should not substantially alter our demonstration. Since not all pro-

fessionals have the same career length, the career totals are in fact a combination of

these two distributions as in their product. Then the career success total z = xy has
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the distribution,

P (z = xy) =

∫ ∫

dy dx P (y)P (x)δ(xy − z)

=

∫ ∫

dy dxP (y)P (x)δ(x(y − z/x))

=

∫

dx P (
z

x
)P (x)

1

x
. (7.19)

This integral has three domains (Ref. [136]),

P (z) ∝















∫ z/δ

1
dx P ( z

x
)x−(α+1) , δ < z < 1

∫ z/δ

z
dx P ( z

x
)x−(α+1) , 1 < z < xcδ

∫ xc

z
dx P ( z

x
)x−(α+1) , xcδ < z < xc .

The first regime δ < z < 1 is irrelevant, and is not observed since z is discrete in the

cases analyzed here. For the first case of an exponentially distributed prowess,

P (z) ∝
{

z−α , 1 < z < xc δ

z−α exp(−z/λxc) , xcδ < z < xc .
(7.20)

In Ref. [120] we mainly observe the exponential tail in the home-run distribution,

as the above form suggests in the regime xcδ < z < xc, resulting from δ ≈ 0 for

the right-skewed home-run prowess distribution. However, in the case for a normally

distributed prowess, the power law behavior of the longevity distribution is maintained

for large values into the career success distribution P (z), as xcδ > 103.

P (z) ∝
{

z−α , 1 < z < xcδ

z−αe−( z
σxc

)2/2 , xcδ < z < xc .
(7.21)

Thus, the main result of this demonstration is that the distribution P (z) maintains

the power law exponent α of the career-longevity distribution, P (x), when the prowess

is distributed with a characteristic mean and standard deviation. This result is also

demonstrated with the simplification of representing the prowess distribution P (y)

as an essentially uniform distribution over a reasonable domain of y, which simplifies

the integral in Eq. (7.19) while maintaining the inherent power law structure.

In Fig. 7.5 we plot the prowess distributions that correspond to the career success

distributions plotted in Fig. 7.4. It is interesting that the competition level based on

the distributions of prowess indicates that Korean and American baseball are nearly

equivalent. Also, note that the prowess distributions for rebounds per minute are

bimodal, as the positions of players in basketball are more specialized.
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Figure 7.5: Probability density functions of seasonal prowess for several career met-

rics. Each pdf is normally distributed, except for the bimodal curve for rebound

prowess, NBA (Reb.). The bimodal distribution for Rebound prowess reflects the

specialization in player positions in the sport of basketball. Furthermore, note the re-

markable similarity in the distributions between American (MLB) and Korean (KBB)

baseball players.
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7.8 A null model without the Matthew effect

In this section, we compare the predictions of our theoretical model with the

predictions of a theoretical model which does not incorporate the Matthew effect.

Since the Matthew effect implies that the progress rate g(x) increase with career

position x, we analyze the simpler model where for each individual i the progress rate

gi(x) is constant,

gi(x) ≡ λi . (7.22)

The solution to the conditional longevity pdf P (x|λi) is still given by Eq. [7.5], taking

the form

P (x|λi) =
λx−1

i

xc(
1
xc

+ λi)x
≈ 1

λixc
e
− x

λixc , (7.23)

which is an exponential pdf, with a characteristic career length lc ≡ λixc. Hence,

this null model corresponds to a career progress mechanism wherein intrinsic ability,

which is incorporated into the relative value of λi, is the dominant factor. In order to

calculate the longevity pdf P (x) which incorporates a distribution of intrinsic abilities

across the population of individuals, we average over the conditional pdfs using a pdf

P (λ) that we assume is well-defined by a mean λ and standard deviation σ, consistent

with what we observe for the seasonal prowess pdfs shown in Fig. 7.5. In the case of

P (λ) = Normal(λ, σ), then

P (x) =

∫ 1

0

P (λ)P (x|λ)dλ ≡
∫ 1

0

e−(λ−λ)2/2σ2

√
2πσ2

P (x|λ)dλ . (7.24)

For the sake of providing an analytic result, we replace P (λ) by a uniform distribution,

P (λ) ≈
{

0 |λ − λ| > 2σ
1
4σ

|λ − λ| ≤ 2σ ,
(7.25)

which does not change the overall result. The integral then becomes,

P (x) ≈ 1

4σ

∫ λ+2σ

λ−2σ

dλ

λxc
e−

x
λxc =

1

4σxc
[Γ(0,

x/xc

λ + 2σ
)−Γ(0,

x/xc

λ − 2σ
)] ≈ e−x/λxc , (7.26)

for 1 > λ > 2σ, where the last approximation corresponds to a relatively small

σ. Thus, we find that even with a reasonable dispersion in the constant progress

rates λ in a population of individuals, the pdf P (x) is still exponential. Hence, our

theoretical model cannot explain the empirical non-exponential form of P (x) unless

we incorporate the Matthew effect using g(x) that increase with x.
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Journal Years Articles Authors, N N∗

Nature 1958-2008 65,709 130,596 94,221

Science 1958-2008 48,169 109,519 82,181

PNAS 1958-2008 84,520 182,761 118,757

PRL 1958-2008 85,316 112,660 72,102

CELL 1974-2008 11,078 31,918 23,060

NEJM 1958-2008 17,088 66,834 49,341

Table 7.1: Summary of data sets for each journal. Total number N of unique

(but possibly degenerate) name identifications. N∗ is the number of unique name

identifications after pruning the data set of incomplete careers.
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Least-square values Gamma pdf values
Professional League,

(success metric) α xc 〈x〉 σ x∗ x∗

〈x〉
x∗

σ

MLB, (H) 0.76 ± 0.02 1240 ± 150 300 610 2400 7.8 3.9

MLB, (RBI) 0.76 ± 0.02 570 ± 80 140 280 1100 7.8 3.9

NBA, (Pts) 0.69 ± 0.02 7840 ± 760 2400 4400 17000 7.0 3.9

NBA, (Reb) 0.69 ± 0.02 3500 ± 130 1100 2000 7600 6.9 3.9

Least-square values Gamma pdf values
Professional League,

(opportunities) α xc 〈x〉 σ x∗ x∗

〈x〉
x∗

σ

KBB, (AB) 0.78 ± 0.02 2600 ± 320 580 1200 4700 8.2 3.9

MLB, (AB) 0.77 ± 0.02 5300 ± 870 1200 2500 9700 8.1 3.9

MLB, (IPO) 0.72 ± 0.02 3400 ± 240 950 1800 6900 7.3 3.9

KBB, (IPO) 0.69 ± 0.02 2800 ± 160 840 1500 5900 7.0 3.9

NBA, (Min) 0.64 ± 0.02 20600 ± 1900 7700 12600 48800 6.4 3.9

UK, (G) 0.56 ± 0.02 138 ± 14 61 92 360 5.8 3.9

Least-square values
Academic Journal,

(career length in years) α xc

Nature 0.38 ± 0.03 9.1 ± 0.2

PNAS 0.30 ± 0.02 9.8 ± 0.2

Science 0.40 ± 0.02 8.7 ± 0.2

CELL 0.36 ± 0.05 6.9 ± 0.2

NEJM 0.10 ± 0.02 10.7 ± 0.2

PRL 0.31 ± 0.04 9.8 ± 0.3

Table 7.2: Data summary for the pdfs of career statistical metrics. The values α

and xc are determined for each career longevity pdf P (x) and each career success pdf

P (z) via least-squares method using the functional form given by Eq. [7.5].
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Chapter 8

Motivation

Questions concerning the nature of opinion and consensus formation have been

studied in the behavioral, social, political, and cognitive sciences. So what does

statistical physics have to contribute to the subject? The theory of kinetic spin

systems has been very fruitful in describing the evolution of a spin systems, roughly

defined as a collection of interacting entities (agents, voters, electron spins, etc.)

with dynamic states. The dynamics are determined by the particular rules for the

local (or non-local) interaction between spins and the topology of the interaction

network between the agents. A key concept is the role of temperature T which

determines the significance of fluctuations in the system (interpreted possibly as the

role of misinformation or vacillating confidence on the behalf of the agent).

In addition to the application to opinion dynamics, kinetic spin systems have also

been used as models for biological dynamics (e.g. the Moran model for population

genetics) and for epidemic dynamics (e.g. the SIR, SIS, and other models for infection

dynamics in a population of S = susceptible, I = infected, and R = recovered

individuals). The power of the statistical physics approach is in the limit of system

size N → ∞, so that finite-size effects, boundary and initial conditions are negligible,

and so that emergent behavior is directly dependent on the topological features of the

interactions and the symmetries (and the corresponding conserved or not-conserved

quantities) embedded in the rules for individual spin evolution.

Here we study a simple variant of the well-known Voter model, which is a 2-spin

system with the unique property of being analytically solvable in arbitrary dimension.
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Interestingly, the 1-d Voter model is equivalent to the critical temperature Tc = 0 limit

of the 1-d Ising-Glauber model. In higher dimensions, and for Tc > 0, the models

diverge, where the voter model is characterized by spin-flip rules that obey the local

field as a proportional rule, whereas the Ising-Glauber model is characterized by

spin-flip rules that obey the majority of the local field.

In some ways, the Voter model has the disadvantage of being overly simple. For

example, as a result of this simplicity, the coarsening processes in this Voter model

system are defined by coarse domains with no surface tension. Despite the simplicity,

the Voter model has been widely regarded as a benchmark spin system which can be

modified in numerous ways in order to study the role of modified features. One such

modification is to change the topology of the interacting agents so that they interact

not through a d-dimensional lattice, but through an arbitrary graph or network.

Amazingly, quantities such as the mean consensus time and the exit probability for

distinct final states given an initial state are calculable on graphs of arbitrary degree

distribution. These results follow from the beautiful property that the voter model can

be mapped into a system of coalescing random walkers on a network, therefore opening

up a doorway to powerful methods developed in the theory of random walks. Another

possible modification to the Voter model is to endow the agents with persistence

resulting in a finite opinion memory; this is in contrast to the basic Voter model,

where the opinion dynamics of each voter is explicitly Markov, meaning that the

transition rates do not depend on the history of the system, meaning that the system

has no memory.

The modification to the Voter model that we pursue is to vary the persuasive-

ness of agents in the voter model between two extremes: some voters are completely

“spineless” as in the traditional model, while other voters, here termed “zealots,”

are completely stubborn. We define stubbornness in the dynamic opinion rules as

the inability of a zealot to change opinion, even if this individual is completely sur-

rounded by agents with the opposite opinion. The presence of these voters completely

determine the steady-state polarization of the system. Moreover, using methods from

electrostatics, it can be shown that the “field of influence” of a single zealot is anal-

ogous to the electric field of a single charged particle, such as an electron.



Chapter 9

the Voter Model with Zealotry

9.1 Summary

We study the voter model with a finite density of zealots—voters that never

change opinion. For equal numbers of zealots of each species, the distribution of

magnetization (opinions) is Gaussian in the mean-field limit as well as in one and

two dimensions, with a width that is proportional to 1/
√

Z, where Z is the number

of zealots, independent of the total number of voters. Thus just a few zealots can

prevent consensus or even the formation of a robust majority.

9.2 Introduction

The voter model [137] is one of the simplest examples of cooperative behavior

that has been used as a paradigm for the dynamics of opinions in socially interacting

populations. In the voter model, each node of a graph is occupied by a voter that has

two opinion states, denoted as + and −. Opinions evolve by: (i) picking a random

voter; (ii) the selected voter adopts the state of a randomly-chosen neighbor; (iii)

repeat these steps ad infinitum or until a finite system necessarily reaches consensus.

Naively, one can view each voter has having no self confidence and thus takes on the

state of one of its neighbors. This evolution resembles that of the Ising model with
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zero-temperature Glauber kinetics [138], but with one important difference: in the

Ising model, each spin obeys the state of the local majority; in the voter model, a voter

chooses a state with a probability that is proportional to the number of neighbors in

that state.

There are three basic properties of the voter model that characterize its evolution.

The first is the exit probability, namely, the probability that a finite system eventually

reaches consensus where all voters are in the + state, E+(ρ0), as a function of the

initial density ρ0 of + voters. Because the mean magnetization (averaged over all

realizations and all histories) is conserved on any degree-regular graph, and because

the only possible final states of a finite system are consensus, E+(ρ0) = ρ0 [137].

A second basic property is the mean time TN to reach consensus in a finite system

of N voters. For regular lattices in d dimensions, it is known that TN scales as N2 in

d = 1, as N ln N in d = 2, and as N in d > 2 [137, 139]. In contrast, TN generally

scales sublinearly with N on heterogeneous graphs with broad degree distributions

[140]. Defining µk as the kth moment of the degree distribution, then TN ∼ Nµ2
1/µ2,

which grows slower than linearly in N for a sufficiently broad degree distribution.

Finally, the 2-point correlation function G2(r), defined as the probability that 2 voters

a distance r apart are in the same state, asymptotically decays as r2−d on a regular

lattice when the spatial dimension d > 2 [134, 139]. This decay is the same as that of

the electrostatic potential of a point charge, a correspondence that has proven useful

in analyzing the voter model.

In this work, we investigate an extension of the voter model in which a small

fraction of the population are zealots—individuals that never change opinion. The

role of a single zealot [141] or a small number of zealots [142] on the voter model has

been studied previously, and considerable insight has been gained by exploiting the

previously-mentioned electrostatic correspondence. One motivation for this work is

the obvious fact that consensus is not the asymptotic outcome of repeated elections

in democratic societies. An empirical example is the set of US presidential elections

[143], where the percentage of votes for the winner has ranged from highs of 61.05%

(Johnson over Goldwater 1964) and 60.80% (Roosevelt over Landon 1932) to lows

of 47.80% (Harrison minority winner over Cleveland 1888) and 47.92% (Hayes over

Tilden 1872). In this compilation, we exclude elections with substantial voting to
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candidates outside the top two.

This example, as well as many other election results from democratic countries,

show in an obvious way that consensus will never be achieved in large populations.

This fact motivates us to to investigate an opinion dynamics model that leads to

stationarity due to the influence of zealots. Other natural models that lead to cultural

fragmentation and an attendant stasis include the multiple-state Axelrod model [144],

the bounded compromise model of Weisbuch et al. [145] and its variants [146], in which

lack of consensus is a basic outcome.

The basic question that we wish to address in the voter model with zealots is:

what is the nature of the global opinion as a function of the density of zealots? One

of our main results is that equal but very small numbers of zealots of both types

leads to a steady state with a narrow Gaussian magnetization distribution centered

at zero. Here the magnetization is simply the difference in the fraction of voters of

each species. Thus a small fraction of zealots is surprisingly effective in maintaining

a steady state with only small fluctuations about this state.

In the next section, we define the model. Then in Secs. 9.4 and 9.5, we solve

the model in the mean-field limit and on a one-dimensional periodic ring. We then

investigate the behavior on the square lattice by numerical simulations in Sec. 9.6

and find behavior that is quantitatively close to that in the mean-field limit. Finally,

we conclude and point out some additional interesting features of the role of zealotry

on the voter model in Sec. 9.7.

9.3 The model

The population consists of N voters, with a fixed number of zealots that never

change opinion, while the remaining voters are susceptible to opinion change. Each

voter can be in one of two opinion states, +1 or −1 that we term “democrat” and

“republican”, respectively. Thus the system consists of Z+ democrat and Z− repub-

lican zealots, as well as N+ democrat and N− republican susceptibles. Each type of

voter evolves as follows:

1. Susceptible democrats can become republicans;

2. Susceptible republicans can become democrats;
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3. Zealot democrats are always democrats;

4. Zealot republicans are always republicans.

Each agent, whether a zealot or a susceptible, has the same persuasion strength

that we set to 1. That is, after a susceptible voter selects a neighbor, the voter

is persuaded to adopt the state of this neighbor with probability 1. Because the

total population comprises of agents in one of four possible states, we have N =

N+ + N− + Z+ + Z−. Since the number of zealots is fixed, the total number of

susceptible individuals S = N −Z+−Z− = N+ +N− is also conserved. The dynamics

is a direct generalization of the voter model and consists of the following steps:

1. Pick a random voter, if this voter is a zealot nothing happens.

2. If the selected voter is a susceptible, then pick a random neighbor and adopt

its state; note that if the selected voter and the neighbor are in the same state,

nothing happens in the update.

3. Repeat steps 1 & 2 ad infinitum or until consensus is reached.

We will investigate this model on the two natural geometries of the complete graph,

a natural realization of the mean-field limit, and regular lattices. For the complete

graph, all other voters in the system are nearest-neighbor to any voter. Thus the

complete graph has no spatial structure, a feature that allows for a simple solution.

In contrast, when the voters live on the sites of a regular lattice, a voter can be

directly influenced only by its the nearest neighbors.

9.4 Dynamics on the complete graph

On the complete graph, the state of the population may be characterized by the

probability P (N+, N−, t) of finding N± susceptible voters at time t. Since N− =

S − N+, we merely need to consider the master equation for P (N+, t), which reads

∂P (N+, t)

∂t
=

∑

δ=±1

P (N+ + δ, t)W (N+ + δ → N+)

−
∑

δ=±1

P (N+, t)W (N+ → N+ + δ). (9.1)
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The first term accounts for processes in which the number of susceptible democrats

after the event equals N+, while the second term accounts for the complementary

loss processes where N+ → N+ ± 1. Here W represents the rate at which transitions

occur and is given by

δt W (N+ → N+ + 1) =
N−(N+ + Z+)

N(N − 1)

δt W (N+ → N+ − 1) =
N+(N− + Z−)

N(N − 1)
. (9.2)

The first line is the probability of choosing first a republican susceptible and then

a democrat (susceptible or zealot), for which a susceptible republican converts to a

susceptible democrat in the voter model interaction. We choose δt = N−1, so that,

on average, each agent is selected once at each time step.

While it is usually not possible to solve an equation of the form (9.1), analytical

progress can be achieved by considering a continuum N → ∞ limit of the master

equation and performing a Taylor expansion [147]. For this purpose, we introduce

the rescaled variables n ≡ N+/N , z± = Z±/N , and also s ≡ 1 − z+ − z− so that

s − n ≡ N−/N . In the continuum limit, the reaction rates now become

W (n → n + N−1) = N (s − n)(n + z+)

W (n → n − N−1) = N n(s − n + z−). (9.3)

Expanding (9.1) to the second order in the variable n, we find the following Fokker-

Planck equation [146, 148, 149, 150, 151]:

∂P (n, t)

∂t
= − ∂

∂n
[α(n)P (n, t)] +

1

2

∂2

∂n2
[β(n)P (n, t)] , (9.4)

where (see e.g., Chap. VII of Ref. [147])

α(n) =
∑

δn=±1/N

δn W (n → n + δn)

= [z+s − n(1 − s)] ;

β(n) =
∑

δn=±1/N

(δn)2 W (n → n + δn)

= [(n + z+)(s − n) + n(s + z− − n)]/N.
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The first term on the right-hand-side of Eq. (9.4) leads to the deterministic mean-

field rate equation ṅ(t) = α, with solution

n(t) =
z+s

1 − s
+

[

n(0) − z+s

1 − s

]

e−(1−s)t. (9.5)

Thus an initial density of susceptible democrats in an infinite system exponentially

relaxes to the steady-state value n∞ = z+s/(1− s). Correspondingly, the magnetiza-

tion m = (N+ +Z+−N−−Z−)/N attains the steady-state value (z+−z−)/(z+ +z−).

When the number of agents is finite, however, finite-size fluctuations arise from the

diffusive second term on the right-hand side of Eq. (9.4). This term leads to a steady-

state probability distribution with a finite width that is centered at n∞. In what

follows, we examine these fluctuations around the mean-field steady state when N

and Z± are both finite.

9.4.1 Stationary Magnetization Distribution

According to the Fokker-Planck equation (9.4), the stationary distribution P (n)

obeys

α(n)P (n) − 1

2

∂

∂n
[β(n)P (n, t)] = 0, (9.6)

whose formal solution is

P (n) = Z
exp

(

2
∫ n

0
dn′ α(n′)

β(n′)

)

β(n)
. (9.7)

Since the density n of agents in the state +1 ranges from 0 to s, the normalization

constant Z is obtained by requiring
∫ s

0
dnP (n) = 1. This condition gives

Z =





∫ s

0

exp
(

2
∫ n

0
dn′ α(n′)

β(n′)

)

β(n)
dn





−1

.

We are particularly interested in the distribution of the magnetization P (m) in

the continuum limit, which directly follows from (9.7) through a simple change of

variables. We first consider the system with the same number of zealots of each type,

and then the asymmetric system with unequal numbers of zealots of each type.
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9.4.2 Symmetric case: Z+ = Z− = Z

When the number of zealots of each species is equal, we write Z+ = Z− ≡ Z.

The rate equation (9.5) then gives an equal steady-state density of democrats and

republicans, n∗ = n+ = n− = s/2, corresponding to zero average magnetization,

m∗ = 0. We now compute the stationary distribution of magnetization by accounting

for finite-size fluctuations. When Z+ = Z− = Z, P (n) obeys Eq. (9.7) with

α(n) = z(1 − 2z − 2n),

β(n) = [(2n + z)(1 − 2z) − 2n2]/N.

Notice that α = Nz
2

dβ
dn

, a feature that allows us to solve for the steady-state magneti-

zation distribution easily.

To perform the integral in Eq. (9.7), it is helpful to transform from n to the magne-

tization m = (2n− s)/s which lies in [−1, 1]. We therefore find exp
(

2
∫ n

0
dn′ α(n′)

β(n′)

)

=
(

1 + 2n(s−n)
zs

)Nz

. According to Eq. (9.7), this leads to the following stationary distri-

bution of susceptible democrats:

P (n) =
(zs + 2n(s − n))Nz−1

∫ s

0
dn (zs + 2n(s − n))Nz−1

. (9.8)

Using the fact that 2n(s − n) = s2(1 − m2)/2, we readily obtain the stationary

magnetization distribution:

P (m) =
(s−1 − m2)

Z−1

∫ 1

−1
dm (s−1 − m2)Z−1

. (9.9)

In the limit of large Z, we may then approximate the distribution by the Gaussian

P (m) ∝ e−m2/2σ2
, with σ2 = /[2s(Z − 1)].

When zealots are present in equal numbers, the magnetization distribution quickly

approaches a symmetric Gaussian, with a width that is inversely proportional to the

square-root of the number of zealots and not the density. Thus as the system size

is increased, the density of zealots needed to keep the magnetization within a fixed

range goes to zero. In the limiting case where there is one zealot of each type, the

magnetization is uniformly distributed in [−1, 1] (Fig. 9.1). Finally notice that the

distribution quickly approaches the asymptotic scaling form when Z >
∼ 8 (figure inset).
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Figure 9.1: Steady-state magnetization distributions for 1000 voters on the com-

plete graph for Z = 2, 8, 32, 128, and 512 zealots (progressively steepening curves).

The inset shows the scaled form of these distributions for Z ≥ 8; the case Z = 8

slightly deviates from the rest of the distributions that become visually coincident.
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9.4.3 Asymmetric case: Z+ 6= Z−

When the density of zealots of each type are unequal, we now have

α(n) = (z+ + n)s − n, (9.10)

β(n) = [(2n + z+)(s − n) + nz−]/N (9.11)

in Eq. (9.6). To compute P (n) (and equivalently P (m)), it is now convenient to

introduce the quantities δ ≡ z+ − z− and r ≡
√

δ2 + 4s. Noticing that one can write

α/β = [N(s − 1)(dβ/dn) + δ(1 + s)/4]/β, one can easily compute the integral in

Eq. (9.7) and thereby obtain P (n). Transforming from the density to the magne-

tization by n = (m + 1)s/2, we obtain the following expression for the stationary

magnetization distribution (Fig. 9.2):

ZP (m) = [1 − m(δ + ms)](Z++Z−−2)/2

×
[

1 +
r

ms − r−δ
2

](δ/2r) (2N−Z+−Z−)

.

(9.12)

As in the symmetric case, Z is a normalization constant obtained by requiring

that
∫ 1

−1
dm P (m) = 1. Notice that P (m) is comprised of two terms. The first

term gives a Gaussian contribution (in the limit of large N) and is the analog of

Eq. (9.9). The second term is a nontrivial contribution due to the asymmetry that

is responsible for the skewness of P (m) which remains peaked around m∗ = z+−z−
z++z−

.

Close to this peak value, there is little asymmetry (i.e., δ ≪ 1). Additionally, for a

large number of zealots we may approximate the distribution (9.12) by the Gaussian

P (m) ≈ e−(m−m∗)2/2σ2
[1 + O((m − m∗)δ))], with σ2 = [c(Z+ + Z− − 2)]−1.

9.5 One Dimension

We now turn to the one-dimensional system, where the behavior of the classical

voter model is quite different from that in the mean-field limit. When zealots are

present, however, we generically obtain a Gaussian magnetization distribution, as
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Figure 9.2: Steady-state magnetization distributions on a complete graph of

1000 sites with unequal numbers of zealots. Shown left to right are the cases of

(Z+, Z−) = (90, 90), (120, 60), (135, 45), (144, 36), (162, 18). The results of voter

model simulations and the solution to the master equations are coincident. The mean

magnetization of the system equals the magnetization of the zealots: m = z+−z−
z++z−

.
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Figure 9.3: A ring divided into two independent segments by oppositely-oriented

zealots (thick lines). Also shown is the state of each voter and the domain wall in

each segment at long times (dotted lines).

in the mean-field case. We now derive the magnetization distribution—first for two

zealots—and then for an arbitrary number of zealots.

9.5.1 Two Zealots

Suppose that two zealots of opposite opinion are randomly placed on a periodic

ring of length L. The ring is thus split into two independent segments of lengths L1

and L2, with L = L1 + L2 + 2 (Fig. 9.3). We take the ring to be large so that we

may write L ≈ L1 +L2. As shown in Fig. 9.3, the voters in each segment coarsen and

eventually there remains one domain of + voters that is separated from one domain

of − voters by a single domain wall. Each domain wall performs a free random walk

and the walk is reflected upon reaching the end of its segment. A basic fact from

the theory of random walks is that each domain wall is equiprobably located within

the interval in the long-time limit. We now exploit this property to determine the

magnetization distribution.
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For interval lengths L1 and L2 and respective magnetizations m1 and m2, the

magnetization m of the entire ring is given by mL = m1L1 + m2L2. Thus a given

value of m is achieved if m1 and m2 are related by (Fig. 9.4)

m2 =
mL

L2
− m1L1

L2
. (9.13)

Then the probability P (m|L1, L2) for a system of two segments with lengths L1 and

L2 to have magnetization equal to m is proportional to the length of the ray defined

by Eq. (9.13) that lies within the unit square in the m1-m2 plane. As illustrated

in Fig. 9.4, the distribution P<(m|L1, L2), where the subscript < now signifies the

range L1 < L2, increases linearly with m for −1 < m < (L1 − L2)/L, is constant for

(L1−L2)/L < m < (L2−L1)/L, and then decreases linearly with m for (L2−L1)/L <

m < 1.

Using this m dependence of P<(m|L1, L2) and also imposing normalization, we

thus find the magnetization distribution for fixed L1, L2 with L1 < L2 to be:

P<(m|L1, L2) =



















































L2(1 + m)

4L1L2
− 1 < m < L1−L2

L

L

2L2
|m| < L2−L1

L

L2(1 − m)

4L1L2

L2−L1

L
< m < 1.

(9.14)

The complementary distribution P>(m|L1, L2) for L1 > L2 is obtained from Eq. (9.14)

by interchanging the roles of L1 and L2.

Now we integrate over all values of L1 to find the configuration-averaged magne-

tization distribution P (m). The details of this calculation are a bit tedious and are

given in Appendix 9.8. The final result is

P (m) =
1

L

[

∫ L
2

0

P<(m|L1, L2) dL1 +

∫ L

L
2

P>(m|L1, L2) dL1

]

=

(

1 − |m|
2

)

ln

(

1 + |m|
1 − |m|

)

− ln

(

1 + |m|
2

)

. (9.15)

As shown in Fig. 9.5, the agreement between Eq. (9.15) and simulations is excellent.
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Figure 9.4: (Top) Rays of fixed magnetization (dashed) for the case L1 < L2. The

probability for a given value of m is proportional to the length of the ray corresponding

to this m value within the unit square (solid). (Bottom) The resulting magnetization

distribution P<(m|L1, L2) for a given L1 and L1 < L2.
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Figure 9.5: Comparison the analytic magnetization distribution for two zealots

on the ring (Eq. (9.15)) and simulation results (points).
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9.5.2 Many Zealots

We now study the magnetization distribution when many zealots are randomly

distributed on the ring, with the restriction of equal numbers of each type of zealot

(Z+ = Z− = Z). Two distinct possibilities can arise:

1. A segment of consecutive susceptible voters is surrounded by two zealots of the

same sign. With voter model dynamics, these segments eventually align with

the state of the confining zealots so that the segment freezes.

2. A segment of consecutive susceptible voters is surrounded by two zealots of

opposite opinion. Eventually a single domain wall remains that diffuses freely

within the segment.

We first consider the simpler case where equal numbers of + and − zealots are ran-

domly but alternately placed around the ring so that no frozen segments arise. The

segment lengths {Li} with i = 1, 2, . . . , Z, obey the constraint
∑

i Li = L (ignoring

the space occupied by the zealots themselves).

To find the magnetization distribution, we map the state of the voters onto an

equivalent random walk as follows. In a segment of length Li, the difference in the

number of + and − voters at long times is uniformly distributed in [−Li, Li]. We

define this difference as the unnormalized magnetization Mi. We now make the

following approximations that apply when L, Z → ∞ such that each Li is also large.

In this limit, we may assume that each Li is independent and identically distributed.

As a result, the sum of the unnormalized magnetizations over all intervals is equivalent

to the displacement of a random walk of Z steps with each step uniformly distributed

in [−Li, Li].

To solve this random walk problem, we use the basic fact that the Fourier trans-

form for the probability distribution of the entire walk P(k) is simply the product

of the Fourier transforms of the single-step distributions [134, ?]. Since the Fourier

transform of a uniform single-step distribution over the range [−Li, Li] is sinkLi

kLi
, we

then have

P(k) =
Z

∏

i=1

sin kLi

kLi

. (9.16)
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Since we are interested in the asymptotic limit where the unnormalized magneti-

zation becomes large, we study the limit of P(k) for small k. Thus we expand each

factor in P(k) in a Taylor series to first order, and then re-exponentiate to yield

P(k) ≈
Z

∏

i=1

(1 −
∑

i

k2L2
i /6)

∼ 1 −
Z

∑

i

k2L2
i /6 ∼ e−k2

P

i L2
i /6.

We now invert this Fourier transform to give the distribution of the unnormalized

magnetization

P (M) =
1

2π

∫

e−k2
P

i L2
i /6 e−ikM dk

=
1

√

2πσ2
M

e−M2/2σ2
M , (9.17)

with σ2
M =

∑

i L
2
i /3.

What we want, however, is the magnetization distribution; this is related to P (M)

by P (m) dm = P (M) dM . We thus find

P (m) =
1

√

2πσ2
m

e−m2/2σ2
m , (9.18)

where σ2
m =

∑

i L
2
i /3L2. If the number of intervals is large, then each Li is approxi-

mately L/Z, from which we obtain σ2
m ≈ 1/3Z. (The result σ2

m = 1/3Z is exact if all

interval lengths are equal.) As in the mean-field limit, the width of the magnetiza-

tion distribution is controlled by the number of zealots and not their concentration,

so that a small number of zealots is effective in maintaining the magnetization close

to zero.

A similar approach applies in the case where the spatial ordering of the zealots is

uncorrelated. In this case, approximately one-half of all segments will be terminated

by oppositely-oriented zealots and one-half by zealots of the same species. For the

latter type of segments, the unnormalized magnetization will equal ±Li equiprobably.

Under the assumption that exactly one-half of the segments are frozen and one-half

contain a single freely-diffusing domain wall, the analog of Eq. (9.16) is

P(k) =

Z/2
∏

i=1

sin kLi

kLi

Z/2
∏

i=1

cos kLi. (9.19)
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The second product accounts for frozen segments in which the unnormalized magne-

tization equals ±Li equiprobably. For these segments the Fourier transform of the

single-step probability for a random walk whose steps length are ±Li equals cos kLi.

Following the same steps that led to Eq. (9.18), we again obtain a Gaussian magne-

tization distribution, but with σ2
m given by σ2

m =
∑

i 2L
2
i /3L2 → 2/3Z.

9.6 Two Dimensions

In the classical voter model, the two-dimensional system is at the critical dimen-

sion so that its behavior deviates from that of the mean-field system by logarithmic

corrections. In the presence of zealots, however, the behaviors in two dimensions and

in mean field are quite close, as illustrated in Fig. 9.6.

Our results for two dimensions are based on numerical simulations. In our simu-

lations, we pick a random voter and apply the update rules of Sec. 9.3. The unit of

time is defined so that a time increment dt = 1 corresponds to N update events, so

that each voter is updated once on average. The system is initialized with each voter

equally likely to be in the + or the − states. From the N+ voters in the + state, Z+

of them are designated as zealots, and similarly for voters in the − state. After the

system reaches the steady state, we measure steady-state properties at time intervals

∆T . The delay time T to reach the steady state depends on the lattice dimension and

the zealot density, while ∆T is the correlation time for the system in the steady state.

By making measurements every ∆T steps, we obtain data for effectively uncorrelated

systems. Typically, for a given initial condition, we made 100 measurements and then

averaged over many configurations of zealots.

The resulting data for the magnetization distribution is typically noisy, and we

employ a Gaussian averaging of nearby points to smooth the data. If mi denotes

the ith magnetization value, then the smoothed magnetization distribution at mi is

defined as

P (mi) =
1√
πd2

d
∑

k=−d

P (mi+k) e−(k/d)2 ,

where the sum includes the initial point, as well as the d points to the left and to

the right of the initial point, with d typically in the range 20–40. Such a smoothed
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Figure 9.6: Comparison of simulations for the magnetization distribution in two

dimensions (dashed) with the mean-field results (solid curves). The simulations are

for 1000 voters with 2, 8, 32, 128 and 512 total zealots, with equal numbers of each

type.
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distribution is the quantity that is actually plotted in Figs. 9.1, 9.2, 9.6, and in the

spatial averaged distribution in Fig. 9.7.

9.7 Discussion

We have shown that a small number of zealots in a population of voters is quite

effective in maintaining a steady state in which consensus is never achieved. When

there are equal numbers of zealots of each type, the steady-state fraction of democrats

and republicans equals 1/2; equivalently, the magnetization equals zero. For un-

equal densities of the two types of zealots, the steady-state magnetization is simply

m∗ = (Z+ − Z−)/(Z+ + Z−), where Z+ and Z− are the number of zealots of each

type. The magnetization distribution is generically Gaussian, P (m) ∝ e−(m−m∗)2/2σ2
,

with σ ∝ 1/
√

Z, and Z = Z+ + Z− is the total number of zealots. A Gaussian mag-

netization distribution arises universally in one dimension, on the square lattice (two

dimensions), and on the complete graph (mean-field limit). One basic consequence

of this distribution is that as the total number of voters N increases, the fraction of

zealots needed to keep the magnetization less than a specified level vanishes as 1/
√

N .

There are several additional aspects of the influence that zealots have on the

voter model that are worth pointing out. Although the time to reach consensus

is infinite because this state can never be achieved, one can ask for the time until

a specified plurality is first achieved. Equivalently, we can ask for the probability

that the magnetization first reaches a value m, when the system is initialized with

m = m0. From the above generic Gaussian form of the magnetization distribution,

we expect that the mean time for a symmetric system to first reach a magnetization

m will thus scale as eam2Z , where a is a constant of order one. Thus one must wait

an extremely long time before the system achieves even a modest deviation away

from the zero-magnetization state when the number of zealots becomes appreciable.

Perhaps this trivial fact is the underlying reason why so many democratic countries

are characterized by small majorities in governance.

Another interesting feature is the role of the zealots’ spatial positions on the steady

state. For example, if there are only two zealots that are adjacent, one might expect

that the effect of this “dipole” would be weaker than that of two separated monopoles.



123

Figure 9.7: Comparison of simulations for the magnetization distribution in two

dimensions when the two zealots are adjacent (curve with peaks near ±1), maximally

separated (dots), and averaged over many different zealot configurations (dashed).
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This is precisely the effect that is is observed in Fig. 9.7. When the two zealots are

adjacent, their effects are substantially screened and the magnetization distribution

is peaked near m = ±1. That is, the voters show a preference for consensus in spite

of the zealots. On the other hand, when the zealots are maximally separated, the

magnetization distribution is close to the distribution that arises when averaging over

possible positions of the two zealots.

Zealots are also quite effective in reducing the total number of opinion changes in

the system. If the population is close to zero magnetization, each voter typically has

equal numbers of neighbors of each type. If the voters are not strongly correlated, each

voter would change its state at a rate that is approximately equal to 1/2. However,

simulations on the square lattice show that the flip rate of each susceptible voter is

considerably smaller. For example, for 1000 voters with 10 zealots (5 of each type),

the rate of opinion changes of the susceptibles is around 1/5 and this rate decreases

as the density of zealots decreases.

Finally, a slight embellishment of our model could apply to real voting patterns

in a democracy with strong regional differences. Here it is natural to partition a

population into enclaves, with an imbalance of one type of zealot over the other in

each enclave. Such a spatial distribution would correspond to red (republican) and

blue (democrat) states in the parlance of US electoral politics. It would be interesting

to study if such an extension can actually account for real voting patterns.

9.8 Magnetization distribution for two zealots

We want to compute the integral

P (m) =
1

L

[

∫ L
2

0

P<(m|L1, L2) dL1 +

∫ L

L
2

P>(m|L1, L2) dL1

]

. (9.20)

Since P<(m|L1, L2) and P>(m|L1, L2) have different forms in different parts of the

interval [−1, 1], each of the above integrals needs to be split into two parts. For

P<(m|L1, L2) and assuming that m > 0, the linear ramp part of the probability

distribution needs to be used for (L2 − L1)/L < m, which translates for L1 > L(1 −
m)/2. Similarly, for P>(m|L1, L2) and again for m > 0, the linear ramp must be used
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when (L1 − L2)/L < m, or L1 < L(1 + m)/2. Thus the above integral becomes

P (m) =
1

L

[

∫ L
2
(1−m)

0

L dL1

2(L − L1)
+

∫ L
2

L
2
(1−m)

(1 − m)L2 dL1

4L1(L − L1)

+

∫ L
2
(1+m)

L
2

(1 − m)L2 dL1

4L1(L − L1)
+

∫ L

L
2
(1+m)

L dL1

2L1

]

. (9.21)

Each of these integrals is then elementary. We also obtain the result for m < 0 by

reflecting the result of the above integral about m = 0 to give Eq. (9.15).



Chapter 10

Conclusion

This thesis covers work done in three distinct systems where the emergent phenom-

ena is fundamentally related to the underlying social dynamics of humans. Drawing

on methods and concepts from statistical physics, we search for statistical patterns

that emerge from the complex interactions between individuals in three distinct set-

tings (i) financial markets driven by speculative trading, (ii) competitive professions

that are distinguished by productive output measures that are readily quantifiable,

and (iii) systems of voters that exchange opinions with their neighbors in an arbitrary

contact network.

As a society, we have entered a information age that is marked by the ability

to record and store observables that quantify everyday life on both the micro and

macro scale. The physical sciences have long benefited from the fundamental time-

independent laws of nature, which for several centuries have facilitated the develop-

ment of novel and repeatable experiments that can either verify or reject existing

theories about our physical world. In the last century, economics became a true

empirical science with the advent of macroscopic measures like country GDP, and

microscopic measures like the price of a stock on a market, which can be used to

monitor and quantify the evolution of institutions ranging in size from the nation

state to a company, and further discriminate between “good” and “bad” economic

theories. However, the social sciences have lagged behind the other empirical sciences

because in the past, it has been difficult to obtain human activity data that is both
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sufficiently large and sufficiently precise. But we have now entered a new era, and as

a result we shall surely see the subfield of quantitative sociology make giant leaps in

the years to come.

So what do we expect to find in the new era of quantitative sociology? A common

theme in large quantitative studies is the discovery of rare events that occur much

more frequently or much less frequently than traditional models predict. For example,

the Guttenberg-Richer law quantifies the likelihood of observing an earthquake of a

particular magnitude. Before this law was established, there wasn’t any formal under-

standing of the occurrence of earthquakes of a given size, and there was little reason

to expect the power-law relation between the frequencies. While seismic activity cer-

tainly depends on the geographic region, the earthquake probability distribution can

be used to measure the risk of catastrophic disaster, which is critical in many aspects

of urban planning. In economics, the standard theories of the last century predict

that stock market crashes would not happen, yet large crashes typically occur once

a decade. Thus, the empirical probability distributions of price fluctuations in eco-

nomics can be used to develop investment strategies that incorporate realistic levels

of risk. Furthermore, just as in the case of earthquakes, financial markets must incor-

porate the likelihood of market crashes in the development of financial crisis policy,

and in general, policies that can curb dangerous financial activities by banks and

large funds.

In this thesis, we also discuss the distributions of career longevity which show a

remarkable pattern between the frequencies of long and short careers. Amazingly,

we find that most professional sports careers, at the highest level of competition,

are terminated within minutes of beginning. In a similar way, most scientists finish

their career with just a couple publications in high-impact journals, which presum-

ably everyone aims for, yet there are a few individuals who are able to publish in

the high-impact journals repeatedly. Thus, competition which can be a barrier for

success, can result in a highly right-skewed distribution of career achievement. It is

possible that reinforcement policies could possibly diminish the relative disadvantage

of inexperienced individuals so to help young careers reach early career milestones,

e.g. young scientist fellowships.

A crucial next step, in addition to data analysis, is to implement policy that in-
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corporates our new understanding of social phenomena. This can be difficult, because

the emergent patterns can be very robust to details of the underlying system, a tenet

of universality in complex systems. As a result, a diagnostic case-by-case approach

to change the frequencies of large (or small) events can be time consuming. Thus, a

better understanding of the underlying dynamic processes is the next step towards

using the vast information that is available to improve the efficiency and capability

of modern social systems.
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