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How often a given word is used, relative to other words, can convey information about the word’s

linguistic utility. Using Google word data for 3 languages over the 209-year period 1800–2008, we

found by analyzing word use an anomalous recent change in the birth and death rates of words,

which indicates a shift towards increased levels of competition between words as a result of new

standardization technology. We demonstrate unexpected analogies between the growth dynamics

of word use and the growth dynamics of economic institutions. Our results support the intriguing

concept that a language’s lexicon is a generic arena for competition which evolves according to

selection laws that are related to social, technological, and political trends. Specifically, the aggregate

properties of language show pronounced differences during periods of world conflict, e.g. World War

II.

In a monumental effort, Google Inc. has recently unveiled a database of words, in seven languages, after having

scanned approximately 4% of the world’s books [1]. The massive project [2] allows for a novel view into the growth

dynamics of word use and the birth and death processes of words in accordance with evolutionary selection laws [3].

In this paper, we analyze the complex dynamics of the number of uses ui(t) of word i in year t, which we regard as a

proxy for the linguistic utility of a given word.

Do words, in all their breadth and diversity, display any common patterns that are consistent with fundamental

classes of competition dynamics? To address this question, we analyze the growth rates of word use, defined here as

the relative change in ui(t) over the time interval ∆t ≡ 1 year. We focus on the 209-year time period 1800 – 2008

for the English, Spanish, and Hebrew text corpuses, which together comprise over 1 × 107 distinct words. Since the
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number of books and the number of distinct words are both growing exponentially in time (see Supporting Online

Material (SOM) Fig. S1), we define the relative word use fi(t) as the fraction of uses of word i out of all word uses in

the same year, fi(t) ≡ ui(t)/Nu(t), where Nu(t) ≡
∑Nw(t)
i=1 ui(t) is the total number of indistinct word uses digitized

from books printed in year t, and Nw(t) is the total number of distinct words digitized from books printed in year t.

Hence, we focus our analysis on the growth rate of relative word use,

ri(t) ≡ ln fi(t+ ∆t)− ln fi(t) = ln
(fi(t+ ∆t)

fi(t)

)
. (1)

The relative use of a word depends on the intrinsic grammatical utility of the word (related to the number of

“proper” sentences that can be constructed using the word), the semantic utility of the word (related to the number

of meanings a given word can convey), and the context of the word’s use. Because of the comprehensive extent of the

Google database, we are able for the first time to analyze the statistical properties of all words over several hundred

years in an entire corpus, whereas previous studies were able only to analyze individual texts [4, 5], collections of

topical texts [6], and a relatively small snapshot of the British corpus [7].

We distinguish words with equivalent meanings but with different spellings (e.g. color versus colour), since we view

the competition between synonyms and misspelled counterparts in the linguistic arena as a key ingredient in complex

evolutionary dynamics [3]. A prime example for the evolutionary arena governed by word utility is the case of irregular

and regular verb use in English. By analyzing the regularization rate of irregular verbs through the history of the

English language, Lieberman et al. [8] show that the irregular verbs that are used more frequently are less likely to

be overcome by their regular verb counterparts. Specifically, they find that the irregular verb death rate scales as the

inverse square root of the word’s relative use.

We use fi(t) as a proxy for the “fitness” of a given word, which determines the survival capacity of the word in

relation to its competitors. With the advent of spell-checkers in the digital era, the fitness of a “correctly” spelled

word is now larger than the fitness of related “incorrectly” spelled words. But not only “defective” words can

die, even significantly used words can die. Fig. 1 shows an example of three once-significant words, “Radiogram”,

“Roentgenogram” and “Xray,” which competed in the linguistic arena for the majority share of nouns referring to

what is now commonly known as an “Xray.” The word“Roentgenogram” has since become extinct, even though it

was the most common term for several decades in the 20th century.

Fig. 2 illustrates the current era of heightened word competition, demonstrated through an anomalous increase

in the death rate of existing words and an anomalous decrease in the birth rate of new words. In the past 10–20

years, the total number of distinct words has significantly decreased, which we find is due largely to the extinction

of both misspelled words and nonsensical print errors, and simultaneously, the decreased birth rate of new misspelled

variations. This observation is consistent with both the decreasing marginal need for new words and also the broad
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adoption of automatic spell-checkers and corresponds to an increased efficiency in modern written language. Figs. S2

and S3 show that the birth rate is largely comprised of words with relatively large median fc while the death rate is

almost entirely comprised of words with relatively small median fc. Sources of error in the reported birth and death

rates could be explained by OCR (optical character recognition) errors in the digitization process, which could be

responsible for a certain fraction of the misspelled words. Also, the digitization of many books in the computer era

does not require OCR transfer, since the manuscripts are themselves digital, and so there may be a bias resulting

from this recent paradigm shift. Nevertheless, many of the trends we observe are consistent with the trajectories that

extend back several hundred years.

Complementary to the death of old words is the birth of new words, which are commonly associated with new social

and technological trends. Such topical words in modern media can display long-term persistence patterns analogous

to earthquake shocks [9], and can result in a new word having larger fitness than related “out-of-date” words (e.g.

log vs. blog, memo vs. email). Here we show that a comparison of the growth dynamics between different languages

can also illustrate the local cultural factors (e.g. national crises) that influence different regions of the world. Fig.

S4 shows how international crisis can lead to globalization of language through common media attention. Notably,

such global factors can perturb the participating languages (here considered as arenas for word competition), while

minimally affecting the nonparticipating regions, e.g. the Spanish speaking countries during WWII, see Fig. S4(A).

Furthermore, we note that the English corpus and the Spanish corpus are the collections of literature from several

nations, whereas the Hebrew corpus is more localized.

Between birth and death, one contends with the interesting question of how the use of words evolve when they

are “alive”. We focus our efforts toward quantifying the relative change in word use over time, both over the word

lifetime and throughout the course of history. In order to analyze separately these two time frames, we select two sets

of words: (i) relatively new words with “birth year” t0,i later than 1800, so that the relative age τ ≡ t− t0,i of word

i is the number of years after the word’s first occurrence in the database, and (ii) relatively common words, typically

with t0,i prior to 1800. We analyze dataset #(i) words, summarized in Table S1, so that we can control for properties

of the growth dynamics that are related to the various stages of a word’s life trajectory (e.g. an “infant” phase, an

“adolescent” phase, and a “mature” phase). For comparison, we also analyze dataset #(ii) words, summarized in

Table S2, which are typically in a stable mature phase. We select the relatively common words using the criterion

〈fi〉 ≥ fc, where 〈fi〉 is the average relative use of the word i over the word’s lifetime Ti, and fc is a cutoff threshold

which we list in Table S2. In Table S3 we summarize the entire data for the 209-year period 1800–2008 for each of

the four Google language sets analyzed.

Modern words typically are born in relation to technological or cultural events, such as “Antibiotics.” We ask if

there exists a characteristic time for a word’s general acceptance. In order to search for patterns in the growth rates
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as a function of relative word age, for each new word i at its age τ , we analyze the “use trajectory” fi(τ) and the

“growth rate trajectory” ri(τ). So that we may combine the individual trajectories of words of varying prevalence, we

normalize each fi(τ) by its average 〈fi〉 =
∑Ti

τ=1 fi(τ)/Ti over the word’s entire lifetime, obtaining a normalized use

trajectory f ′i(τ) ≡ fi(τ)/〈fi〉. We perform the analogous normalization procedure for each ri(τ), normalizing instead

by the growth rate standard deviation σ[ri], so that r′i(τ) ≡ ri(τ)/σ[ri] (see SOM).

Since some words will die and other words will increase in use as a result of the standardization of language,

we hypothesize that the average growth rate trajectory will show large fluctuations around the time scale for the

transition of a word into regular use. In order to quantify this transition time scale, we create a subset {i |Tc} of word

trajectories i by combining words that meets an age criteria Ti ≥ Tc. Thus, Tc is a threshold to distinguish words

that were born in different historical eras and which have varying longevity. For the values Tc = 25, 50, 100, and 200

years, we select all words that have a lifetime longer than Tc and calculate the average and standard deviation for

each set of growth rate trajectories as a function of word age τ . In Fig. 3 we plot σ[r′i(τ |Tc)] which shows a broad

peak around τc ≈ 30–50 years for each Tc subset. Since we weight the average according to 〈fi〉, the time scale τc is

likely associated with the characteristic time for a new word to reach sufficiently wide acceptance that the word is

included in a typical dictionary.

How much do the growth rates vary from word to word? The answer to this question can help distinguish between

candidate models for the evolution of word utility. Hence, we analyze the probability density function (pdf) for the

normalized growth rates R ≡ r′i(τ)/σ[r′(τ |Tc)] so that we can combine the growth rates of words of varying ages. The

empirical pdf P (R) shown in Fig. 4 is remarkably symmetric and is centered around R ≈ 0, just as is found for the

growth rates of institutions governed by economic forces [10–13]. Since the R values are normalized and detrended

according to the age-dependent standard deviation σ[r′(τ |Tc)], the standard deviation by construction is σ(R) = 1.

A candidate model for the growth rates of word use is the Gibrat proportional growth process [12], which predicts

a Gaussian distribution for P (R). However, we observe the “tent-shaped” pdf P (R) which is a double-exponential or

Laplace distribution, defined as

P (R) ≡ 1√
2σ(R)

exp[−
√

2|R− 〈R〉|/σ(R)] . (2)

Here the average growth rate 〈R〉 has two properties: (a) 〈R〉 ≈ 0 and (b) 〈R〉 � σ(R). Property (a) arises from

the fact that the growth rate of distinct words is quite small on the annual basis (γw ≈ 0.011 shown in Fig. S1) and

property (b) arises from the fact that R is defined in units of standard deviation. The Laplace distribution predicts

a pronounced excess number of very large events compared to the standard Gaussian distribution. For example,

comparing the likelihood of events above the 3σ event threshold, the Laplace distribution displays a five-fold excess

in the probability P (|R − 〈R〉| > 3σ), where P (|R − 〈R〉| > 3σ) = exp[−3
√

2] ≈ 0.014 for the Laplace distribution,
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whereas P (|R − 〈R〉| > 3σ) = Erfc[3/
√

2] ≈ 0.0027 for the Gaussian distribution. The large R values correspond

to periods of rapid growth and decline in the utility of words during the crucial “infant” and “adolescent” lifetime

phases. In Fig. S5 we also show that the growth rate distribution P (r′) for the relatively common words comprising

dataset #(ii) is also well-described by the Laplace distribution.

For hierarchical systems consisting of units each with complex internal structure [14] (e.g. a given country consists

of industries, each of which consists of companies, each of which consists of internal subunits), a non-trivial scaling

relation between the standard deviation of growth rates σ(r|S) and the system size S has the form σ(r|S) ∼ S−β .

The theoretical prediction in [14, 15] that β ∈ [0, 1/2] has been verified for several economic systems, with empirical

β values typically in the range 0.1 < β < 0.3 [15, 16].

Since different words have varying lifetime trajectories as well as varying relative utilities, we now quantify how

the standard deviation σ(r|Si) of growth rates r depends on the cumulative word frequency Si ≡
∑t
t′=0 fi(t). We

observe a size-variance relation σ(r|Si) ∼ S−βi for the growth rates of words with large Si. The emergent scaling is

surprising, given the fact that words do not have internal structure, yet still display the analogous growth patterns of

larger economically-driven institutions that do have complex internal structure. To explain this within our framework

of words as analogs of economic entities, we hypothesize that the analog to the subunits of word use are the books

in which the word appears. Hence, Si is proportional to the number of books in which word i appears. As a result,

we find β values that are consistent with nontrivial correlations in word use between books. This phenomenon may

be related to the fact that books are topical [6], and that book topics are correlated with cultural trends. Fig. S6B

shows scaling behavior for large Si, with β ≈ 0.10 – 0.21 depending on the corpus, where a positive β value means

that words with larger cumulative word frequency have smaller annual growth rate fluctuations.

Recent theoretical work [17] shows that there is a fundamental relation between the size-variance exponent β and

the Hurst exponent H which quantifies the auto-correlations in a stochastic time series. The unexpected relation

〈H〉 = 1−β > 1/2 (corresponding to β < 1/2) indicates that the temporal long-term persistence, whereby on average

large values are followed immediately by large values and smaller values followed by smaller values, can manifest in

non-trivial β values (i.e. β 6= 0 and β 6= 0.5). Thus, the fi(τ) of common words with large Si display strong positive

correlations and have β values that cannot be explained by a either a Gibrat proportional growth, which predicts

β = 0, or a Yule-Simon Urn model, which predicts β = 0.5.

To test this connection between memory (H 6= 1/2) and size-variance scaling (β < 1/2), we calculate the Hurst

exponent Hi for each time series belonging to the more relatively common words analyzed in dataset (ii) using

detrended fluctuation analysis (DFA) [17, 18]. We plot the relative use time series fi(t) for the words “polyphony,”

“Americanism,” “Repatriation,” and “Antibiotics” in Fig. S7A, along with DFA curves (see SOM section) from which

H is derived in Fig. S7B. The Hi values for these four words are all significantly greater than Hr = 0.5, which is the
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expected Hurst exponent for a stochastic time series with no temporal correlations. In Fig. S8 we plot the distribution

of Hi values for the English fiction corpus and the Spanish corpus. Our results are consistent with the theoretical

prediction 〈H〉 = 1 − β [17] relating the variance of growth rates to the underlying temporal correlations in each

fi(t). This relation shows that the complex evolutionary dynamics we observe for words use growth is fundamentally

related to the dynamics of cultural topic bursting [19, 20].

This study is motivated by analogies with other complex dynamic systems, such as the growth rates of economic

institutions, e.g. companies [10–12] and countries [11, 13], and the growth rates of animal populations [21]. We find a

striking analogy between the relative use of a word, which can quantitatively represent the intrinsic value of the word,

and the value of a company (e.g. measured by its market capitalization or sales). This suggests a common underlying

mechanism: just as firms compete for market share leading to business opportunities, and animals compete for food

and shelter leading to reproduction opportunities, words are competing for use among the books that constitute a

corpus.

Acknowledgements: We thank Will Brockman, Fabio Pammolli and Massimo Riccaboni for critical comments and

insightful discussions and DTRA for financial support.
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FIG. 1: The extinction of the English word “Roentgenogram” as a result of word competition with two competitors, “Xray”
and “Radiogram.” The average of the three fi(t) is relatively constant over the 80-year period 1920–2000, indicating that these
3 words were competing for limited linguistic “market share.” We conjecture that the higher fitness of “Xray” is due to the
efficiency arising from its shorter word length and also due to the fact that English has become the base language for scientific
publication.
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FIG. 2: The birth rate rb and the death rate rd of words demonstrate the inherent time dependence of the competition level
between words in each of 4 corpora analyzed. The modern print era shows a marked increase in the death rate of words (e.g.
low fitness, misspelled and outdated words). There is also a simultaneous decrease in the birth rate of new words, consistent
with the decreasing marginal need for new words. This fact is also reflected by the sub-linear Heaps’ law exponent b ≈ 0.5 (see
Fig. S13 and the SOM discussion). Note the impact of the Balfour Declaration in 1917, the circumstances surrounding which
effectively rejuvenated Hebrew as a national language, resulting in a significant increase in the birth rate of Hebrew words.
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FIG. 3: Quantifying the tipping point for word use. The maximum in the standard deviation σ of growth rates during the
“adolescent” period τ ≈ 30–50 indicates the characteristic time scale for words being incorporated into the standard lexicon, i.e.
inclusion in popular dictionaries. In Fig. S9 we plot the average growth rate trajectory 〈r′(τ |Tc)〉 which also shows relatively
large positive growth rates during approximately the same period τ ≈ 30–50 years.
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FIG. 4: Evidence for complex evolution of word use. We find Laplace distributions, defined in Eq. (2), for the annual word
use growth rates for relatively new words, as well as for relatively common words (shown in Fig. S5) for English, Spanish
and Hebrew. These Laplace distributions, which are symmetric and centered around R ≈ 0, exhibit an excess number of
large positive and negative values when compared with the Gaussian distribution. The Gaussian distribution is the predicted
distribution for the Gibrat growth model, which is a candidate null-model for the growth dynamics of word use [11]. These
large growth rates illustrate the possibility that words, many of which correspond to cultural and technological events, can
have large variations even over the course of a year. For comparison, we plot a Gaussian distribution (dashed blue curve)
with unit variance, which displays fast parabolic decay on the semi-logarithmic plot. The data agree remarkably well over the
entire range −12σ ≤ R ≤ 12σ with the Laplace distribution (solid black line). We analyze word use data over the time period
1800-2008 for new words i with lifetimes Ti ≥ Tc, where in these panels we choose Tc = 100 years (see SOM methods section
and Table S1 for a detailed description).
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[7] R. Ferrer i Cancho, R. V. Solé, Two regimes in the frequency of words and the origin of complex lexicons: Zipf’s law

revisited. Journal of Quantitative Linguistics 8, 165 (2001).

[8] E. Lieberman, et al., Quantifying the evolutionary dynamics of language. Nature 449, 713 (2007).

[9] P. Klimek, W. Bayer, S. Thurner, The blogosphere as an excitable social medium: Richter’s and Omori’s Law in media

coverage. (under review) arXiv:1102.2091v1 [physics.soc-ph].

[10] L. A. N. Amaral, et al., Scaling Behavior in Economics: I. Empirical Results for Company Growth. J. Phys. I France 7,

621 (1997).

[11] D. Fu., et al., The growth of business firms: Theoretical framework and empirical evidence.’ Proc. Natl. Acad. Sci. 102,

18801 (2005).

[12] M. H. R. Stanley, et al., Scaling behaviour in the growth of companies. Nature 379, 804 (1996).

[13] D. Canning, et al., Scaling the volatility of gdp growth rates. Economic Letters 60, 335 (1998).

[14] L. A. N. Amaral, et al., Power Law Scaling for a System of Interacting Units with Complex Internal Structure. Phys. Rev.

Lett. 80, 1385 (1998).

[15] M. Riccaboni, et al., The size variance relationship of business firm growth rates. Proc. Natl. Acad. Sci. 105, 19595 (2008).

[16] V. Plerou, et al., Similarities between the growth dynamics of university research and of competitive economic activities.

Nature 400, 433 (1999).

[17] D. Rybski, et al., Scaling laws of human interaction activity. Proc. Natl. Acad. Sci. USA 106, 12640 (2009).

[18] C. K. Peng, et al., Mosaic organization of DNA nucleotides. Phys. Rev. E 49, 1685 (1994).

[19] A. L. Barabási, The origin of bursts and heavy tails in human dynamics. Nature 435, 207 (2005).

[20] R. Crane, D. Sornette, Robust dynamic classes revealed by measuring the response function of a social system. Proc. Natl.

Acad. Sci. 105, 15649 (2008).

[21] T. H. Keitt, H. E. Stanley, Dynamics of North American breeding bird populations Nature 393, 257 (1998).

[22] R. Ferrer i Cancho, The variation of Zipf’s law in human language. Eur. Phys. J. B 44, 249 (2005).

[23] X. Gabaix, Zipf’s law for cities: An explanation. Quarterly Journal of Economics 114, 739 (1999).
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I. QUANTIFYING THE BIRTH RATE AND THE DEATH RATE OF WORDS

Just as a new species can be born into an environment, a word can emerge in a language. Evolutionary selection

laws can apply pressure on the sustainability of new words since there are limited resources (here books) for the use

of words. Along the same lines, old words can be driven to extinction when cultural and technological factors limit

the use of a word, in analogy to the environmental factors that can limit the survival capacity of a species by altering

the ability of the species to obtain food in order to survive and reproduce.

We define the birth year y0,i as the year t corresponding to the first instance of fi(t) ≥ 0.05fmi , where fmi is median

word use fmi = Median{ui(t)} of a given word over its recorded lifetime in the Google database. Similarly, we define

the death year yf,i as the last year t during which the word use satisfies fi(t) ≥ 0.05fmi . We use the relative word use

threshold 0.05fmi in order to avoid anomalies arising from extreme fluctuations in fi(t) over the lifetime of the word.

The significance of word births ∆b(t) and word deaths ∆d(t) for each year t is related to the size of a language. We

define the birth rate rb and death rate rd by normalizing the number of births and deaths in a given year t to the

total number of distinct words Nw(t) recorded in the same year t, so that

rb ≡ ∆b(t)/Nw(t) , (S1)

rd ≡ ∆d(t)/Nw(t) . (S2)

This definition yields a proxy for the rate of emergence and disappearance of words with respect to their individual

lifetime use. We restrict our analysis to words with lifetime Ti ≥ 2 years and words with a year of first recorded use

t0,i that satisfies the criteria t0,i ≥ 1700, which biases for relatively new words in the history of a language.

Fig. 2 is a log-linear plot of the relative birth and death rates for the 208-year period 1800–2007. The modern

era of publishing, which is characterized by more strict editing procedures at publishing houses and very recently

computerized word editing with spell-checking technology, shows a drastic increase in the death rate of words, along
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with a recent decrease in the birth rate of new words. This phenomenon reflects the decreasing marginal need for new

words, consistent with the sub-linear Heaps law exponent b ≈ 0.5 in Fig. S13.

II. ZIPF ANALYSIS OF WORD USE

The well known Zipf law quantifies the relative use of words, and has been verified by many analyses of single bodies

of literature [4], online texts such as Wikipedia [6], and a large dataset of english texts [7]. Interesting deviations from

the traditional Zipf scaling have been observed in select cases of human language, such as in the schizophrenic lexicon

[22]. We find statistical regularity in the distribution of relative word use for four large datasets each comprising more

than a half million distinct words taken from millions of books [1], suggesting that there are fundamental relations

between the most common and the least common words in a given language.

Fig. S10(A) shows the probability density function (pdf) of the relative word use fi and is characterized by a

striking two-regime scaling [7],

P (f) ∼ f−α =

 P (f) ∼ f−1.7 , f . fc [“unlimited lexicon”]

P (f) ∼ f−2 , f & fc [“kernel lexicon”] .
(S3)

The high-use regime f > fc is in agreement with the Zipf scaling law. These two regimes, coined the “kernel lexicon”

and the “unlimited lexicon” by Ferrer i Cancho and Solé [7] are thought to be related to the cognitive constraints on

the brain’s vocabulary. The Zipf scaling law quantifies the rank-frequency of the r-ranked word by the relation

f(r) ∼ r−ζ (S4)

with a scaling exponent ζ ≈ 1 [4]. Eq. (S4 ) has been shown to also quantify other socio-economic systems such as

city size [23]. We find similar scaling for the pdf of word uses ui in Fig. S11. Interestingly, it has been shown that

The Zipf law emerges as the result of the “principle of least effort” which minimizes the communication noise between

speakers (writers) and hearers (readers) [24].

The two scaling exponents α and ζ are related asymptotically by [7]

α ≈ 1 + 1/ζ . (S5)

In Fig. S12 we plot α values calculated for each year t using Hill’s maximum likelihood estimator (MLE). We

characterize the two scaling regimes using the threshold fc = 10−5 so that the two regimes are: (A) 10−8 ≤ f ≤ 10−6

and (B) 10−4 ≤ f ≤ 10−1. For the “kernel lexicon” regime f & fc we verify Zipf’s scaling law ζ ≈ 1 (corresponding to

α ≈ 2) for the English corpus and the Spanish corpus for years t > 1900. For the “unlimited lexicon” regime f . fc
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we calculate ζ ≈ 1.43 corresponding to α ≈ 1.7. The Hebrew corpus, however, varies significantly, possibly as a result

of the language’s unique history and the revival of the language in the 19th century.

III. HEAPS LAW AND THE INCREASING MARGINAL UTILITY OF NEW WORDS

The utility of a new word is established as it becomes disseminated throughout the literature of a given language. As

a proxy for this utility, one may study how often new words are invoked in lieu of preexisting competitors. Specifically,

one can study the linguistic value of new words and ideas by analyzing the relation between Nu, the total number

of words printed in a body of text, and Nw, the number of these which are distinct (i.e. the vocabulary size). The

marginal utility of new words, ∂Nu/∂Nw, therefore addresses the question: how much additional literature may follow

from adding one more word to the vocabulary of a corpus?

For individual books, the relation between Nu and Nw empirically observed as the scaling relation

Nw ∼ (Nu)b , (S6)

with b < 1, where Eq. (S6 ) is known as Heaps’ law [6]. Using a stochastic model for the growth of book vocabulary

size as a function of book size, Serrano et al. [6] proposed that b = 1/α, where α is the scaling exponent in the

pdf of relative word use as defined in Eq. (S3 ). Thus, the marginal utility of new words is directly related to the

distribution of relative word use by

∂Nu
∂Nw

∼ (Nw)α−1 . (S7)

To determine the marginal utility of words for an entire language, we test the relation in Fig. S13

Nw(t) ∼ [Nu(t)]b ≈ [Nu(t)]1/α . (S8)

Using linear regression of the variables plotted log-log axes, we find that b ≈ 0.5 for each corpus, in good agreement

with the α ≈ 2 values calculated in Fig. S12(B). As a result, we note that there is an increasing marginal utility

for additional words since α > 1. Alternatively, this relation indicates that there is a decreasing marginal need for

additional words, since ∂Nw/∂Nu ∼ (Nw)1−α.

Since it is possible to estimate α = α(t) on an annual basis using the pdf of relative word use, one can monitor the

marginal utility of new words over time. Interestingly, Fig. S12(B) shows a marked decrease in α over the last 10

years of the study, indicating that, while new words are still being added, we do not obtain as much “mileage” out

of new words as we obtained in the past. Consequently, we show that it is possible that the marginal utility of new

words can provide insight into the underlying social and technological progress of a society.



16

IV. QUANTIFYING THE WORD USE TRAJECTORY

Next we ask how word use evolves through the various stages of its lifetime. Since words appear to compete for use

in a word-space that is based on utility, we seek to quantify the average lifetime trajectory of word use. The lifetime

trajectories of different words will vary, since each trajectory depends not only on the intrinsic utility of word i, but

also on the “birth-year” t0,i of word i.

Here we define the age or trajectory year τ = t − t0,i as the number of years after the word’s first appearance

in the database. In order to compare word use trajectories across time and across varying utility, we normalize the

trajectories for each word i by the average use

〈fi〉 ≡
1
Ti

tf,i∑
t=t0,i

fi(t) (S9)

over the lifetime Ti ≡ tf,i − t0,i + 1 of the word, leading to the normalized trajectory,

f ′i(τ) = f ′i(t− ti,0|ti,0, Ti) ≡ fi(t− ti,0)/〈fi〉 . (S10)

By analogy, in order to compare various growth trajectories, we normalize the relative growth rate trajectory r′i(t) by

the standard deviation over the entire lifetime,

σ[ri] ≡

√√√√ 1
Ti

tf,i∑
t=t0,i

[ri(t)− 〈ri〉]2 . (S11)

Hence, the normalized relative growth trajectory is

r′i(τ) = r′i(t− ti,0|ti,0, Ti) ≡ ri(t− ti,0)/σ[ri] . (S12)

Using these normalized trajectories, Fig. S9 shows the weighted averages 〈f ′(τ |Tc)〉 and 〈r′(τ |Tc)〉 and the weighted

standard deviations σ[f ′(τ |Tc)] and σ[r′(τ |Tc)]. We compute 〈· · · 〉 and σ[· · · ] for each trajectory year τ using all Nt

trajectories (Table S1) and using all words that satisfy the criteria Ti ≥ Tc and ti,0 ≥ 1800. We compute the weighted

average and the weighted standard deviation using 〈fi〉 as the weight value for word i, so that 〈· · · 〉 and σ[· · · ] reflect

the lifetime trajectories of the more common words that are “new” to each corpus.

We analyze the relative growth of word use in a fashion parallel to the economic growth of financial institutions,

and show in Fig. S11(B) that the pdf P (r′) for the relative growth rates is not only centered around zero change

corresponding to r ≈ 0 but is also symmetric around this average. Hence, for every word that is declining, there is

another word that is gaining by the same relative amount. Since there is an intrinsic word maturity σ[r′(τ |Tc)] that
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is not accounted for in the quantity r′i(τ), we further define the detrended relative growth

R ≡ r′i(τ)/σ[r′(τ |Tc)] (S13)

which allows us to compare the growth factors for new words at various life stages. The result of this normalization

is to rescale the standard deviations for a given trajectory year τ to unity for all values of r′i(τ). Figs. 4 and S10(B)

show common growth patterns P (R), independent of corpus. Moreover, we find that the Laplace distributions P (R)

found for the growth rates of word use are surprisingly similar to the distributions of growth rates for economic

institutions of varying size, such as scientific journals, small and large companies, universities, religious institutions,

entire countries and even bird populations [10–13, 16, 21, 25–35].

V. QUANTIFYING THE LONG-TERM SOCIAL MEMORY

In order to gain understanding of the overall dynamics of word use, we have focused much of our analysis on the

distributions of fi and ri. However, distributions of single observation values discard information about temporal

ordering. Hence, in this section we also examine the temporal correlations in each time series fi(t) to uncover memory

patterns in the word use dynamics. To this end, we compare the autocorrelation properties of each fi(t) to the

well-known properties of the time series corresponding to a 1-dimensional random walk.

In a time interval δt, a time series Y (t) deviates from the previous value Y (t − δt) by an amount δY (t) ≡ Y (t) −

Y (t − δt). A powerful result of the central limit theorem, also known as Fick’s law of diffusion, is that if the

displacements are independent (uncorrelated corresponding to a simple Markov process), then the total displacement

∆Y (t) = Y (t)− Y (0) from the initial location Y (0) ≡ 0 scales according to the total time t as

∆Y (t) ≡ Y (t) ∼ t1/2 . (S14)

However, if there are long-term correlations in the time series Y (t), then the relation is generalized to

∆Y (t) ∼ tH , (S15)

where H is the Hurst exponent which corresponds to positive correlations for H > 1/2 and negative correlations for

H < 1/2.

Since there may be underlying social/political/technological trends that influence each time series fi(t), we use the

detrended fluctuation analysis (DFA) method [18, 36] to analyze the residual fluctuations ∆fi(t) after we remove

the local linear trends using time windows of varying length ∆t. The time series f̃i(t|∆t) corresponds to the locally

detrended time series using window size ∆t. Hence, we calculate the Hurst exponent H using the relation between
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the root-mean-square displacement F (∆t) and the window size ∆t [17, 18],

F (∆t) =
√
〈∆f̃i(t|∆t)2〉 = ∆tH . (S16)

Here ∆f̃i(t|∆t) is the local deviation from the average trend, analogous to ∆Y (t) defined above.

Fig. S7 shows 4 different fi(t) in panel (A), and plots the corresponding Fi(∆t) in panel (B). The calculated Hi

values for these 4 words are all significantly greater than the uncorrelated H = 0.5 value, indicating strong positive

long-term correlations in the use of these words, even after we have removed the local trends. In these cases, the

trends are related to political events such as war in the cases of “Americanism” and “Repatriation”, or the bursting

associated with new technology in the case of “Antibiotics,” or new musical trends in the case of “polyphony.”

In Fig. S8 we plot the pdf of Hi values calculated for the relatively common words analyzed in Fig. S5. We also

plot the pdf of Hi values calculated from shuffled time series, and these values are centered around 〈H〉 ≈ 0.5 as

expected from the removal of the intrinsic temporal ordering. Thus, using this method, we are able to quantify the

social memory characterized by the Hurst exponent which is related to the bursting properties of linguistic trends,

and in general, to bursting phenomena in human dynamics [9, 19, 20].

VI. DATA METHODS FOR ANALYZING NEW WORDS

In order to analyze the lifetime trajectories of relatively new words, we select data according to sev-

eral criteria (i) We analyze words of length 20 or less in order to diminish the effects of insignificant

strings of characters which can appear, e.g. bababadalgharaghtakamminarronnkonnbronntonnerronntuonnthun-

ntrovarrhounawnskawntoohoohoordenenthurnuk. (ii) We only consider words that have their first appearance y0,i

after year Y0 ≡ 1800. We then compare words of varying longevity, where the lifetime of word i is Ti ≡ tf,i − t0,i + 1,

and group the words into 4 career trajectory sets according to the four different thresholds Ti ≥ Tc ≡ {25, 50, 100, 200}

years. For the calculation of the average word-use trajectory 〈u(τ)〉 and growth rate trajectory 〈r′(τ)〉, we use a spar-

sity threshold sc ≡ 0.2 so that we consider words that have at most sc · Ti years with no recorded use, corresponding

to ui(t) = 0 for year t. In the case that ui(t) = 0, we use the approximation fi(t) ≡ fi(t− 1). Using these data cuts,

we still have a significant number Nt of unique word trajectories to analyze, as shown in the data summary in column

6 of Table S1.
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FIG. S1: The exponential growth in the number of books Nb(t) and the number of distinct words Nw(t) by year for three selected
literature sets over the 259-year period 1750–2008. We calculate Nb(t) by analyzing the most common words in each corpus:
“and” (English and English fiction) and “el” (Spanish). We set Nb(t) equal to the number of books digitized that have at least
one occurrence of the most common word. Each case shows an increasing exponential trend; but marked deviations occur around
periods of national/international war during which national productive capacity was most likely diverted towards the war effort.
If the growth of the vernacular (words used) is exponential, Nu(t) ∝ exp[γt], then the logarithmic change in the growth rate of
total words used, lnNu(t)− lnNu(t−∆t) = γ. Thus, for exponential growth of vocabulary, the growth rate of relative word use
is simply ri(t) ≡ ln fi(t)− ln fi(t−∆t) = ln[ui(t)/ui(t−∆t)]− ln[Nu(t)/Nu(t−∆t)] = ln[ui(t)/ui(t−∆t)]−γ. We approximate
the exponential trend for the English corpus over the years 1800–2008 and calculate the growth rate γb = 0.0201 ± 0.0004
books/year and γw = 0.0105± 0.0002 words/year. The rate parameter γ is related to the entry rate of new ideas and events,
and is also related to the “crowding out” of old ideas and events, whereby newer topics typically have a higher probability of
being discussed in literature.
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FIG. S2: The birth and death rates of a word depends on the relative use of the word. For the English corpus, we calculate
the birth and death rates for words with median lifetime relative use Med(fi) satisfying Med(fi) > fc. The difference in the
birth rate curves corresponds to the contribution to the birth rate of words in between the two fc thresholds, and so the small
difference in the curves for small fc indicates that the birth rate is largely comprised of words with relatively large Med(fi).
Consistent with this finding, the largest contribution to the death rate is from words with relatively low Med(fi). By visually
inspecting the lists of dying words, we confirm that words with large relative use rarely become completely extinct (see Fig.
1 for a counterexample word “Roentgenogram” which was once a frequently used word, but has since been eliminated due to
competitive forces with other high-fitness competitors).



21

5×10-10
1×10-9
2×10-9
2×10-9
2×10-9

 <
 M

ed
( f

 ) 
>

 
English

1900 1920 1940 1960 1980 2000
year, t

2×10-10
4×10-10
6×10-10
8×10-10
1×10-9

<
 M

ed
( f

 ) 
>

Word Birth

Word Death

FIG. S3: Trends in the relative uses of words that either were born or died in a given year show that the degree of competition
between words is time dependent. For the English corpus, we calculate the average median lifetime relative use 〈Med(fi)〉 for
all words i born in year t (top panel) and for all words i that died in year t (bottom panel), which also includes a 5-year moving
average (dashed black line). The relative use (“utility”) of words that are born shows a dramatic increase in the last 20–30
years, as many new technical terms, which are necessary for the communication of modern devices and ideas, are born with
relatively high intrinsic fitness. Conversely, with higher editorial standards and the recent use of word processors which include
spelling standardization technology, the words that are dying are those words with low relative use, which we also confirm by
visual inspection of the lists of dying words to be misspelled and nonsensical words.
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FIG. S4: Historical factors influence the evolution of word utility. The variation σ(t) ≡ σ(r|t) in the growth rate ri(t) of
relative word use defined in Eq. (1) demonstrates the increased variation in growth rates during periods of international crisis
(e.g. World War II). The increase in σ(t) during the World War II, despite the overall decreasing trend in σ(t) over the 159
year period 1850–2008, demonstrates a“globalization” effect, whereby societies are brought together by a common event and
a unified media. Such contact between relatively isolated systems necessarily leads to information flow, much as in the case
of thermodynamic heat flow between two systems that are at different temperatures and are brought into contact. (A) The
variation σ(t) calculated for the relatively new words with Tc = 100. The Spanish corpus does not show an increase in σ(t)
during World War II, indicative of the relative isolation of South America and Spain from the European conflict. (B) σ(t) for
four sets of relatively new words i that meet the criteria Ti ≥ Tc and ti,0 ≥ 1800. The oldest “new” words, corresponding to
Tc = 200, demonstrate the strong increase in σ(t) during World War II, with a peak around 1945. (C) The standard deviation
σ(t) in the growth rates ri(t) for the most common words that meet the criterion that the average relative use 〈fi〉 > fc over
the entire lifetime. For this set of words, σ(t) are also decreasing with time, consistent with a “crowding out” effect. (D) We
compare the variation σ(t) for common words with the 20-year moving average over the time period 1820–1988, which also
demonstrates an increasing σ(t) during times of national/international crisis, such as the American Civil War (1861–1865),
World War I (1914–1918) and World War II (1939–1945), and recently during the 1980s and 1990s, possibly as a result of new
digital media (e.g. the internet) which offer new environments for the evolutionary dynamics of word use. D(t) is the difference
between the moving average and σ(t).
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FIG. S5: PDF of the annual relative growth rate r′ for dataset #ii words which have average relative use 〈fi〉 ≥ fc. Hence,
these select words correspond to relatively common words. We find that there is a common distribution for both relatively new
words (compare with corresponding panels in Fig. S11) as well as notable words, which are used relatively frequently. We plot a
Laplace distribution with unit variance (solid black lines) and the Gaussian distribution with unit variance (dashed blue curve)
for reference. In order to select relatively frequently used words, we use the following criteria: Ti ≥ 10 years, 1800 ≤ t ≤ 2008,
and 〈fi〉 ≥ fc. There is no need to account for the age-dependent trajectory σ[r′(τ |Tc)], as in the normalized growth defined in
Eq. (S13 ), for these relatively common words since they are all most likely in the mature phase of their lifetime trajectory.
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FIG. S6: The dependence of growth rates on the cumulative word frequency Si ≡
Pt
t′=0 fi(t) calculated for a combination of

new [dataset (i)] and common [dataset (ii)] words that satisfy the criteria Ti ≥ 10 years (we verify similar results for threshold
values Tc = 50, 100, and 200 years). (A) Average growth rate 〈r〉 saturates at relatively constant (negative) values for large
S. (B) Scaling in the standard deviation of growth rates σ(r|S) ∼ S−β for words with large S. This scaling relation is also
observed for the growth rates of large economic institutions, ranging in size from companies to entire countries [13, 15]. Here
this size-variance relation corresponds to scaling exponent values 0.10 < β < 0.21, which are related to the non-trivial bursting
patterns and non-trivial correlation patterns in literature topicality. We calculate βEng. ≈ 0.16± 0.01, βEng.fict ≈ 0.21± 0.01,
βSpa. ≈ 0.10± 0.01 and βHeb. ≈ 0.17± 0.01.
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FIG. S7: Quantifying the strong positive correlations in social memory using the relative word use fi(t). (A) Four example
fi(t), given in units of the average use 〈fi〉, show bursting of use as a result of social and political “shock” events. We choose
these four examples based on their relatively large Hi > 0.5 values. The use of “polyphony” in the English corpus shows
peaks during the eras of jazz and rock and roll. The use of “Americanism” shows bursting during times of war, and the use
of “Repatriation” shows an approximate 10-year lag in the bursting after WWII and the Vietnam War. The use of the word
“Antibiotics” is related to technological advancement. The top 3 curves are vertically displaced by a constant from the value
fi(1800) ≈ 0 so that the curves can be distinguished. (B) We use detrended fluctuation analysis (DFA) to calculate the Hurst
exponent Hi for each word in order to quantify the long-term correlations (“memory”) in each fi(t) time series. Fig. S8 shows
the probability density function P (H) of Hi values calculated for the relatively common words found in English fiction and
Spanish, summarized in Table S2.
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FIG. S8: Results of detrended fluctuation analysis (DFA)[17, 18] on the words analyzed in Fig. S5 show strong long-term
memory with positive correlations (H > 0.5), indicating strong correlated bursting in the dynamics of word use, possibly
corresponding to historical, social, or technological events. We calculate 〈Hi〉 ± σ = 0.77± 0.23 (Eng. fiction) and 〈Hi〉 ± σ =
0.90 ± 0.29 (Spanish). The size-variance β values calculated from the data in Fig. S6 confirm the theoretical prediction
〈H〉 = 1 − β. Fig. S6 shows that βEng.fict ≈ 0.21 ± 0.01 and βSpa. ≈ 0.10 ± 0.01. For the shuffled time series, we calculate
〈Hi〉 ± σ = 0.55 ± 0.07 (Eng. fiction) and 〈Hi〉 ± σ = 0.55 ± 0.08 (Spanish), which are consistent with time series that lack
temporal ordering (memory).
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FIG. S9: Characteristics of the time-dependent word trajectory show the time scales over which a typical word becomes relevant
or fades. For 4 values of Tc, we show the word trajectories for dataset (i) words in the English corpus, although the same
qualitative results hold for the other languages analyzed. Recall that Tc refers to the subset of timeseries with lifetime Ti ≥ Tc,
so that two trajectories calculated using different thresholds T

(1)
c and T

(2)
c only vary for τ < Max[T

(1)
c , T

(2)
c ]. We show weighted

average and standard deviations, using 〈fi〉 as the weight for word i contributing to the calculation of each time series in year
τ . (A) The relative use increases with time, consistent with the definition of the weighted average which biases towards words
with large 〈fi〉. For words with large Ti, the trajectory has a minimum which begins to reverse around τ ≈ 40 years, possibly
reflecting the amount of time it takes to reach a critical utility threshold that corresponds to a relatively high fitness value
for the word in relation to its competitors. (B) The variations in 〈f(τ |Tc)〉 decrease with time reflecting the transition from
the insecure “infant” phase to the more secure “adult” phase in the lifetime trajectory. (C) The average growth trajectory is
qualitatively related to the logarithmic derivative of the curve in panel (A), and confirms that the region of largest positive
growth is τ ≈ 30–50 years. (D) The variations in the average trajectory are larger than 1.25 σ for 30 . τ . 50 years and are
larger than 1.0 σ for 10 . τ . 80 years. This regime of large fluctuations in the growth rates conceivably corresponds to the
time period over which a successful word is accepted into the standard lexicon, e.g. a word included in an official dictionary or
an idea/event recorded in an encyclopedia or review.
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FIG. S10: (A) The distribution of relative word use f for all words aggregated over the time period 1800-2008 shows a
crossover in the Zipf scaling from α ≈ 1.7 to α ≈ 2, where the latter value is in agreement with the Zipf law [7]. (B) The
Laplace distribution of annual relative change in word use for the relatively new words corresponding to dataset #1 (see Table
S1 for data summary), using word data over the time period 1800-2008 for words with a lifetime Ti ≥ Tc ≡ 100 years and a
sparsity threshold sc ≡ 0.2. For comparison we plot a Gaussian distribution with unit variance (dashed blue curve), which
displays rapid parabolic decay on the semi-logarithmic axis. The data agree over the entire range with the Laplace distribution
(solid black line) defined in Eq. (2) with σ ≡ 1. The pdf P (f) in panel (C) for year 2008 data only and the pdf P (R) in panel
(D) for year 2000 data only show that the distributions are also stable for word data aggregated over only a single year.
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FIG. S11: Distributions of word use u and relative change r′ to be compared with Fig. S10. (A) Distribution of word use u for
all words aggregated over the time period 1800-2008 also shows a crossover in the Zipf scaling from α ≈ 1.7 to α ≈ 2, where the
latter value is in agreement with the Zipf law [7]. (B) Distribution of annual relative change in word use r′ for the relatively
new words corresponding to dataset #1 (see Table S1 for data summary), using word data over the time period 1800-2008 for
words with a lifetime Ti ≥ Tc ≡ 100 years and a sparsity threshold sc ≡ 0.2. For comparison we plot a Gaussian distribution
with unit variance (dashed blue curve), which displays fast parabolic decay on the semi-logarithmic axis. The pdf P (r′) is more
heavy in the tails than the Gaussian distribution but less-heavy than the Laplace distribution with unit variance (solid black
line). The pdf P (u) in panel (C) for only year 2008 data and the pdf P (r′) in panel (D) for year 2000 data only show that the
distributions are also stable on an annual basis. The pdfs P (r′) have a standard deviation σ(r′|t) that is year dependent (e.g.
σ(r′|t = 2008) ≈ 0.7). This observation explains why P (r′) in panel (B) is not fit well by the Laplace distribution in the tails,
since this P (r′) is actually a mixture of distributions with varying widths σ(r′|t). To account for this variation, we use the
growth factor R defined in Eq. (S13 ) to better quantify the growth rates of word use by accounting for word maturity effects.
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FIG. S12: Annual scaling exponent which quantifies the relative use of words according to the power-law distribution P (f(t)) ∼
f−α(t), which is related to the rank-frequency Zipf law exponent ζ by the relation α ≈ 1 + 1/ζ. We observe a crossover in the
exponent α in Fig. S10(A), and so we use the maximum likelihood estimation (MLE) method to calculate the exponent for
both low word use (“unlimited lexicon”) and high word use (“kernel lexicon”) regimes [7]. (A) For the low word use regime
10−8 < f < 10−6, we calculate the exponent α ≈ 1.7 which is smaller than the value α ≈ 2 predicted by the Zipf law. (B) We
confirm Zipf scaling corresponding to α ≈ 2 for the tail of P (f) using the range f > 10−4 for each corpus.
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FIG. S13: Heaps’ law quantifies the marginal utility of adding a new word to a vocabulary, here in the context of an entire
corpus. In the panels on the left, we show scatter plots of Nu(t), the total number of words published vs Nw(t), the total
number of unique words used (vocabulary size). Each data set shows a strong scaling relation Nw(t) ∼ [Nu(t)]b with b ≈ 0.5
over several orders of magnitude for each corpus analyzed. In the panels on the right, for comparison we also show plots of
Nb(t), the total number of books published vs Nw(t), the total number of unique words used in each year. Estimates for the
scaling exponent b values are listed in each panel. A simple model of topicality in a text [6] shows that b ≈ 1/α, where α is
the pdf scaling exponent defined in Eq. (S3 ). We verify this theoretical prediction, which further demonstrates an increasing
marginal utility of new words, meaning that each additional word added to a vocabulary superlinearly increases the total
number of words written in a corpus, Nu ∼ (Nw)α.
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TABLE S1: Summary of annual growth trajectory data for varying threshold Tc, and sc = 0.2, Y0 ≡ 1800 and Yf ≡ 2008.

Annual growth R(t) dataCorpus,
(1-grams) Tc(years) Nt(words) % (of all words) NR(values) 〈R〉 σ[R]

English 25 302,957 4.1 31,544,800 2.4× 10−3 1.00
English fiction 25 99,547 3.8 11,725,984 −3.0× 10−3 1.00
Spanish 25 48,473 2.2 4,442,073 1.8× 10−3 1.00
Hebrew 25 29,825 4.6 2,424,912 −3.6× 10−3 1.00
English 50 204,969 2.8 28,071,528 −1.7× 10−3 1.00
English fiction 50 72,888 2.8 10,802,289 −1.7× 10−3 1.00
Spanish 50 33,236 1.5 3,892,745 −9.3× 10−4 1.00
Hebrew 50 27,918 4.3 2,347,839 −5.2× 10−3 1.00
English 100 141,073 1.9 23,928,600 1.0× 10−4 1.00
English fiction 100 53,847 2.1 9,535,037 −8.5× 10−4 1.00
Spanish 100 18,665 0.84 2,888,763 −2.2× 10−3 1.00
Hebrew 100 4,333 0.67 657,345 −9.7× 10−3 1.00
English 200 46,562 0.63 9,536,204 −3.8× 10−3 1.00
English fiction 200 21,322 0.82 4,365,194 −3.5× 10−3 1.00
Spanish 200 2,131 0.10 435,325 −3.1× 10−3 1.00
Hebrew 200 364 0.06 74,493 −1.4× 10−2 1.00

TABLE S2: Summary of data for the relatively common words that meet the criterion that their average word use 〈fi〉 over the
entire word history is larger than a threshold fc, defined for each corpus. In order to select relatively frequently used words,
we use the following three criteria: the word lifetime Ti ≥ 10 years, 1800 ≤ t ≤ 2008, and 〈fi〉 ≥ fc.

Data summary for relatively common wordsCorpus,
(1-grams) fc Nt(words) % (of all words) Nr′(values) 〈r′〉 σ[r′]

English 5× 10−8 106,732 1.45 16,568,726 1.19 ×10−2 0.98
English fiction 1× 10−7 98,601 3.77 15,085,368 5.64 ×10−3 0.97
Spanish 1× 10−6 2,763 0.124 473,302 9.00 ×10−3 0.96
Hebrew 1× 10−5 70 0.011 6,395 3.49 ×10−2 1.00

TABLE S3: Summary of Google corpus data. Annual growth rates correspond to data in the 209-year period 1800–2008.

Annual use ui(t) 1-gram data Annual growth r(t) dataCorpus,
(1-grams) Nu(uses) Yi Yf Nw(words) Max[ui(t)] Nr(values) 〈r〉 σ[r]

English 3.60× 1011 1520 2008 7,380,256 824,591,289 310,987,181 2.21× 10−2 0.98
English fiction 8.91× 1010 1592 2009 2,612,490 271,039,542 122,304,632 2.32× 10−2 1.03
Spanish 4.51× 1010 1532 2008 2,233,564 74,053,477 111,333,992 7.51× 10−3 0.91
Hebrew 2.85× 109 1539 2008 645,262 5,587,042 32,387,825 9.11× 10−3 0.90


