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We study the cascading dynamics immediately before and immediately after 219 market shocks. We define
the time of a market shock Tc to be the time for which the market volatility V�Tc� has a peak that exceeds a
predetermined threshold. The cascade of high volatility “aftershocks” triggered by the “main shock” is quan-
titatively similar to earthquakes and solar flares, which have been described by three empirical laws—the
Omori law, the productivity law, and the Bath law. We analyze the most traded 531 stocks in U.S. markets
during the 2 yr period of 2001–2002 at the 1 min time resolution. We find quantitative relations between the
main shock magnitude M � log10 V�Tc� and the parameters quantifying the decay of volatility aftershocks as
well as the volatility preshocks. We also find that stocks with larger trading activity react more strongly and
more quickly to market shocks than stocks with smaller trading activity. Our findings characterize the typical
volatility response conditional on M, both at the market and the individual stock scale. We argue that there is
potential utility in these three statistical quantitative relations with applications in option pricing and volatility
trading.
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I. INTRODUCTION

Financial fluctuations have been a topic of study for
economists �1,2�, mathematicians �3�, and physicists �4–9�.
Here, we study financial fluctuations using concepts devel-
oped in the field of seismology �10,11� and analogies from
turbulent dynamics in our description of market main shock
magnitudes in order to analyze the dynamic response of mar-
kets to financial shocks. We identify parallels between en-
ergy cascades and information cascades, and also between
turbulent bursts and the clustering of volatility �12�. Our re-
sults demonstrate three statistical regularities which relate
the volatility magnitude M � log10 V�Tc� to the market re-
sponse before and after market shocks.

Common financial “shocks” are relatively smaller in the
volatility magnitude, the duration, and the number of stocks
affected than the extremely large and infrequent financial
crashes. Devastating financial shocks such as Black Monday
�October 20, 1987� have significant aftershocks that can last
for several months, and this “dynamic relaxation” is similar
to the aftershock cascade following an earthquake �13�. Here,
we aim to better understand market shocks over a range of M
values. While the previous studies have focused on at most a
few large crashes, we use a large data set of 219 financial
main shocks observed in American markets over the 2 yr
period of 2001–2002. We analyze 531 frequently traded
stocks corresponding to approximately 44 000 000 volatility
records at a 1 min time resolution. We find three quantitative
relations which enable answering such questions as:

�i� How does the rate of volatility aftershocks decay with
time, and how do the decay parameters relate to the main
shock magnitude M?

�ii� How many aftershocks above a given threshold can be
expected after a main shock of magnitude M?

�iii� What is the relation between the value of the main
shock volatility V�Tc� and the second largest aftershock �or
preshock�?

These three questions have been studied for geophysical
earthquakes, and the corresponding statistical laws are re-
ferred to, respectively, as the Omori law, the productivity
law, and the Bath law. The Omori law was first investigated
in the context of financial crashes by Lillo and Mantegna
�13�, who found a power-law relaxation of fluctuations at a 1
min time resolution for the S&P500 over the 100 day period
following the Black Monday crash. Power-law relaxation of
aftershocks is also observed for long periods following sev-
eral other medium-size crashes �14�, and also for short peri-
ods up to several days following U.S. Federal Reserve inter-
est rate change announcements �15�. One key feature of
long-range relaxation dynamics is the scale-free decay of
large fluctuations that is typical of a system with memory,
and which is complemented by self-similarity in the decay
substructure �14�.

We find similar perturbation-response dynamics in the in-
traday volatility �absolute return� time series for many single
stocks on numerous days, indicating that markets respond in
a common way to perturbations that range in size from ev-
eryday market fluctuations to infrequent market crashes. In-
terestingly, the market is very responsive to Federal Open
Market Committee �FOMC� news, either in the form of
subtle hints from the Fed or actual rate changes �expected or
unexpected�, because Fed Target rates serve as a benchmark
and barometer for both U.S. and world markets �15�. Meth-
ods have been developed to use the interplay between the
U.S. Treasury Bill and the Federal Funds effective rate in
order to estimate the future movement of the Federal Funds
target rate �16�. More complex methods to estimate the prob-
ability of interest rate change involves analyzing the price
movement of expiring derivative contracts �17�. The connec-
tion between macroeconomic factors and financial markets is
a tribute to the complexity and connectivity of economic
systems. It is a further indicator that news, in addition to
complex order-book dynamics, can play a significant role in
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explaining the large rate of occurrence of large fluctuations
in markets.

Here, we quantify the rate n��t−Tc�� of volatility shocks
at time t both before and after a market shock occurring at
time Tc. In order to determine Tc, we develop a method for
selecting a critical time Tc from a set of candidate times �tc�
for which the collective market volatility of S individual
stocks is above a given threshold. For 19 particular dates
corresponding to days with FOMC announcements, we com-
pare the values of calculated Tc with the reported values of T
analyzed in �15�, and we find good prediction of T using this
method. After this calibration, we study the relaxation dy-
namics of S=531 stocks, analyzing the Omori law, the pro-
ductivity law, and the Bath law for the dynamics both before
�t�Tc� and after �t�Tc� the main market shock.

In Sec. II we discuss the data, the quantitative methods
used to calculate n��t−Tc��, and define collective market
movement. In Sec. III A we quantify the threshold for select-
ing candidate cascades and calibrate using known values of
Tc corresponding to FOMC meetings. In Sec. III B we de-
scribe the method for choosing Tc from each significant cas-
cade we identify. In Sec. IV we discuss the Omori-law pa-
rameters � and �, the productivity parameter �, and the
Bath law parameter B. We note that both � and B are inde-
pendent of the dynamical model, and hence do not depend on
n��t−Tc��, the functional form of the relaxation dynamics.
For each of the statistical laws, we compare the results we
obtain for the market average with the results we obtain for
individual stocks.

II. DATA ANALYZED

For the 2 yr period of 2001–2002, we analyze trades and
quotes data of more than 500 stocks listed on the NASDAQ
and New York Stock Exchange. In order to analyze the most
important subset of stocks, we rank each stock by the aver-
age number of transactions per minute. We find S=531
stocks with an average of more than three transactions per
minute, S=136 stocks with an average of more than ten
transactions per minute, and S=20 stocks with an average of
more than 50 transactions per minute. Unless otherwise
stated, our results correspond to the top S=531 stocks, but all
results become more statistically significant for smaller sub-
sets of more heavily traded �bell weather� stocks.

In this paper, we study the volatility v j�t� of the intraday
price time series pj�t� for stock j. The intraday volatility
�absolute returns� is expressed as

v j�t� � �ln�pj�t�/pj�t − �t��� , �1�

where we choose here �t=1 min, so that we can analyze the
dynamics immediately before and immediately after market
shocks. To compare stocks, we scale each volatility time se-
ries by the standard deviation over the entire period ana-
lyzed. We then remove the “U-shaped” intraday trading pat-
tern �averaged over 531 stocks� from each time series. This
establishes a normalized volatility in units of standard devia-
tion for all minutes during the day and for all stocks analyzed
�see Ref. �14��.

We introduce a volatility threshold q which defines a
binary volatility time series nj�t� for each stock j, which we

calculate from the normalized volatility time series v j�t�
as

nj�t� � 	1, v j�t� � q

0, v j�t� � q .

 �2�

We find that a volatility threshold q�3� is large enough to
distinguish between significant fluctuations and normal back-
ground activity. We also choose this value q�3� to provide
comparison with the analysis performed in �15�. The rate n�t�
measures the fraction of the market exceeding q at time t,

n�t� �
1

S
�
j=1

S

nj�t� . �3�

The rate nj�t� quantifying the volatility of a single stock j
corresponds to the limit S→1. We define the average market
volatility V�t� similarly by

V�t� �
1

S
�
j=1

S

v j�t� . �4�

A market shock at time Tc may result from exogenous
�external� news or endogenous herding �18,19�. In many
cases, the market shocks can be linked to exogenous news
using archived news feeds that cover and summarize daily
market events �20�. In order to analyze market dynamics
symmetrically around a market shock at time Tc, we analyze
the per unit time rate n��t−Tc�� around the time Tc. It has
been empirically observed that the response dynamics in fi-
nancial markets show a power-law decay �13–15,21–23�,

n��t − Tc�� � ��t − Tc�−�, �5�

where � is called the Omori power-law exponent, � is the
cascade amplitude, t�Tc corresponds to before the main
shock, and t�Tc corresponds to after the main shock. For
comparison, n��t−Tc�� is constant for stochastic processes
with no memory, corresponding to ��0. Hence, for an em-
pirical value �
0, the rate n��t−Tc�� is indistinguishable
from an exponential decay for �t−Tc�� t̄, where t̄ is the char-
acteristic exponential time scale. However, for larger values
of �, the exponential and power-law response curves are
distinguishable, especially if several orders of magnitude in 	
are available.

Instead of analyzing n��t−Tc��, we perform our quantita-
tive analysis on N��t−Tc��, the cumulative number of events
above threshold q at time t min, where by definition

N��t − Tc�� = �
Tc

t

n��t� − Tc��dt� � 
��t − Tc��1−�, �6�

for market co-movement, and

Nj��t − Tc�� = �
Tc

t

nj��t� − Tc��dt� � 
 j��t − Tc��1−�j , �7�

for the activity of stock j. We perform our regression analy-
sis on Nj��t−Tc�� because it is less noisy and monotonic as
compared to nj��t−Tc��.

Hence, for a given day, we calculate the cumulative time
series Nj�t� from nj�t� for each stock j, where t=0 corre-
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sponds to the opening bell at 9:30 a.m. eastern time �ET�.
For comparison, we also analyze the average market re-
sponse N�t� of the S stocks under consideration, which
complements the study of individual stocks.

To demonstrate our approach, in Fig. 1 we plot V�t�, N�t�,
and also Nj�t� for four single stocks on 01/11/2002, a day
when there was a large market shock corresponding to a
publicized comment by the Fed chairman Alan Greenspan
concerning economic recovery which occurred at approxi-
mately Tc=255 min after the opening bell.

In order to compare the dynamics before and after the
market shock, we first separate the intraday time series N�t�
into two time series Nb�t � t�Tc� and Na�t � t�Tc�. Then, to
treat the dynamics symmetrically around Tc, we define the
displaced time 	= �t−Tc��1 as the temporal distance from
Tc. As an illustration, we plot in Fig. 2 the time series on
01/11/2002 as a function of 	. We then employ a linear fit to
find the 	 dependence of both Nb�	��N�Tc�−N��t−Tc�� and
Na�	��N�t−Tc�−N�Tc� on a log-log scale to estimate the
Omori power-law exponents �b before the news and �a after
the news. By analogy, we define � to be the amplitude
�=
�1−�� before Tc as �b and after the shock as �a.

III. METHOD FOR DETERMINING Tc

A. Calibration using FOMC announcements

We use n�t� to quantitatively determine times Tc in which
the market is moving together, possibly in response to an
external market shock or possibly as a result of endogenous
herding. In Fig. 3 we plot the average daily pattern for n̄�t�
and the standard deviation ��t�. The values of n̄�t� and ��t�
are not stationary, so we remove the daily trend from n�t� by
defining the detrended quantity n��t���n�t�− n̄�t�� /��t�. In
order to distinguish significant moments of market comove-
ment from background fluctuations, we use a significance

threshold which we obtained from the distribution of market
activity over the entire data set analyzed. Hence, we analyze
the quantity x�t� defined as

x�t� � n�t�
n�t� − n̄�t�

��t�
, �8�

which is the product of n�t� and n��t�. The value of n�t�
quantifies the size of the market comovement, while n��t�
quantifies the significance of the market comovement. Be-
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FIG. 1. �Color online� Typical volatility curves on 01/11/2002
with market shock at Tc=256 min. �a� The cumulative volatility
Nj�t� for the stock of several large companies has varying behavior
before Tc, but each stock shown begins to cascade soon after Tc.
The market average N�t� over all S=531 stocks analyzed demon-
strates a distinct change in curvature at t=Tc. �b� The average mar-
ket volatility V�t� demonstrates a sharp peak at Tc, and also two
precursor events at t
190 and 
230 min.
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FIG. 2. �Color online� �a� An illustration of Nb�	� and Na�	�
for the same set of curves plotted in Fig. 1. The displaced time
	= �t−Tc� is defined symmetrically around Tc=256 min on 01/11/
2002. �b� log10 Nb�	� and log10 Na�	� are linear with log10 	 over
two orders of magnitude on a logarithmic scale. The Omori pa-
rameters in Eq. �5� calculated from N�t� are �b=0.09�0.01,
�b=0.21�0.01 and �a=0.32�0.01, �a=0.81�0.01.
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FIG. 3. �Color online� The fraction n�t� of the market above the
volatility threshold q is nonstationary through the trading day. We
plot in �a� the average daily trading pattern n̄�t� for S=136 stocks
and in �b� the corresponding standard deviation to demonstrate the
trends we remove in the normalized quantity n��t�. In practice, we
use the smoothed average of these curves in order to diminish sta-
tistical fluctuations on the minute-to-minute scale. For comparison,
we compute n̄sh�t�
0.23 and �sh
0.09 for shuffled vi�t�. The val-
ues of n̄�t� provide an estimate for the background market comove-
ment that can be attributed to random fluctuations.
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cause n̄�t� is not constant during the day, we consider the
normalized quantity n��t� in order to remove the intraday
pattern. Then, to restrict our analysis to relatively large mar-
ket comovements, we eliminate times toward the beginning
and end of each day, when average market activity is lower
�significant morning activity is often related to overnight
news �24��. We analyze the quantity x�t�, which is large only
if both n�t� and n��t� are large. Figure 4 demonstrates how
the quantity x�t� is useful for amplifying market comovement
and provides an illustration of a significant shock with sub-
stantial preshock and aftershock dynamics.

We analyze the time series x�t� in order to select the set of
times �t� of the market shocks that are large in the fraction of
the market involved �large n�t�� as well as significant with
respect to the time in which they occur �large n��t��. We
determine a significance threshold xc from the probability
density function �pdf� of x�t� as in Fig. 5. As a null model,
we shuffle the order of each intraday time series v j�t� and
obtain a shuffled market volatility rate nsh�t� for each day.
This preserves the empirical pdf of v j�t� but removes the
correlations that exist in the temporal structure of v j�t�. We
also plot nsh�t�
0.23 in Fig. 3 which corresponds to a re-
sidual 0.23 comovement due to random fluctuations. We
compare the pdf’s for x�t� and xsh�t� in Fig. 5�b� and observe
a significant divergence for x�t��1.

We calibrate our method for determining Tc from candi-
date cascades by using the known reported values T corre-
sponding to Fed announcements. We choose the value xc
=1.0 which reproduces with the best accuracy the values of T
that we provide for comparison in Table I. The value of xc
=1.0 results in 5804 min out of 190 000 min analyzed for
which x�t��xc, or roughly 3% of the 2 yr period with sig-
nificant market comovement.

B. Determining Tc from candidate cascades

In a typical trading day there are many large fluctuations
for both individual stocks and indices such as the S&P 500

and DOW. Analysis of the return intervals and the cross cor-
relations in financial time series shows that significant statis-
tical regularities exist �25–31�. This fact is evident in the
robust probability density function of volatility which has a
stable power-law tail for a wide range of time scales ranging
from 1 min to several days �4,7,33,34�. We select market
cascades that are above a “spurious fluctuation” threshold,
which we define by randomizing the order vi�t�. We use the
corresponding shuffled values nsh�t� as a proxy for back-
ground noise.

We find on average approximately 12 min per day above
the threshold xc�1.0. So here we develop a method for se-
lecting the most likely time Tc from all candidate times with
x�t��xc. For a given day, we collect all values of x�t��xc
into a subset �x��t�� of size z. From this subset, we divide the
z values into k cascades �x��t��i, which we define as localized
groups using the criterion that a cascade ends when the time
between the last x� in cascade i is separated from the first x�
in cascade i+1 by a time window greater than �l min. We
next assign to each cascade group �x��t��i a weight equal to
the sum of the x��t� values belonging to the given cascade

0.2

0.4

0.6

0.8

1

n(
t)

Volatility
Volume

-1
0
1
2
3
4
5

n’
(t

)

0 30 60 90 120 150 180 210 240 270 300 330 360 390

t (minutes)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

x
(t

)

01/11/2002
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ship between the quantities n�t�, n��t���n�t�− n̄�t�� /��t�, and x�t�
�n�t�n��t�. The market shock on 01/11/2002 occurred at Tc=256 in
response to a public comment by the Fed chairman A. Greenspan
concerning economic recovery �20�.
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FIG. 5. �Color online� Using the volatility threshold q=3 and
S=136 stocks, we determine the market comovement threshold xc

from the pdf of x�t��n�t�n��t�. �a� The pdf for the 190 000 min
analyzed of the volatility rate n�t� corresponding to the fraction of
the market with volatility vi�t��q. �b� The pdf of x�t�, where in the
quantity x�t� we have removed the average daily trend of n�t�, so
that x�t� is relatively large when market comovement is large and
significant. For comparison, we also plot the pdf of xsh�t� computed
from randomly shuffled volatility time series vi�t�. We find a diver-
gence between the pdf’s of x�t� and of xsh�t� for x�1.0, which we
define as the comovement threshold xc�1 in our analysis.
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group, and we select the cascade group with the largest
weight as the most significant cascade. Within the most sig-
nificant cascade group, we choose the time corresponding to
the maximum value of x��t� as the time Tc of the main shock.
We calibrate this method using the reported times for the 19
FOMC interest rate meeting announcements and find that the
values �l�60 and xc=1.0 best reproduce the known set �T�,
which we provide for comparison in Table I.

Using the parameter values xc=1.0 and �l�60, we find
373 days with market shocks out of 495 days studied. If the
values of x��t� were distributed uniformly across all days,
then the probability of finding 122 days without one x��t� is
vanishingly small, which confirms that x��t�’s group together
forming cascades. We remove all days where Tc is within
�t�90 min of opening �t=0� or closing �t=390�, and all
Tc’s that occur on half-days �days before or after the 4th of
July, Thanksgiving, or Christmas�, resulting in the data set
�Tc� constituting 219 individual days. We also analyzed the
subset of 156 market shocks within �t�120 min of opening
or closing and find analogous results as those reported here
for �t�90.

Furthermore, in order to test the dependence of the data
set �Tc

�1�� found for the time resolution �t=1 min used in this
paper, we also compare the values of �Tc

�5�� and �Tc
�10�� found

using a volatility series with �t=5 min and �t=10 min reso-
lutions, respectively �see Eq. �1��. For each of the 219 days
with a Tc value we calculate the absolute difference in the
time value Tc

��t� using two values of �t. We use similar values
of xc for each time resolution, so that the numbers of days
with market shocks for each resolution are approximately
equal. The difference in Tc

��t� depends on the resolution �t
and the locality �Tc associated with each market shock. The
averages of the absolute differences for three values of �t are
�Tc

�5�−Tc
�1��=9 min and �Tc

�10�−Tc
�1��=15 min. We estimate the

standard error for a particular time resolution �Tc
��t�
2�t,

which implies that �Tc
�1�
2 min for the 1 min time reso-

lution. Hence, the use of Tc��Tc does not significantly
change the results of this paper. In the next section, we ana-
lyze the empirical laws that quantify the response dynamics
both before and after significant market shocks.

IV. RESULTS

The analysis performed in this paper is largely inspired
by the analogies between financial market crashes and
earthquakes. Here, we identify 219 cascades that meet our
volatility significance criterion and that are within �t
=90 min of the opening or closing of the trading day. For
this set of shocks, we analyze the dynamics over the 90 min
period immediately before Tc and the 90 min period im-
mediately after Tc using the framework developed in earth-
quake research �35–41�. Although we present results for only
�t=90, we also analyzed the subset of 156 shocks within
�t=120 min of the beginning and ending of the trading day
and found analogous results. We restrict our analysis to the
local time period 2�t within the trading day, so that our
results are minimally affected by overnight effects and over-
lapping shocks �since the frequency of shocks larger than our
threshold xc used here is approximately one per trading day�.
Hence, our analysis of the size dependence of market relax-
ation dynamics, where we relate the cascade parameters to
the market shock magnitude M � log10 V�Tc�, pertains to the
intraday horizon of market shocks which occur relatively fre-
quently.

A recent study finds significant evidence of Omori power-
law relaxation both before and after common FOMC interest
rate announcements �15� and uses the relationship between
the overnight effective rate and the U.S. 6-month Treasury
Bill to estimate the magnitude of the financial news shock.
The dynamics before the Fed announcements, which are
regularly scheduled and preannounced, are consistent with
market’s anticipated surprise in the Fed news, while the dy-
namics after the announcements are related to the market’s
perceived surprise in the Fed news. The Federal Reserve uses
the “announcement effect” �42� to control the federal funds
market. Despite the calculated monetary policy, the markets
react quite strongly to the news, with large Omori-law relax-
ation cascades that typically correspond to the relatively
large M found in this paper.

Closely related to the Omori relaxation of aftershocks is
the productivity law, which establishes a power-law relation-

TABLE I. Comparison of announcement times T �as reported
in New York Times� with the market clustering times Tc calculated
using a threshold xc=1.0, cascade window �l�60 min, and S
=136 stocks. The value of x�Tc� corresponds to the largest value out
of all the candidates �x� in the most significant cascade of the par-
ticular day. Dates of 19 FOMC meetings in the 2 yr period between
January 2001 and December 2002, where the Federal Funds Target
rate �Rnew� was implemented by the rate change ��R� at �T� minutes
after the opening bell at 9:30 a.m. ET �32�. The absolute relative
change ��R /Rold����R�t� /R�t−1�� has typically filled the range be-
tween 0.0 and 0.25. Note: Date�� refers to unscheduled meetings, in
which the announcement time did not correspond to 2:15 p.m. ET
�T=285 min�.

FOMC date
Rnew

�%� �R �R
Rold

T Tc

01 /03 /01�� 6 −0.5 −0.077 210 227

01/31/01 5.5 −0.5 −0.083 285 290

03/20/01 5 −0.5 −0.091 285 286

04 /18 /01�� 4.5 −0.5 −0.100 90 88

05/15/01 4 −0.5 −0.111 285 287

06/27/01 3.75 −0.25 −0.063 285 285

08/21/01 3.5 −0.25 −0.067 285 286

09 /17 /01�� 3 −0.5 −0.143 0 16

10/02/01 2.5 −0.5 −0.167 285 288

11/06/01 2 −0.5 −0.200 285 292

12/11/01 1.75 −0.25 −0.125 285 287

01/30/02 1.75 0 0.00 285 289

03/19/02 1.75 0 0.00 285 293

05/07/02 1.75 0 0.00 285 287

06/26/02 1.75 0 0.00 285 286

08/13/02 1.75 0 0.00 285 291

09/24/02 1.75 0 0.00 285 291

11/06/02 1.25 −0.5 −0.286 285 286

12/10/02 1.25 0 0.00 285 295
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ship between the numbers of aftershocks or preshocks that
follow or precede a main shock of magnitude M. This is
analogous to earthquake analysis where the magnitude is de-
fined as M 
�2 /3�log10 E �39�, where E is the energy asso-
ciated with the stress released by the main shock. We justify
our analogy between market volatility V and earthquake en-
ergy E by comparing the cumulative distribution,

P�V � s� � s−
V, �9�

of volatility in financial markets with the cumulative distri-
bution,

P�E � s� � s−
E, �10�

of energy E in seismic earthquakes. Both cumulative distri-
butions are asymptotically power laws, with 
V
3 �33,34�
and the Gutenberg-Richter law 
E
2 /3 �38�.

For the set of 219 market shocks we analyze, we find a
wide range of V�Tc�, and hence a wide range of cascade
dynamics. We analyze the dynamics only within the trading
day, so that we can be confident that the dynamics after and
before Tc are related to the market shock V�Tc�. Also, for
relatively small V�Tc�, it may be difficult to distinguish cas-
cade preshocks �aftershocks� from opening and closing ef-
fects and volatility resulting from overnight news. Further-
more, we only analyze the first �t�90 min of each Na�	�
and Nb�	� time series, so that the comparison of productivity
Pa,b��t� is not affected by time series of variable length.

In Fig. 6 we plot the pdf of Omori parameter values �a,b
and �a,b obtained from the power-law fits of Nb�	� and Na�	�.
Figures 6�a� and 6�b� show the distribution of parameter val-
ues calculated for the average market responses Nb�	� and

Na�	� corresponding to Eq. �6�, while Figs. 6�c� and 6�d�
show the distribution of parameter values calculated from the
individual stock responses Nb

j �	� and Na
j �	�. The pdf’s for

individual stock values of � and � have a larger dispersion,
as the response to each market shock is not uniform across
all stocks. For the average market response N�	� in Figs. 6�a�
and 6�b� the pdf’s of � and � are shifted to larger values for
t�Tc as compared to t�Tc. This is indicative of the stress
that can build prior to anticipated announcements �42� and
the surprise that is inherent in the news. Larger � values
correspond to faster relaxation times, while larger � values
correspond to higher activity. We also observe ��0, which
corresponds to particular time series in which the preshocks
or aftershocks farther away from the main shock �for large 	�
are dominant over the volatility cascade around Tc. The val-
ues of the Omori parameters we find on averaging over all
market shocks are given in the figure caption.

Although there is a wide distribution of Omori parameter
values when considering all 219 market shocks, there is a
strong correlation between the individual stock dynamics for
a given market shock. In Fig. 7 we relate the values of � and
� calculated for the average market response to the average
and standard deviation of � and � calculated for individual
stocks for a given Tc. The strong correlation between these
quantities over 219 different dates indicates that the disper-
sion in the values of � and � for individual stocks, as dem-
onstrated in Figs. 6�a� and 6�c�, results from the broad range
of V�Tc� values and, further, that the dispersion does not
result merely from the range of stocks analyzed.

In Fig. 8 we plot the relation between the magnitude M of
each main shock and the resulting Omori exponents �a,b
calculated from both market Na,b�	� and individual stock
Na,b

j �	� response curves. Figures 8�a� and 8�c� show a posi-
tive relation between M and the decay exponent �a, which
indicates that the market responds faster to large shocks on
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FIG. 6. �Color online� �a� and �b� Comparison of the probability
density functions P��� and P��� of Omori parameters � and
� computed from the average market response Na,b�	�. �c� and
�d� The analogous pdf plots computed from individual stock re-
sponse Na,b

j �	�. The average and standard deviations of each data
set are �a� �a=0.09�0.07, �b=0.06�0.07; �b� �a=0.35�0.11,
�b=0.28�0.09; �c� �a=0.08�0.20, �b=0.03�0.22; and �d�
�a=0.53�0.25, �b=0.46�0.24. Values of both �a and �a are con-
sistently larger than �b and �b, indicating that the response time
after Tc is shorter than the activation time leading into Tc. However
the response cascade after Tc has, generally, a larger amplitude.
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FIG. 7. �Color online� In order to account for the dispersion in
the pdf’s plotted in Figs. 6�c� and 6�d� for individual stocks, we

compare the average values �̄a,b and �̄a,b computed from all Na,b
j �	�

with �a,b and �a,b computed from the corresponding average mar-
ket response Na,b�	� for each of the 219 Tc’s. The visually apparent
correlation indicates that the parameters quantifying Na,b�	� are a
good representation of the average Na,b

j �	�. The correlation coeffi-
cient r for each linear regression is provided in each panel.
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the intraday time scale. Figures 8�b� and 8�d� show a signifi-
cant dispersion across all stocks for a given date. Interest-
ingly, we find a crossover at Mx
0.5 above which �a,b in-
creases sharply to positive values. The values �
0 for M
�Mx correspond to a dynamical cascade n�	� that is indis-
tinguishable from an exponential decay. Typically, small val-
ues of � correspond to stocks with relatively low trading
activity, which are less sensitive to market shocks. For indi-
vidual stocks, we define M to be the logarithm of the largest
volatility within 3 min of the main shock Tc measured for the
average market response N�	�. This accounts for the possi-
bility of a stock-specific anticipation or delay time in the
volatility as a result of the main shock V�Tc�. There is also
the possibility that a spurious value of �
0 can arise from
a stock which has a constant �potentially large� level of ac-
tivity throughout the entire time period analyzed.

In Fig. 9 we plot the relation between the magnitude M
and the Omori-law amplitude �a,b for both market Na,b�	�
and individual Na,b

j �	� response curves. The relation between
� and M is stronger than the relation between � and M,
indicating that the Omori-law amplitude has a higher infor-
mation content than the Omori-law exponent. The strong re-
lation for the average market response suggests that it is

possible to identify precursors of market shocks with statis-
tical certainty. However, since often Tc corresponds to antici-
pated market news, the significant activity prior to the main
shock is a natural by-product of trader anticipation. Interest-
ingly, we also observe a critical threshold for Mx
0.5,
above which the average response amplitude �a,b increases
suddenly, analogous to a first-order transition.

Behaviors of the market cascades above and below Mx are
significantly different. Below Mx, it is typical for �a,b to be
negative and �a,b
0, indicating that the triggering shock
V�Tc� is relatively insignificant, with relatively few pre-
shocks and aftershocks. In this scenario, it is possible for a
few clusters of relatively large volatility toward the end of
the time series Na,b

j �	� to dominate in the calculation of the
best-fit parameters, producing negative values for �a,b.
There are also cases for both Na,b

j �	� and Na,b�	� for which
�a,b
0, corresponding to a constant rate of preshocks and
aftershocks in the time period analyzed.

However, above Mx, the cascade around Tc is more sig-
nificant, but with some anomalous properties. Namely, in the
case of the market response Na,b�	�, there is an increasing
relation between M and �a, indicating that the market re-
sponds more quickly to larger market shocks. This observa-
tion is consistent with the “semistrong” efficient-market hy-

FIG. 8. �Color online� The relation between the magnitude
M � log10 V�Tc� and the Omori exponents �a,b. In �a� and �c� we
compare values calculated from the average market response
Na,b�	�, and in �b� and �d� we compare values calculated from in-
dividual stock response Na,b

j �	�. �a� Weak relation before Tc, where
we validate the linear regression model at p=0.001 significance
level, but with correlation coefficient r=0.22. The dispersion may
result from the variability in anticipation preceding the market
shock at Tc. �c� The relation between �a and M is stronger after Tc

than before Tc, with linear regression significance p
0, correlation
r=0.40, and regression slope m=0.19�0.03. The increasing trend
demonstrates that a faster response, quantified by larger �a, follows
a larger M. Data points in �a� and �c� denoted by the symbol �
correspond to values of �a,b calculated for randomly selected Tc on
those 118 days analyzed without a single value of x�t��xc. In �b�
and �d� there is much dispersion in the � values of individual
stocks for given V�Tc�. However, the average trends demonstrate a
significant crossover at Mx
0.5 from �a,b�0 to �a,b�0. The
case of ��0 can occur when there is more volatility clustering for
large 	 than for small 	, whereas the case of ��0 occurs for large
volatility cascading around 	�0. This crossover could result from
the difference between anticipated and surprise shocks at Tc.

FIG. 9. �Color online� The relation between the magnitude
M � log10 V�Tc� and the Omori amplitudes �a,b. In �a� and �c� we
compare the values calculated from the average market response
N�	�, and in �b� and �d� we compare values calculated from indi-
vidual stock response Na,b

j �	�. �a� The increasing relation between
�b and M is statistically stronger than the relation between �b

and M in Fig. 8�a�, with significance p
0, correlation coefficient
r=0.52, and regression slope m=0.35�0.04. �c� The relation be-
tween �a and M is strong, with significance p
0, r=0.84, and
regression slope m=0.68�0.03. Data points in �a� and �c� denoted
by the symbol � correspond to values of �a,b calculated for ran-
domly selected Tc on those 118 days analyzed without a single
value of x�t��xc. The result that � increases with increasing V�Tc�
holds even for random times. In �b� and �d� there is much dispersion
in the � values of individual stocks for given V�Tc�. However, the
average trends demonstrate a significant crossover at Mx
0.5 from
�a,b
0.2 for M �0.5 to �a,b�0.2 for M �0.5. This crossover oc-
curs at a similar location as the crossover observed in Figs. 8�b� and
8�d� for �b,a. The average amplitude value �̄ increases sharply for
M �Mx, consistent with first-order phase-transition behavior.
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pothesis, which asserts that markets incorporate public news
approximately instantly. This observation is similar to geo-
physical earthquakes, where it is observed that the value of
�a increases with M for a given geographical location �43�.
Also, for geophysical earthquakes, it is also found that the
Omori amplitude increases exponentially with M �38�. In the
case of individual company response Na,b

j �	�, the values of
the average �a,b
0.1 saturate above Mx, whereas the values
of �a,b increase with M. Thus, the stochastic dynamics dis-
play a nonlinear relationship with M, consistent with a non-
linear shot noise process �44�, and are a potential avenue for
future theoretical research.

In Fig. 10 we plot the relation between V�Tc� and the
productivity Pa��t� �or Pb��t��, defined as the cumulative
number of aftershocks �or preshocks� greater than the thresh-
old q�3 within �t�90 min of Tc. Motivated by the power-
law relationship observed for earthquakes we fit the relations
Pa��t��M�a and Pb��t��M�b and find statistically signifi-
cant values for the market response �b=0.38�0.07 and
�a=0.48�0.04, and for individual stocks �b=0.23�0.01
and �a=0.25�0.01. For earthquakes, Ref. �38� reports a
range of �a
0.7–0.9 values that are larger than those ob-
served here for financial markets, meaning that the produc-
tivity of physical earthquakes increases “faster” with main
shock magnitude than does the productivity of market
shocks. Since for earthquakes �a�b, where b
1 is the
scaling exponent in the Gutenberg-Richter law, this inequal-
ity establishes the relative importance of small fluctuations
as compared to large fluctuations �38�. In other words, this

inequality indicates that small earthquakes play a larger role
than large earthquakes in producing the observed number of
large earthquake shocks. Using an analogous argument for
market volatility, since the cumulative distribution exponent

V
3 is found to be robust across many markets �33,34�,
then the total number NTot�V� of aftershocks triggered by all
main shocks of size V scales as

NTot�V� = P�V�Pa��t� � 10��a−
V�log10 V, �11�

which is a decreasing function of V. Hence, we also find that
aftershock cascade triggering is controlled by the contribu-
tions of the more numerous small shocks. Thus, the medium-
sized market shocks �analyzed here� play a larger role than
the large market shocks in producing the observed heavy-
tailed distribution of market shocks. We further note that the
productivity is a combination of the relationships of both �
and � with V�Tc�, which can be written as

Pa��t� � Na��t� � ��t�1−�a�a/�1 − �a� � V�Tc��a,

�12�

with equivalent relation before the shock for Pb��t�.
In Fig. 11 we plot the values �, �, and P��t� both before

and after the main shock at time Tc. Surprisingly, while there
is little statistical relation between �b and �a, there is a
strong relation between �b and �a as well as between Pb��t�
and Pa��t� for both �t=90 and �t=120 min. This result
could be of interest for volatility and option traders who
would like to anticipate the market dynamics after an an-
nouncement, given the dynamics before the announcement.

FIG. 10. �Color online� The increasing relation between the pro-
ductivity Pa,b��t� of each market shock and the size of the main
shock M � log10 V�Tc� with �t�90 min. As is found in earth-
quakes, we find a power-law relationship between M and V�Tc�
described by a productivity exponent �b before and exponent �a

after the market shock. Data points in �a� and �c� denoted by the
symbol � correspond to values of Pa,b��t� calculated for randomly
selected Tc on those 118 days analyzed without a single value of
x�t��xc. The result that P��t� increases with increasing V�Tc�
holds even for random times. For the average market response
Nb,a��t�, we find �a� �b=0.38�0.07 and �c� �a=0.48�0.04. For
the productivity of individual stocks corresponding to Nb,a

j ��t� we
find �b� �b=0.23�0.01 and �d� �a=0.25�0.01. For comparison,
the power-law exponent value pertaining to earthquake aftershocks
is �a
0.7–0.9 �38�.
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FIG. 11. �Color online� A comparison of Omori parameters be-
fore and after Tc for N�	� and varying �t indicate that �b and
Pb��t� are better conditional estimators for the dynamics after Tc.
�a� Weak relationship between �b and �a for �t=90 and 120. �b�
Strong relationship between �b and �a for �t=90 and 120, with
both linear regressions passing the ANOVA �analysis of variance� F
test at the p�0.001 confidence level. �c� Strong relationship be-
tween Pb��t� and Pa��t� for �t=90 and 120 min at the p�0.001
confidence level.
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In Fig. 12 we relate the size of the largest shock V1
�V�Tc� to the sizes of the second largest shock V2 both
before and after Tc. The Bath law parameter B quantifies the
relation between V1 and V2 as

M1 − M2 = log10 V1 − log10 V2 = B . �13�

This functional form implies the relation

V2/V1 = CB, �14�

and hence B=−log10 CB. Figure 12�c� is a scatter plot of V1
and V2,a which shows a linear relation corresponding to Ba
=−log10�0.90�=0.046. Surprisingly, Fig. 12�a� also shows a
strong relation between V1 and V2,b with Bb=−log10�0.81�
=0.092. Comparing the values of Bb and Ba, the difference
between V1 and V2 is smaller after Tc than before Tc. Inter-
estingly, both Bb and Ba are significantly smaller than the
value BE
1.2 observed for earthquake aftershocks �37�,
meaning that the largest preshock and aftershock are of com-
parable magnitude to the main shock. This significant differ-
ence between earthquakes and market shocks is largely due
to the relative probabilities of observing first- and second-
largest events x1 and x2. The conditional probability
P�x1 �x2�= P�x1�x2� is given by the corresponding cumula-
tive distribution function. Hence, using Eqs. �9� and �10�, the
ratio of the conditional probabilities for E1 and V1 is

P�V1�V2�
P�E1�E2�

=
P�V1 � V2�
P�E1 � E2�

�
V2

−3

E2
−2/3 , �15�

which roughly explains the 102 factor difference BE

102BV.

We also compare the volatilities V1 and V2 for individual
stocks in Fig. 12�b� before Tc and in Fig. 12�d� after Tc. We
compute the average value �V2� for linear bins and find V1
� �V2� for V1�20 both before and after Tc. Also, Fig. 12
shows that �V2,a�� �V2,b� for most values of V�Tc�. Hence,
the reaction to surprise causes larger volatility fluctuations
than the anticipation of surprise.

We further ask the question of how do the response pa-
rameters analyzed here depend on the variations between in-
dividual stock trading patterns. To answer this question, we
quantify the trading capacity of each stock by ���, the aver-
age number of transactions per minute, with 3� ����163
for the S=531 stocks analyzed. We hypothesize that ��� is
closely related to firm size and market impact. Figure 13�a�
shows ���, ���, and �P��t�� increase with ��� after Tc, indi-
cating that stocks with a large trading base respond to market
shocks with large volatility �v�Tc�� �shown in Fig. 13�b��, but
also relax more quickly, corresponding to larger � values.
However, we find no statistical relation between ���
and �v2,a�. Interestingly, Fig. 13�b� shows that this positive
relation also applies to the dynamic response parameters be-
fore Tc.

V. DISCUSSION

Cascading avalanche dynamics are a common phenomena
in complex systems ranging in scale from solar flares �35,36�

FIG. 12. �Color online� The increasing relation between the size
of the main shock V�Tc� and the size of the second largest after-
shock �or preshock� V2��t� within �t minutes of Tc demonstrate
that the volatility of the largest aftershock �or preshock� increases
with main shock volatility. As with the Bath law for earthquakes,
we observe a proportional relation V2,a��t��CBV�Tc�, which cor-
responds to a Bath parameter B=−log10 CB. For the average market
response Nb,a��t� we calculate CB for �a� the dynamics before,
CB=0.81, with correlation coefficient r=0.70 and �2=212, and for
�c� the dynamics after, CB=0.9, with r=0.87 and �2=109. For the
Bath law corresponding to individual stocks we find that a linear
function best fits the relation between V�Tc� and the average value

V̄2��t� calculated for equal-sized bins as indicated by circles with
one standard deviation error bars. We calculate that the regression
slope for the Bath law �b� before is m=0.65�0.02 and �d� after is
m=0.40�0.01.
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FIG. 13. �Color online� Relations between individual stock trad-
ing activity and dynamic response parameters �a�–�d� after Tc and
�e�–�h� before Tc, averaged over all the days with a market shock.
We measure the trading activity ��� for each stock, defined as the
average number of transactions per minute over the 2 yr period of
2001–2002. We find that stocks with large trading activity react
both more strongly �larger � and larger P��t�� and quickly �larger
�� to market shocks. However, �d� shows that there is little relation
between ��� and the average size of the largest aftershock �v2�.
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and earthquakes �10,11,39,40� to microscopic vortices in tur-
bulent fluids �45�. Similar bursting phenomena is also ob-
served in human organs, such as the heart �46,47�, lungs
�48,49�, and brain �50–52�, and also for common social
�53–56� and economic �12–15,22,23,57,58� systems. Neural
avalanches in the brain are frequent even in the resting state
and are a signature of healthy brain functioning within the
neural network. In fact, the ability to process and disseminate
information is largely attributed to the network structure of
neuronal correlations which, if inhibited by disease, lead to
altered dysfunctional states such as in the case of schizophre-
nia. Extending by analogy, the frequency of cascades in fi-
nancial markets could also be viewed as a “healthy” optimal
state for processing information and eliminating arbitrage
among the many the degrees of freedom. Recent work �59�
on the switching dynamics around highs and lows in finan-
cial time series shows further evidence of Omori power-law
scaling before and after microtrend extrema, in analogy to
the market shocks at Tc developed here. Interestingly, this
work on switching dynamics finds cascading trends on time
scales ranging from seconds to hundreds of days.

Financial markets are subject to constant information
flow, resulting in a large rate of significant events, such as
Fed announcements �15,42�, quarterly earnings, splits and
dividends announcements, mergers and acquisitions, and in-
stitutional reports. This information can arrive as “expected”
or come as a “surprise.” Interestingly, there are precursors
extending more than 1 day in advance of expected announce-
ments such as earnings announcements �57�. Economists
have long been interested in the interplay between informed
and uninformed traders and in the dissemination of informa-
tion across a market consisting of rational agents. Early work
focuses on the relationship between trading volume and price
change and the relationship between these quantities and the
qualitative notions of surprise, importance, and precision of
the information �58�.

Using methods from statistical physics �4,5,60� and geo-
physics, we analyze the absolute returns of price because of
the long-memory property and the universality of fluctua-
tions in this quantity across diverse markets �33,34,61,62�.
Reference �58� postulates that price changes reflect the aver-
age change in market expectations, whereas trading volume
reflects idiosyncratic reactions across all traders. Recent

work further quantifies trading volume fluctuations and finds
that they are similar to price fluctuations and, furthermore,
finds significant cross correlation between volume change
and price change �63�. Omori relaxation dynamics are also
shown for trading volume in �15�. Here, we also observe
significant volume cascading as evident in Fig. 4. The analy-
sis of volume and transaction dynamics is an avenue of fu-
ture research and could highlight the relationship between
volume and price fluctuations by studying their correlation
around market shocks.

To summarize, we analyzed the cascade dynamics of price
volatility, which has potential applications in options pricing
and the pricing of other derivatives. The Black-Scholes equa-
tion in its simple form assumes that the fluctuations in the
price are constant during the duration of the option �64�.
However, more sophisticated methods �65� incorporate time-
dependent price volatility and are more realistic descriptions
of the nonstationarity of financial time series. The results in
this paper are of potential interest for traders modeling de-
rivatives on short time scales around expected market
shocks, e.g., earnings reports. The statistical regularity of
both market and individual stock behaviors before and after a
market shock of magnitude M � log10 V�Tc� provides infor-
mation that could be used in hedging, since we observe a
crossover in the cascade dynamics for M 
0.5. Knowledge
of the Omori response dynamics provides a time window
over which aftershocks can be expected. Similarly, the pro-
ductivity law provides a more quantitative value for the num-
ber of aftershocks to expect. Finally, the Bath law provides
conditional expectation of the largest aftershock and even the
largest preshock, given the size of the main shock. Of par-
ticular importance, from the inequality of the productivity
law scaling exponents and the pdf scaling exponent for price
volatility, we find that the role of small fluctuations is larger
than the role of extremely large fluctuations in accounting for
the prevalence of aftershocks.

ACKNOWLEDGMENTS

We thank L. de Arcangelis for the idea of investigating the
Bath and productivity laws; K. Yamasaki and A. Ralph for
helpful suggestions; and NSF, DTRA, and ONR for financial
support.

�1� E. F. Fama, J. Business 38, 34 �1965�.
�2� Z. Ding, C. W. J. Granger, and R. F. Engle, J. Empirical Fi-

nance 1, 83 �1993�.
�3� B. Mandelbrot, J. Business 36, 394 �1963�.
�4� R. N. Mantegna and H. E. Stanley, Econophysics: An Intro-

duction �Cambridge University Press, Cambridge, England,
1999�.

�5� J. P. Bouchaud and M. Potters, Theory of Financial Risk �Cam-
bridge University Press, Cambridge, England, 2000�.

�6� J. P. Bouchaud, Quant. Finance 1, 105 �2001�.
�7� X. Gabaix, P. Gopikrishnan, V. Plerou, and H. E. Stanley, Na-

ture �London� 423, 267 �2003�.

�8� J. D. Farmer, M. Shubik, and E. Smith, Phys. Today 58�9�, 37
�2005�.

�9� X. Gabaix, P. Gopikrishnan, V. Plerou, and H. E. Stanley, Q. J.
Econ. 121, 461 �2006�.

�10� F. Omori, J. Coll. Sci., Imp. Univ. Tokyo 7, 111 �1894�.
�11� T. Utsu, Geophys. Mag. 30, 521 �1961�.
�12� S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, and Y.

Dodge, Nature �London� 381, 767 �1996�.
�13� F. Lillo and R. N. Mantegna, Phys. Rev. E 68, 016119 �2003�.
�14� P. Weber, F. Wang, I. Vodenska-Chitkushev, S. Havlin, and H.

E. Stanley, Phys. Rev. E 76, 016109 �2007�.
�15� A. M. Petersen, F. Wang, S. Havlin, and H. E. Stanley, Phys.

PETERSEN et al. PHYSICAL REVIEW E 82, 036114 �2010�

036114-10

http://dx.doi.org/10.1086/294743
http://dx.doi.org/10.1016/0927-5398(93)90006-D
http://dx.doi.org/10.1016/0927-5398(93)90006-D
http://dx.doi.org/10.1086/294632
http://dx.doi.org/10.1080/713665538
http://dx.doi.org/10.1038/nature01624
http://dx.doi.org/10.1038/nature01624
http://dx.doi.org/10.1063/1.2117821
http://dx.doi.org/10.1063/1.2117821
http://dx.doi.org/10.1162/qjec.2006.121.2.461
http://dx.doi.org/10.1162/qjec.2006.121.2.461
http://dx.doi.org/10.1038/381767a0
http://dx.doi.org/10.1103/PhysRevE.68.016119
http://dx.doi.org/10.1103/PhysRevE.76.016109
http://dx.doi.org/10.1103/PhysRevE.81.066121


Rev. E 81, 066121 �2010�.
�16� J. D. Hamilton and O. Jorda, J. Polit. Econ. 110, 1135 �2002�.
�17� J. D. Hamilton, J. Money, Credit Banking 41, 567 �2009�.
�18� D. Sornette and A. Helmstetter, Physica A 318, 577 �2003�.
�19� D. Sornette, Y. Malevergne, and J. F. Muzy, Risk 16, 67

�2003�.
�20� New York Times article archive, 1981–present, http://

www.nytimes.com/ref/membercenter/nytarchive.html
�21� A. G. Zawadowski, G. Andor, and J. Kertész, Quant. Finance

6, 283 �2006�.
�22� A. Joulin, A. Lefevre, D. Grunberg, and J. P. Bouchaud, Wil-

mott Magazine 46, 1 �2008�; e-print arXiv:0803.1769.
�23� A. Ponzi, F. Lillo, and R. N. Mantegna, Phys. Rev. E 80,

016112 �2009�.
�24� F. Wang, S.-J. Shieh, S. Havlin, and H. E. Stanley, Phys. Rev.

E 79, 056109 �2009�.
�25� K. Yamasaki, L. Muchnik, S. Havlin, A. Bunde, and H. E.

Stanley, Proc. Natl. Acad. Sci. U.S.A. 102, 9424 �2005�.
�26� F. Wang, K. Yamasaki, S. Havlin, and H. E. Stanley, Phys.

Rev. E 73, 026117 �2006�.
�27� F. Wang, P. Weber, K. Yamasaki, S. Havlin, and H. E. Stanley,

Eur. Phys. J. B 55, 123 �2007�.
�28� R. N. Mantegna, Eur. Phys. J. B 11, 193 �1999�.
�29� L. Laloux, P. Cizeau, J. P. Bouchaud, and M. Potters, Phys.

Rev. Lett. 83, 1467 �1999�.
�30� V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. Nunes Amaral,

and H. E. Stanley, Phys. Rev. Lett. 83, 1471 �1999�.
�31� V. Plerou, P. Gopikrishnan, B. Rosenow, Luis A. Nunes Ama-

ral, T. Guhr, and H. E. Stanley, Phys. Rev. E 65, 066126
�2002�.

�32� Historical Data for Key Federal Reserve Interest Rates, http://
www.federalreserve.gov/releases/h15/data.htm; http://
www.federalreserve.gov/fomc/fundsrate.htm

�33� V. Plerou, P. Gopikrishnan, L. A. Nunes Amaral, M. Meyer,
and H. E. Stanley, Phys. Rev. E 60, 6519 �1999�.

�34� P. Gopikrishnan, V. Plerou, L. A. Nunes Amaral, M. Meyer,
and H. E. Stanley, Phys. Rev. E 60, 5305 �1999�.

�35� L. de Arcangelis, C. Godano, E. Lippiello, and M. Nicodemi,
Phys. Rev. Lett. 96, 051102 �2006�.

�36� L. de Arcangelis, E. Lippiello, C. Godano, and M. Nicodemi,
Eur. Phys. J. B 64, 551 �2008�.

�37� G. Drakatos and J. Latoussakis, J. Seismol. 5, 137 �2001�.
�38� A. Helmstetter, Phys. Rev. Lett. 91, 058501 �2003�.
�39� A. Saichev and D. Sornette, Tectonophysics 431, 7 �2007�.
�40� A. Saichev and D. Sornette, Phys. Rev. E 70, 046123 �2004�.
�41� M. Bottiglieri, L. de Arcangelis, C. Godano, and E. Lippiello,

Phys. Rev. Lett. 104, 158501 �2010�.

�42� S. Demiralp and O. Jordá, Federal Reserve Bank of New York,
Economic Policy Review 8�1�, pp. 29–48 �2002�.

�43� G. Ouillon and D. Sornette, J. Geophys. Res. 110, B04306
�2005�.

�44� I. Eliazar and J. Klafter, Proc. Natl. Acad. Sci. U.S.A. 102,
13779 �2005�.

�45� A. N. Kolmogorov, Proc. R. Soc. London, Ser. A 434, 9
�1991�.

�46� P. Ch. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin,
M. G. Rosenblum, Z. Struzik, and H. E. Stanley, Nature �Lon-
don� 399, 461 �1999�.

�47� D. C. Lin and R. L. Hughson, Phys. Rev. Lett. 86, 1650
�2001�.

�48� B. Suki, A.-L. Barabasi, Z. Hantos, F. Petak, and H. E. Stanley,
Nature �London� 368, 615 �1994�.

�49� A. M. Alencar, S. V. Buldyrev, A. Majumdar, H. E. Stanley,
and B. Suki, Phys. Rev. Lett. 87, 088101 �2001�.

�50� T. Petermann, T. C. Thiagarajan, M. A. Lebedev, M. A. L.
Nicolelis, and D. R. Chialvo, Proc. Natl. Acad. Sci. U.S.A.
106, 15921 �2009�.

�51� D. Plenz and D. R. Chialvo, e-print arXiv:0912.5369.
�52� J. Touboul and A. Destexhe, PLoS ONE 5, e8982 �2010�.
�53� R. Crane and D. Sornette, Proc. Natl. Acad. Sci. U.S.A. 105,

15649 �2008�.
�54� A. Vázquez, J. Gama Oliveira, Z. Dezsö, K.-I. Goh, I. Kondor,

and A.-L. Barabási, Phys. Rev. E 73, 036127 �2006�.
�55� K.-L. Goh and A.-L. Barabási, EPL 81, 48002 �2008�.
�56� D. Rybski, S. Buldyrev, S. Havlin, F. Liljeros, and H. A.

Makse, Proc. Natl. Acad. Sci. U.S.A. 106, 12640 �2009�.
�57� D. Morse, J. Account. Res. 19, 374 �1981�.
�58� O. Kim and R. E. Verrecchia, J. Account. Res. 29, 302 �1991�.
�59� T. Preis and H. E. Stanley, J. Stat. Phys. 138, 431 �2010�.
�60� R. Cont, M. Potters, and J. P. Bouchaud, Proceedings of the

Les Houches Workshop, Les Houches, France, 1997 �Springer,
Berlin, 1997�, pp. 1–11.

�61� Y. Liu, P. Cizeau, M. Meyer, C.-K. Peng, and H. E. Stanley,
Physica A 245, 437 �1997�; P. Cizeau, Y. Liu, M. Meyer, C.-K.
Peng, and H. E. Stanley, ibid. 245, 441 �1997�.

�62� Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.-K. Peng, and
H. E. Stanley, Phys. Rev. E 60, 1390 �1999�.

�63� B. Podobnik, D. Horvatic, A. M. Petersen, and H. E. Stanley,
Proc. Natl. Acad. Sci. U.S.A. 106, 22079 �2009�.

�64� B. E. Baaquie, Quantum Finance: Path Integrals and Hamil-
tonians for Options and Interest Rates �Cambridge University
Press, Cambridge, UK, 2004�.

�65� J. P. Bouchaud and D. Sornette, J. Phys. I 4, 863 �1994�.

MARKET DYNAMICS IMMEDIATELY BEFORE AND AFTER… PHYSICAL REVIEW E 82, 036114 �2010�

036114-11

http://dx.doi.org/10.1103/PhysRevE.81.066121
http://dx.doi.org/10.1086/341872
http://dx.doi.org/10.1111/j.1538-4616.2009.00223.x
http://dx.doi.org/10.1016/S0378-4371(02)01371-7
http://www.nytimes.com/ref/membercenter/nytarchive.html
http://www.nytimes.com/ref/membercenter/nytarchive.html
http://dx.doi.org/10.1080/14697680600699894
http://dx.doi.org/10.1080/14697680600699894
http://arXiv.org/abs/arXiv:0803.1769
http://dx.doi.org/10.1103/PhysRevE.80.016112
http://dx.doi.org/10.1103/PhysRevE.80.016112
http://dx.doi.org/10.1103/PhysRevE.79.056109
http://dx.doi.org/10.1103/PhysRevE.79.056109
http://dx.doi.org/10.1073/pnas.0502613102
http://dx.doi.org/10.1103/PhysRevE.73.026117
http://dx.doi.org/10.1103/PhysRevE.73.026117
http://dx.doi.org/10.1140/epjb/e2006-00356-9
http://dx.doi.org/10.1007/s100510050929
http://dx.doi.org/10.1103/PhysRevLett.83.1467
http://dx.doi.org/10.1103/PhysRevLett.83.1467
http://dx.doi.org/10.1103/PhysRevLett.83.1471
http://dx.doi.org/10.1103/PhysRevE.65.066126
http://dx.doi.org/10.1103/PhysRevE.65.066126
http://www.federalreserve.gov/releases/h15/data.htm
http://www.federalreserve.gov/releases/h15/data.htm
http://www.federalreserve.gov/fomc/fundsrate.htm
http://www.federalreserve.gov/fomc/fundsrate.htm
http://dx.doi.org/10.1103/PhysRevE.60.6519
http://dx.doi.org/10.1103/PhysRevE.60.5305
http://dx.doi.org/10.1103/PhysRevLett.96.051102
http://dx.doi.org/10.1140/epjb/e2008-00057-5
http://dx.doi.org/10.1023/A:1011473432628
http://dx.doi.org/10.1103/PhysRevLett.91.058501
http://dx.doi.org/10.1016/j.tecto.2006.05.026
http://dx.doi.org/10.1103/PhysRevE.70.046123
http://dx.doi.org/10.1103/PhysRevLett.104.158501
http://dx.doi.org/10.1029/2004JB003311
http://dx.doi.org/10.1029/2004JB003311
http://dx.doi.org/10.1073/pnas.0506816102
http://dx.doi.org/10.1073/pnas.0506816102
http://dx.doi.org/10.1098/rspa.1991.0075
http://dx.doi.org/10.1098/rspa.1991.0075
http://dx.doi.org/10.1038/20924
http://dx.doi.org/10.1038/20924
http://dx.doi.org/10.1103/PhysRevLett.86.1650
http://dx.doi.org/10.1103/PhysRevLett.86.1650
http://dx.doi.org/10.1038/368615a0
http://dx.doi.org/10.1103/PhysRevLett.87.088101
http://dx.doi.org/10.1073/pnas.0904089106
http://dx.doi.org/10.1073/pnas.0904089106
http://arXiv.org/abs/arXiv:0912.5369
http://dx.doi.org/10.1371/journal.pone.0008982
http://dx.doi.org/10.1073/pnas.0803685105
http://dx.doi.org/10.1073/pnas.0803685105
http://dx.doi.org/10.1103/PhysRevE.73.036127
http://dx.doi.org/10.1209/0295-5075/81/48002
http://dx.doi.org/10.1073/pnas.0902667106
http://dx.doi.org/10.2307/2490871
http://dx.doi.org/10.2307/2491051
http://dx.doi.org/10.1007/s10955-009-9914-y
http://dx.doi.org/10.1016/S0378-4371(97)00368-3
http://dx.doi.org/10.1016/S0378-4371(97)00417-2
http://dx.doi.org/10.1103/PhysRevE.60.1390
http://dx.doi.org/10.1073/pnas.0911983106
http://dx.doi.org/10.1051/jp1:1994233

