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Science of Science

K. Bérner, et al. A multi-level systems
perspective for the science of team science.

Practical Question: how to measure scientific output Sci. Transl. Med. 2, 49¢m24 (2010).
and impact at various scales while accounting for

Interactions across scales

systemic heterogeneity
® Science

e Country

<>

® Lab / Team

® |ndividual

® Paper

Institutional
factors

Organizational
factors

SOCiaI/ Group level
Behavioral
factors

Individual level




Limited complexity
in small knowledge networks

Early scholarly societies, e.g. national

societies, scholastic monasteries, noble courts

Convent of San Francesco,
XV century

for Improving Natural
Knowledge, Established 1660

&ﬁ’
e

G5

growth and
Increasing

Paradigm shifts =~ Emergent complexity

in large knowledge networks

a Co-authorship

G. Palla, A.-L. Barabasi, T. Vicsek. Quantifying social group
evolution. Nature 446, 664-667 (2007)

S. Wuchty, B. F. Jones, B. Uzzi. The increasing dominance
of teams in production of knowledge. Science 316, 1036-9 (2007)

organizational
The Royal Society of London C O m PI eX i ty

Harvard University
Urban_property
210 acres (85 ha) (Main campus)

21 acres (8.5 ha) (Medical campus)
360 acres (150 ha) (Allston campus)
4,500 acres (1,800 ha) (other hoIdings) Wy

Academic staff  Admin. staff

2,100 2,500 non-medical
11,000 medical

Endowment

US$30 billion (2012) (Large-cap company,

e.g. same market capitalization as Enel and

Mitsubishi)



http://en.wikipedia.org/wiki/Urban_area
http://en.wikipedia.org/wiki/Financial_endowment
http://en.wikipedia.org/wiki/1000000000_%28number%29

How might paradigm shifts in science affect science careers?

Access to new opportunities increasingly dependent on the embedding
within teams / organizational units
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Macro (institutions)

e Exponential growth of Science

¢ Economics of research universities
and govt. funding

e Increasing role of teams (division of
labor) in science with implications on
allocation of resources

Micro (individual careers)

¢ Growth of careers

e Collaboration patterns within careers
e Competition

e [ssues of ethics (rules of the game)
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Increased competition for limited resources

— Bottle-neck in the tenure track model: redirection of PhDs into postdocs and non-
tenure track personnel

—Demographic shifts: aging, globalization, and brain drain (e.g. 2004 Euro expansion)

Science Technology & Medicine Faculties (STEM), USA

15 1—
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Ethical scandals reveal the price of success

‘...one survey estimated that almost 7% of students irb
universities have used prescription stimulants [Adderall
and Ritalin] in this way, and that on some campuses, up to
25% of students had used them in the past year. These
students are early adopters of a trend that is likely to

@w, and indications suggest that they’re not aloney

Towardsgsponsible use of cognitive-
enhancing drugs by the healthy

Society must respond to the growing demand for cognitive enhancement. That response must start by
rejecting the idea that ‘enhancement’ is a dirty word, argue Henry Greely and colleagues.

NATURE|Vol 456|11 December 2008
“One in five respondents said

Professor's little helper they had used drugs for non-

medical reasons to stimulate
The use of cognitive-enhancing drugs by both ill and healthy individuals raises ethical questions that

should not be ignored, argue Barbara Sahakian and Sharon Morein-Zamir. their focus , concentration or

NATURE|Vol 450|20/27 December 2007 memory. Use did not differ
greatly across age-groups...,

_ which will surprise some. “
Poll results: look who's doping

In January, Nature launched an informal survey into readers’ use of cognition-enhancing drugs. Brendan
Maher has waded through the results and found large-scale use and a mix of attitudes towards the drugs.




Team Ethics: Credit distribution 1n large team science

The reward system in science developed during a period when teams were relatively
small. Hence, there is an inherent difficulty in distributing fairly sliced credits in large
modular teams comprised of heterogenous members

a=30,N =138

2008-2012
NEJM (Medicine), P (= 30)=0.065
PRL (Physics), P (=30)=0.040
Cell (Biology), P (=30)=0017

Cutting the “credit pie” fairly:
Who gets credit? “Who’s on first”?

Citation (impact) credit:
- Is it shared equally amongst a coauthors?

Fraud/Retraction anti-credit:

- can impact all a coauthors

- If credit 1s shared equally then should
blame also?

~ factor of 20 increase in retractions from 2000 - 2010

The retraction penalty: Evidence from the web of science.
Lu SF, Jin GZ, Uzzi B, Jones B. Scientific Reports 3, 3146 (2013).



Redesigning the credit system in science?

Adoption of career models from communities that
embraced a team structure (e.g., filmmaking)

— Pl model == crew model
— uni-polar reward system = multi-polar reward system

Crew model /
Hollywood model

Together We Stand, Nature Physics (2014) I. Pavlidis, A. M. Petersen, |. Semendeferi.
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Science careers are embedded in a co-evolving network of networks

Collaboration
network

Complexity

* coevolutionary system:
* knowledge
® institutions
® careers
* social processes:
* behavioral aspects
® economic incentives
e cumulative advantage mechanisms
* collaboration / competition

Citation network



Quantitative evaluation in science is increasingly based on
productivity and citations measures

[a—
S
\8)

[A/B] 1 30(1)

15|7

[C] 1.15(2)

b

S
S
-
g L (D115
§ 0L 101(1)/,/ S
) C 7’ - -
O B 7’ ~
S .0 27
Q?‘100,4’,| I Lo I
10Y 10!
104E C ’
C [A/B] 2.52(1)
1% [C]24204)
D] 2.65(1)
102 1.39(3)

[a—
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Citation trajectory, <C'(?))
NT T |||||I|

[Em—
-
[=

10

10!
carcer age, t

The data: longitudinal Web of Science
publication and citation data for 450 top
scientists; 83,693 papers, 7,577,084
citations tracked over 387,103 years
Highly-cited scientists establish upper
limits to longitudinal career growth

Set A: 100 most-cited physicists, average
h-index, <h> =61 + 21

Set B: 100 additional highly-prolific
physicists, <h> =44 +15

Set C: 100 assistant professors from 50
US physics depts., <h> =15x7

Set D: 100 most-cited cell biologists,
<h> =98 +35

50 highly-cited pure
mathematicians, <h> =20 +10
C>a > 1: knowledge, reputation,
and collaboration spillovers
contribute to sustainable growth
across the academic career



Benchmark patterns of microscopic career growth dynamics

(1) = Z . Acy(t) cumulative # of citations at paper age T

Ni(t) '
Ci(t) = ci(r,t) ~1 g cumulative citations by career age ¢
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10

¥ discrete generalized Beta function

The rank-citation profile illustrates C( rp) = Afr_’B ( N —|— 1 — ’r‘) (DGBD)

the evolution of the publication-

. . 1+8; . . :
impact p ortfolio CZ AU h B 1 simple scaling relation between

7 the h-index and C

Statistical regularities in the rank-citation profile of scientists, A. M. Petersen, H. E. Stanley, S. Succi. Scientific Reports 1, 181 (2011).



Statistical regularity in the rank-citation distribution: the Discrete
Generalized Beta Distribution (DGBD) model for ci(r)

N = 278, [3—083and’y—067

citations, c(r)
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paper rank, r

c(r) = Ar_ﬁ(N +1—17r)’

N; = # of publications

pi = scaling slope of top papers

vi = truncation scaling of less-cited papers
C; = total citations from all papers

Scaling
relation

between C,
h, and 8

C ~ h!+B

= Hence,

knowing both the
h-index and C is
~ redundant

A. M. Petersen, H. E. Stanley, S. Succi.
Statistical regularities in the rank-
citation profile of scientists.

Scientific Reports 1, 181 (2011).



A comparison of Ci(7) for the top-100 “champions” of

Physical Review Letters
alOS ' ror T T ' ror T T ' b

’ e Average c(r) ‘ .-

c(r)/A (N+1-r)"

—_
Ov

c(r')

1 1 11 ‘ 1 1 1 1 1 L1l ‘ 1 1 1 L1l
10 10" 10° 10
B

paper rank, r

- scaled paper rank,r' =1
Set A: average h-index <h> = 61+21

Discrete Generalized — —p _ 8
Beta Distribution(DGBD): c(r)=Ar "(N+1—-r)".

Average values of the DGBD model parameters:

<p>=083+023 and <VY> =0.67=%0.19



M1 Inequality in science careers

FOR ADVANCED
STUDIES
LUCCA

The h-index distribution derived from the full Web of Science citation index:
6,498,286 research profiles
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Exploiting citation networks for large-scale author name disambiguation.
C. Schulz, A. Mazloumian, A. M. Petersen, O. Penner, D. Helbing.
EPJ Data Science (2014)



Data-driven investigation of cumulative advantage
processes in competitive arenas

*‘c The NEW ENGLAND
% JOURNALof MEDICINE

Proceedings of the National Academy of Sciences of the United States of America



Champions of Economics
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Levels of inequality in science careers

Economics Nature/PNAS/Science Nature/PNAS/Science
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total normalized citations, C

Detrending citation counts to account for cohort bias

(y) / (e} (),

J
1,p,Y

~J
Ci,p

(y) =c

Measuring cumulative citation impact within

high-impact journals

N7 (y)
Cly)= > &’
p=1

Inequality and cumulative advantage in science
careers: a case study of high-impact journals.

A. M Petersen, O. Penner.
EPJ Data Science (2014).

(y)

total normalized citations, C total normalized citations, C

Scientific careers demonstrate a
wide range of long-normally
distributed citation impact, even
after controlling for censoring
bias, cohort bias, and controlling
for career longevity.

Log-normal “size” distributions
suggests that C’J follows a Gibrat
proportional growth process



Gini index and top-1% share of total citations in high-impact journals

Journal set j Cohort entry years | G(C) | fi%(C) | G(Np) | fi(Np)

Economics 1970 — 1995 0.80 0.23 0.54 0.09
1970 — 1980 0.83 0.26 0.56 0.10
1980 — 1990 0.79 0.21 0.55 0.09
1990 — 1995 0.74 0.19 0.47 0.07

Nat./PNAS/Sci. 1970 — 1995 0.69 0.18 0.46 0.10
1970 — 1980 0.74 0.22 0.53 0.12
1980 — 1990 0.67 0.15 0.45 0.08
1990 — 1995 0.63 0.12 0.35 0.06

l
l

Decreasing
levels of
inequality
over time

Summary of the Gini index (G) and top-1% share (f;9;) inequality measures calculated

from the distributions of citation impact (C) and productivity (/N,) for the cohorts of scientists

whose first publication occurred in the indicated time intervals.

Interestingly, this story seems to be opposite of what has been observed in a recent
analysis of US research institute funding, which indicates a slow but steady increase in
the G across U.S. universities over the last 20 years, with current estimates of the Gini
inequality index for university expenditure around G = 0.8 (Xie, Science, 2014).

For comparison, the 2010 U.S. income Gini coefficient was G = 0.4, and the top 1% share of
individual income (USA) has increased from roughly 10% to 20% over the last half century.

Citation inequality levels are high, but over time, science appears
to becoming more equitable! (**Possibly a collaboration effect)



Macro-level of career trajectories

career i
~ N
waiting times  T(1)  T(2) T(3) T(4) ---T(n)
3 PO f ~ career
v [ ffofoli | postion
1 1 2 3 4 5---n f
citations c(1) @) <B) c(4) o(5) c(n)
g Y,

What generic processes might contribute to sustained growth across the career?



How long does a researcher typically wait before
his/her next publication in a prestigious journal?

For each career i we track his/her longitudinal publication rate by
aggregating over publications in a specific set of high-impact journals
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How long does a researcher typically wait before
his/her next publication in a prestigious journal?

For each career i we track his/her longitudinal publication rate by
aggregating over publications in a specific set of high-impact journals

Cumulative probability distribution, P( = 7(n))
)

—_—
<

-
Median line g g
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These empirical findings of decreasing waiting time are consistent with
a “Matthew Effect” rich-get-richer model

Cumulative advantage model: Two main ingredients

|) Forward progress follows a stochastic “progress rate” g(x). Cumulative advantage
corresponds to g(x) increasing with career position x

2) Random termination of the career due to hazards (e.g. decreased work performance, economic

down, economic downturn, health, retirement, etc.) g(x)
a(3)
a(4)
g2) 96

~ g A
o A /\ N
= ] career
30.67 - 7 iti
~ CELL I ] POSItIOI’], X
A 4l |~ = NEIM g i 1 2 3 4 5 x-1 x x+1
= Nature
~— I |@—-0PNAS t: (e 7

2+ |a—a Science . ( ) —]/< ( )>

Completed Careers 1958-2008 “#= J g x T x
0 o ) ) ) ) & \‘;'».:3/':!»
10° 10' . )
Author’s n® paper The progress probability & is the
inverse of the mean waiting time T

Methods for measuring the citations and productivity Quantitative and empirical demonstration of the Matthew

of scientists across time and discipline, A. M. effect in a study of career longevity. A. M. Petersen, W.-

Petersen, F. Wang, H. E. Stanley. Phys. Rev. E 81, S. Jung, J.-S. Yang, H. E. Stanley. Proc. Natl. Acad. Sci.

036114 (2010). USA 108, 18-23 (2011).



Statistical regularities in the career longevity distribution
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Quantitative and empirical demonstration of the Matthew effect in a study of career longevity, A. M.
Petersen, W.-S. Jung, J.-S. Yang, H. E. Stanley. Proc. Natl. Acad. Sci. USA 108, 18-23 (2011).



Are researcher’s later publications more or less
cited than their previous publications?

normalized
citations  Z(1) z(2)  z(3) z(4) z(5) z(n) Inequality and cumulative advantage in science
< > > - PO careers: a case study of high-impact journals.
A. M Petersen, O. Penner.
EPJ Data Science (2014).
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How to account for temporal bias? To investigate the longitudinal This decreasing i act pattern
Variation in the citation impact, we map the citation count 1 ccreasing imp patte

¢;’, , of the n'™ publication of researcher 4, published in jour- highlights the difficulty of repeatedly

nal set j to a z-score, producing research findings in the
~Inc¢/,,(n)— (Incd) highest citation-impact echelon, as
zi(n) = olnc) ) well as the role played by finite

Zi(n) = zi(n) — () career and knowledge life-cycles.



Indication of confirmation bias in science career evaluation?
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B) Reputation flows in the collaboration-citation network

Micro-level of citation trajectories

Collaboration network Citation network

Collaboration and citation networks provide
channels for reputation signaling

What is the impact of author reputation on
a paper’s citation rate (i — p) ?



highly-cited physicists
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Reputation effect citation model

# of new citations in year t+/1 = Ac; ,(t +1) =n x IL,(t) x A,(7) x R;(?)

1. preferential attachment 1,(f) = [ )]
2. citation life-cycles Ap(T) = exp[-7,/7]
3. author reputation effect g, (+) = [C.())



highly-cited physicists

¥oor
An excess citation > 0 Reputation Ci(t) is
rate above what g 10% estlme.lteq by the

ouwould expect & F total citations of

1Yrom linear P -§ - the most highly
preferential % 101 CrI;ted CoaU'thord
attachment alone 3 (here assumed to

S r® be i)

g -

DIOOIII | | lIIIII| | | IlIIIII | | IIIIII| | 1 1111

= 10 10! 102 103

citations, c,(%)

Reputation effect citation model

# of new citations in year t+/1 = Ac; ,(t +1) =n x IL,(t) x A,(7) x R;(?)

1. preferential attachment 1,(f) = [ )]
2. citation life-cycles Ap(T) = exp[-7,/7]
3. author reputation effect g, (+) = [C.())

Author-specific factors matter,
corresponding to important quantifiable nuances underlying citation dynamics!!!



Author-specific features: m;, 7, pi

TABLE I: Best-fit parameters for individual careers and the average values within disciplinary datasets. The three features of the citation model
are parameterized by , the paper citation effect, 7, the life-cycle effect, and p, the reputation effect.

c(t—1) < ex c(t—1) > cx
Name T Ti Pi T Ti Pi
GOSSARD, AC 0.34 £ 0.027 4.92+£0.261 0.25£0.008{0.80 £0.048 4.73 +0.184 0.09 £ 0.024
BARABASI, AL 0.42 4+ 0.036 3.00£0.155 0.29 £0.010{1.06 £0.016 3.65+0.111 0.01 £ 0.011
Ave. £+ Std. Dev. [A]| 0.43 £0.14 5.67+2.52 0.22+0.06 | 0.96+0.19 893+£4.09 —-0.07=£0.11
BALTIMORE, D 0.32 £0.018 4.64 £0.148 0.28 £0.006|0.62 £ 0.047 5.92£0.250 0.15 = 0.026

Ave. £ Std. Dev. [E]

0.27£0.17 30.60 = 56.80 0.14 = 0.07

LAEMMLI, UK 0.54 +0.036 5.09 £0.297 0.21 £0.014{1.09 £0.025 6.40 +0.255 —0.12 £ 0.019
Ave. £ Std. Dev. [D]| 0.40 £0.14 6.64+£6.24 0.26£0.05 | 0.99 £0.22 9.55£26.30 —0.06 £0.14
SERRE, JP 0.33 £0.095 15.90 £ 3.724 0.14 £ 0.026|0.66 £ 0.065 20.50 £ 3.862 —0.03 £ 0.039
WILES, A 0.56 £0.208 5.23 £1.187 0.24 £0.052|0.70 =0.059 9.04 =0.633 0.10 £ 0.042

0.54£0.25 21.40=*=54.30 0.01 =0.11

Cx
40

100

20

math | biology | physics

* A fixed-effects model yields consistent results

Take home message:

1) The reputation effect is
stronger for newer publications (c< Cx)

2) The citation rate of highly-cited
papers is largely independent of
the author reputation

plc < cx) > plc = cx)




How strong is the citation boosts attributable to author reputation?

TABLE I: Best-fit parameters for individual careers and the average values within disciplinary datasets. The three features of the citation model
are parameterized by , the paper citation effect, 7, the life-cycle effect, and p, the reputation effect.

Ave. £+ Std. Dev. [E] | 0.27 £0.17 30.60 &£ 56.80 0.14 = 0.07 | 0.54 £ 0.25 21.40 £54.30 0.01 £0.11

” c(t—1) < ex c(t—1) > ex
15) Name T T 0i T T pi C X
E GOSSARD, AC 0.34 £0.027 4.924+0.261 0.25 £ 0.008]0.80 & 0.048 4.73 £0.184 0.09 + 0.024

o, BARABASI, AL 0.42 £0.036 3.00 4 0.155 0.29 £0.010|1.06 & 0.016 3.65+0.111 0.01 £0.011 40
— Ave. £ Std. Dev. [A]| 0.43 +£0.14 5.67£2.52 0.22£0.06 | 0.96 £0.19 8.93+£4.09 —-0.07+0.11

b>6 BALTIMORE, D 0.32 £0.018 4.64 4+ 0.148 0.28 +0.006|0.62 4 0.047 5.92 £ 0.250 0.15 += 0.026
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The reputation premium: A 66%
increase in the citation rate for every
10-fold increase in reputation, C;

consider 2 scientists, one with 10x as
many total citations as the other,
Ci(t) =10 Cy(t),

Incentive for Quality > Quantity! then for 2 new papers,

Since ~ 10-15% of an author’s C; Ceterus paribus:
comes from his/her highest-cited paper Acy,(t+1)
| | | L = 10” = 1.66
Reputation and Impact in Academic Careers, ACQ,p (t + 1)

A. M. Petersen, S. Fortunato, R. K. Pan, K. Kaski, O.
Penner, A. Rungi, M. Riccaboni, H. E. Stanley, F.
Pammolli, Proc. Nat. Acad. Sci. (2014)



Team Assembly

<t d'a

The challenge of optimizing between
redundancy and specialty, incumbents and newcomers



e Dataset B

PRI

1

._.
o»—
<=
[an)
~J
N
~~
~
A
| ]

[ )

[ ]

Ave. annual output, < n. >
[ ]
I T :
a :]

- Dawsetdl A

1

= Dataset A
e Dataset B

Std. Dev. annual change, o, (r)

—_
S

°
°
XT Y

L] oon -M- ][]

(=]

© Y/2=0403) |

10"

10°

Collaboration radius and team efficiency

Dataset A: Top physicists
Dataset B: random set of prolific physicists

Towards a micro-level production function:

ave.ragc.e number of Si is median number of
publications per year coauthors per year

Output change (“growth fluctuation”),

Median # of coauthors per year, S, = Med [k | T?: (t) — n"z (t) - nz (t o At)
Not surprisingly, there is a
decreasing marginal returns with
increasing collaboration radius, likely

std. deviation of publication change

S¢/2 —

team efficiency

attributable to team management

inefficiencies, however inefficiencies

aggregate sub-linearally, 1) <1

volatility

output/ O-i( )

parameter

Persistence and Uncertainty in the Academic Career,
A. M. Petersen, M. Riccaboni, H. E. Stanley, F. Pammolli.
Proc. Natl. Acad. Sci. USA 109, 5213-5218 (2012).



Team (1n)efficiency
Q: How does annual productivity depend on the number of “labor inputs™ ?
Q: Are there disciplinary variations ?

Physics Biology Math
‘. _ h
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\< Median coauthors per year, Si() Median coauthors per year, Si() Median coauthors per year, Si() J
[ T y=0381) Y= 0.64(1) = 0.54(3) o1 N
S [ R=041 . | [ R=os oo R=027 }
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k Unique coauthors, k() Unique coauthors, k(f) Unique coauthors, k(7) j

We measure the input-output relation using two aggregation methods, which both yield sub-

linear scaling relations with efficiency parameters 1\ =y and \, vy < 1
Interestingly, for scientists not in the top cohort we observe smaller 1 and vy values, suggesting

that team management skills are an important factor related to success
YToplOO Phyics = 068(1) > YProliﬁc Physics = 052(1), YAsstProfessor Physics = 0.51 (2)



Ego collaboration network:

1981

300

quantifying dynamic & heterogenous patterns of

collaboration within scientific careers

4 Sir Andre K. Geim
# publications, N; (2012) = 217
S; = 303 coauthors

_ = 2.1 years, <Ky = 3.7 pubs.

The average copublication duration {L;)

~

J

I) Measuring the duration L;; of the tie (time

b/w 1st and last copublication)

IT) Measuring the intensity Kj; of the tie
(# of copublications)

IIT) Measuring the value Cj; of the tie
(citation impact)

How important are academic “Life partners”

- Division/Diversity of labor
- Risk/Reward sharing

?

- Ethics of credit distribution & free-riding
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quantifying dynamic & heterogenous patterns of

1)

Ego collaboration network:

collaboration within scientific careers

Sir Andre K. Geim
# publications, N;(2012) = 217
S = 303 coauthors

high churning of new entrants (new ideas, new
methods, new resources) correlates with higher
productivity; however, it represents inefficiencies on
the team-formation process and the career trajectory

The effect of team heterogeneity on productivity is
positive indicating the benefits of efficient team
management via hierarchy / mentoring

Research life-partners — “a scientific marriage”: The
effect of super ties on productivity is positive
indicating the benefits of matching complementary
capabilities and beneficial roles. Also points to the
profit-sharing of a tit-for-tat publication strategy (free-
riding).

A. M. Petersen Quantifying the impact of weak, strong, and
super ties in scientific careers Proc. Nat. Acad. Sci. (2015)

1981 1990 2000 2010

A 300

250

[\
-l
-}

150

[U—
S
=)

coauthor j ordered according to entry year

50

|II||III||I]|||II||IIII|||II|‘I
NOBEL PRIZE

GRAPHENE
K. S.NOVOSELOV '

:_ publication rate, K;;/Lj

B 7.3 "‘
B 6.6

B 5.8

- 5.1 ’
- 4.4

- 37

] 3.0 o
O 2.3

- 16 ®
- 0.9 *
L citations rate, C;i/L;

L T K,Nov‘osel
T

- O o ? 4
B . 102 :

- @

B > 10! .

B I, Grigorieya
B 04 ;‘.
_I_III|IIII|IIII|IIII‘IIII|IIII|II
1 5 10 15 20 25 30

career age, ¢



Dynamic network characterized by life-cycles

Collaboration
network

highest-cited

papers \
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Dynamic network characterized by life-cycles
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Variable collaboration life-cycles reveal tie-
formation dynamics characterized by a complex
dichotomy of burstiness and persistence.

Citation network



An ego-centric perspective of collaboration 1n science
reveals diverse collaboration strategies

Interactions mediated by social “forces”:

® Collaboration (attractive)

Collaboration
network

e Competition (repulsive)

® Knowledge (an “exchange particle”)
. 451
Binary-star strategy: publications

* Michael Stuart Brown
* Joseph L. Goldstein

central . -
Recipients of the 1985 Nobel Prize in

aUthOI' l Physiology or Medicine for describing
the regulation of cholesterol metabolism.

Solo-artist strategy:
* Marilyn Kozak (also cell biologist) 458

N =70, Nsolo = 59 publications



K 17 Individual level: How strong/weak is the collaboration tie?

Qi p, Qi t  Team level: How big is the team?

G f{z Group level: How concentrated are the collaborator tie strengths?
“



Weak ties, strong ties, and super ties

4 H. Eugene Stanley h
N; (2010) = 909 publications
Si = 541 coauthors
(Ki) = 5.7 papers
N J
S ° =TT
3 10— 10 super ties _—--="
- T - C
su:‘) ] % ///’ K’L
R 1 ,i //
§ 7] // L
o / ml/..“ -
S 10— ! e eme
N * <Ki>
11
41
|ﬂ||||||||||||||||||||||||||||||||||||II|IIII
O 20 40 60 80 100 120 140 160

coauthor rank,r = 1 ... S;

\4

sol} Jadng

sol buosg

sol} Seap

rank K
1 HAVLIN, S 203 .25
2 BULDYREV, SV 203 f)i
3 AMARAL, LAN 66 g
4 SCIORTINO,F 62 | .05
5 IVANOV, PC 55
6 GOLDBERGER, AL 48
7 PENG, CK 48
8 GOPIKRISHNAN,P 41 =
9 PLEROU, V 41
10 'STARR, FW 41 03
11 DOKHOLYAN, NV 33
12 PAUL, G 33
13 BUNDE, A 31
14 GIOVAMBATTISTA, N 28
15 MAKSE, HA o7
16 CONIGLIO,A 26 ,,
17 URBANC, B 25
18 CRUZ, L o5
19 SCALA, A 24
20 LARRALDE,H 23
21 MANTEGNA, RN 23
| 22 POOLE, PH 22 y

o5 )

Q: How to define collaboration super-tie “outliers” ~ 1.e. research life partners



Is there a characteristic collaboration intensity scale?
=10 = 10
;\T i Y Top Biology ;\T i Yc Top Physics
R 10 O Other Bio. R 10 (O Other Phys.
2 102 2 1072F
Z 107 : Z 107 o o
Sl ¥ -
o 104t C * c 104 D o Po
a, E A U R © a, L N 999
0 2 4 6 8 0 5 10 15
scaled coauthor intensity, x = K;; /<Ki) scaled coauthor intensity, x = K;; /KKy

In order to aggregate across careers with varying coauthorship patterns,
we use the normalized variable x = K;; /{Ky

P(=x) 1s well-described by an exponential distribution, for which there 1s
a closed-form solution to the extreme value equation:

1/5i = >k, > ke P(Kij) = exp(—riK7)
Wthh has the simple solution

“super tie” threshold K¢ = ((K;)-1) Ln(S))



The (collaboration) path to the Nobel
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career age, t coauthor rank, r

publication trajectory, K;i(t)
rank-coauthor profile, Kjj(r¢t)

It is quite clear that none of these researchers were anywhere close to being solo-artists
For example, we found that 9% of the biologists and 20% of the physicists shared 50%
or more of their papers with their top collaborator.
Q: What is the career impact of the relatively common and indispensable super ties?



Superstars are typically not lone stars - Super ties
are rather common

—— Top Biology === Other Bio. —— Top Physics === Other Phys.
— 1.00 = 1.00
S ] ! =~ = ] — -
v A |\ 7" w B i
¥ 0.75 ] ,(,/-" ¥ 0.75 o,
> ] /ﬂ > { '.IJ
= 0.50 AL = 0.50 §
:.8 i / I —8 : JJI
S 0.25- aul S 0254 | a
o ] / o ] "
S _/ L L 8 00 ,_j/-/ 1 S«
! 1 I 1 I I I s R I I 1 L1
O'OQ).OO 0.04 0.08 0'000.0 02 04 06 08 1.0
super-tie coauthor fraction, fz super-tie paper fraction, fy

fr: fraction of coauthors that are super ties: on average 1 in 25
fn: fraction of publications that include a super tie: on average 50%

Considerable variation across publication profiles,
however the datasets are well-matched with regard to fk.



INSTITUTE
FOR ADVANCED

STUDIES
LUCCA

<Ll> Individual career level: What is the characteristic collaboration length?

L 4 .¢ Team level: Whatis the team’s experience together?
)



Characteristic collaboration duration (L)

P(L)) PULD)
0.30¢ 0.20¢
0 0.15|
0:15: Mean = S.D. () = 0.10¢ Mean + S.D. <Ly =
8(1)(5) 5.1 £0.8 years 0.05t 56+1.6 ycars
=5 6 T % 000 10

P(Lp) P({L»)
0.25¢ ) 015l
0.20} ' :
0.15} Mean + S.D. (L) = 0.10} Mean + S.D. {Lp =
8‘(1)(5)' 4.7 £0.9 years 0.05} 4.8 + 1.3 years
R D S B SR =5 6 7 8 9

(L), years (L, years

(L;) ranges from 4 to 6 years, consistent with the typical duration of an early career
phase position (e.g. graduate school, postdoctoral, assistant professor).

“*These averages were calculated after excluding the collaborations with Ljj = 1,
which account for a remarkable 70 to 80 percent of all collaborations! Including the
Lij = 1 values, the {L;) instead are in the range of 2 to 3 years.



High collaboration turnover rate: a source of inefficiency?

—— Top Biology === Other Bio. ——Top Physics === Other Phys.
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unscaled collaboration duration, L; scaled duration, A = L;;/(L;)

Spurious ties: ~2/3 collaborations have L;; < <{L) ~ 5 years
Lifelong ties: only ~1% last longer than ~ 4{L) ~ 20 years

. An egocentric perspective (as apposed to a cross-sectional perspective)
reveals that the “invisible college” is held together by weak transient ties

. Team assembly: collaboration formation/destruction costs are high, both for
PI and for transient scientists

. Credit distribution: Fractional publication/citation counting could reduce
incentives to collaborate, thereby reducing the innovative potential of science



Dichotomy of burstiness and persistence in collaboration ties
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Growth and decay of collaboration ties. A/B: (Mean) collaboration rate A K z’ j (7) (# of publications
normalized to peak value), measured T;; years after the initiation of the collaboration. C/D: The C value

quantifies the scaling of <t,,> as a function of the normalized tie strength x;; = K;;/{K}).

® The sub linear (T < 1) values indicate that longer collaborations are relatively more productive: increasing
marginal returns with increasing collaboration duration (T,)).

® These results signal the productivity benefits of long-term collaborations characterized by formalized
roles, mutual trust, experience, and group learning that together facilitate efficient interactions.



INSTITUTE

FOR ADVANCED
STUDIES
LUCCA

Is there any advantage associated with heavily investing
in a select group of research partners?

The advantage of extremely strong social ties characterized by trust, conviction, commitment,
experience, skill complementarity, effective collocation and a larger formal and informal social
network, moral support, reputation spillovers, risk-profit sharing ...



The apostle effect I: annual productivity

Unit of analysis = career period ;
TV ¢

Dependent variable = <

n > = annual productivity normalized to the average over the study period ¢ € [6,29]
1

All quantities are defined over At-year non-overlapping periods. Overall results are robust for At =1,3.

- ) The average number of authors per publication, a proxy for team

D,t, management costs and also the technological level of the research
Z The average collaboration length using the L;j(?-1) values for only the
t N coauthors with AK,j(t) > (0, measuring team experience.

GK, The gini index calculated using the K,'j(t) values in the previous period,
taz measuring the tie-strength concentration, ranging from 0 (all team
members contributed equally) to 1 (extreme inequality in the team
participation)

Zj |R=1 AK’LJ (t) The (productivity) apostle effect: The ratio of collaboration inputs from
Pt P— super ties to non-super ties measuring the relative intensity of super tie
Y

Zg |R=0 AK’I,] (t) collaborators within the period.

fixed-effects model

TR

(n;) = Bio+ Bzlnay;: + szi,t + 5@@,{2 -+ Bppz',t + Bttz’ + €54




The apostle effect I: annual productivity

Apostle effect |: productivity model (n;.:)

Dataset A Ina; Ly th< Dt t Nops. | Adj. R?
All 466 0.002 £+ 0.029 — 0.054 +£0.008 1.788 +-0.134 0.110 £ 0.013 0.029 £+ 0.002 8483 0.19
(Std. coeff.) 0.002 £+ 0.033 —0.140 £ 0.021 0.320 4+ 0.024 0.140 +0.016 | 0.049 + 0.004

p-value 0.943 0.000 0.000 0.000 0.000

1) The extra labor appears to balance out the coordination costs (55 =~ 0)

2) The role of team stagnation (inflexibility : fixation of redundancies/inefficiencies) is

negative ( 87 < 0) indicating that high churning of new entrants (new ideas, new
methods, new resources) is positively related with higher productivity

3) The effect of team heterogeneity on productivity is positive ( 3¢ > 0): indicating the
benefits of efficient team management via hierarchy / mentoring

4) The apostle effect (Bp > 0): significant productivity boost due to higher relative

contribution by super ties, indicating the benefits of matching complementary

capabilities, experience, prosocial rewards of working together, etc.

5) Aging effects ( 5,5 > 0) : indicating increasing productivity with career stage (due to

increasing access to resources: labor, $$, knowledge stock, reputation and other
cumulative advantage sources)




The apostle effect II: long-term citation impact

Unit of analysis = publication quality (proxied by long-term citations)
Only papers at least 6 years old (Y-t, = 6 years) were analyzed.

Dependent variable = Z; p,y = the citation impact C; p,y (y) of publication p normalized to baseline
citation levels defined by other papers published in the same year y. Y is the census year for the
citation counts.

This measure is approximately normally distributed within pub. age (y)

_In Ci,p,Y(y) — <ln v (y)> cohorts, and is appropriate fo.r comparing citation impact across time. m
Zipy = — represents the set of publications from the high-impact journals Nature,
ollncy (y)] PNAS, and Science, aggregated for each year, providing baseline

measures which control for the time-dependence of citation counts
(Petersen & Penner EPJ Data Science 2014)



The apostle effect II: long-term citation impact

Unit of analysis = publication quality (proxied by long-term citations)
Only papers at least 6 years old (Y-t, = 6 years) were analyzed.
Dependent variable = Z; p,y = the citation impact C; p,y (y) of publication p normalized to baseline

citation levels defined by other papers published in the same year y. Y is the census year for the
citation counts.

This measure is approximately normally distributed within pub. age (y)

Inc; , v (y) — {In c?(y)) cohorts, and is appropriate for comparing citation impact across time. m
Zipy = = — represents the set of publications from the high-impact journals Nature,
O[IH Cy (y)] PNAS, and Science, aggregated for each year, providing baseline
measures which control for the time-dependence of citation counts
(Petersen & Penner EPJ Data Science 2014)
Qa; number of coauthors = proxy of N, (t,,) number of papers up to year to
1,D coordination costs and tech. level 1\lp

~ prestige measure
and number of paper-level “apostles” P 9

The (citation) apostle effect: a number of distinct coauthors up to
Ri D S?Fer'?e mdnc;a}[tr(])r vanaﬁl}e. 1if S; (tp) year Ip = collaboration radius
’ alleast one ot the coautnors Is measuring access to new/old team
a super tie, and 0 otherwise.
members
t publication year measured relative to career age, accounting for
p aging and cumulative advantage effects, learning and prestige

Fixed-effects model
Zip = Bio+ Balnaip+ BrRip+ Bitip + BN In N; (tp) + BS In S; (tp) + €5.p



The apostle effect II: long-term citation impact

Apostle effect Il citation model (z;,p)

Dataset A Ina, R, tp In N; (t,) In S;(t,) Nops. | Adj. R?
All 377 | 0.263 £0.024 0.202+0.023 || —0.061 +£0.004 | 0.06240.066 | 0.065+0.072 | 68589 | 0.27
(Std. coeff.) 0.135 + 0.012 0.129+0.015 || —0.039 +0.003 | 0.044 +0.046 | 0.050 £ 0.055

p-value 0.000 0.000 0.000 0.347 0.367

1) Positive impact of having more disciples ( 84 > 0) : indicating the benefits of
having more contributors (towards big endeavor) and also more messengers (of

the results)

Positive citation boost due to super ties (Br> 0) : possibly reflecting the

promoting power of super ties via self-citation and reputation growth, but also skill
complementarity

Aging effects ( B¢ < 0) : indicates a decreasing citation impact with increasing

career age. A decreasing trend in researchers’ normalized impact is possibly due
to finite career (staying motivated) and knowledge life-cycles (staying on the crest

of the knowledge front) and possibly reflects the role of confirmation bias in the

career growth process (Petersen & Penner EPJ Data Science 2014)

4) Neither prestige nor collaborator radius show a significant effect ( s ,8ny = 0)




So what is the added value measured in terms of citations?
We analyzed all the publications from 1990-2000, splitting them into two groups depending on R, = 0,1

A) Aggregate level
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These two methods provide consistent estimates of the citation boost at the publication
level, 4 = ar, corresponding to a 16%-24% citation increase attributable to super ties:

P(é|R, = 1)

Y
Y

P(OzRaRp = O)



Competition and contract length

How does competition affect career sustainability?
An agent-based competition model with cumulative achievement
appraisal (evaluation)

Achievement measured by 77, (t) , the number of opportunities
(ex. publications) captured in time period

[ = finite labor s

: 11
force size s s **ﬁez }Arrival of opportunities

e
\ ﬁ*f}\ v X

i A

Persistence and Uncertainty in the Academic Career,
A. M. Petersen, M. Riccaboni, H. E. Stanley, F. Pammolli.
Proc. Natl. Acad. Sci. USA 109, 5213-5218 (2012).



Appraising prior achievement

Achievement measured by n; (t), the number of opportunities captured
in time period

The cohort of I agents compete for a fixed number of opportunities in each period
over a lifespan of = /... T periods.

In each period, the capture rate of a given individual i is calculated by an appraisal of
the achievement history

t—1
capture rate o« Ws (t) = Z 1 (t — At)e_CAt
At=1 ——
Appraisal e?<ponential
timescale 1/c discount factor

¢ — () :appraisal over all lifetime achievements ( ~ tenure system)
¢ >1 :appraisal over only recent achievements (short-term contract system)




Crowding out by “kingpins”

Our theoretical model suggests that
short-term appraisal systems:

* can amplify the effects of competition and uncertainty
making careers more vulnerable to early termination, not
necessarily due to lack of individual talent and persistence,
but because of random negative production shocks.

* effectively discount the cumulative achievements of the
individual.

* may reduce the incentives for a young scientist to invest in
human and social capital accumulation.

Longevity probability distributions
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Q: Is there an optimal appraisal (contract) length?

¢ =0.1 (~ long term appraisal)

linear
capture

a=1.0

a=1.2

super-linear
capture
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Longevity, L
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non-linear

preferential
capture model

wi(t)"

Pi(t) = — .
% D i Wi(t)T

Hazard rate H(L)=-d/dL [In P(L)]:
conditional probability that failure will
occur at time (L + OL) given that
termination has not yet occurred at

time L

H(L)=0
hazard rate is not dependent on

career position!



Closing thoughts:

Science is a challenging but fascinating system to analyze using data-driven methods: lots of open data,
various levels of aggregation, and paradigm shifts offer many natural experiments. It also goes without saying
that the science of science is highly relevant: formally — Science of Science policy, and informally — “the
hunter becomes the hunted” — informing young scientists on the paths to success in science

Quantitative insights into social/institutional processes underlying science: competition, reputation, team
formation, productivity spillovers, career uncertainty, social & economic impact, peer review, etc.

Reputation: Nuances in the interpretation of citation rates. On the one hand, we show there is a significant
boost in the early phase of the citation lifecycle due to reputation. Nevertheless, it is not strong enough to
explain the phenomena of extremely highly-cited publications, nor should a single publication represent the
accomplishments of a career. Reputation offers a strategic incentive to work with established researchers.

Super ties (often career partners): A scientist will encounter many potential collaborators throughout the
career. As such, the choice to start or terminate a collaboration can also be an important strategic
consideration with long- term implications. The formation of super ties can benefit a career, which can gain a
competitive advantage from collective experience, skill complementarity, effective collocation (larger formal
and informal social network), moral support, reputation spillovers, cost-risk-profit sharing, etc. We measure
the significance of these super ties using an ego-centric perspective which quantifies the added-value of
super ties on productivity and citations.

Policy recommendations: One particularly relevant scenario is in career award and tenure evaluations,
where it is a common practice to consider “independence from one’s thesis advisor” as a selection criteria. We
show that in order to assess a researcher’s independence, evaluation committees should also take into
consideration the level of publication overlap between a researcher and his/her strongest collaborator(s) and
the citation impact attributable to working with highly cited scientists due to the reputation effect. Yet at the
same time, the beneficial role of super ties should also be acknowledged and supported. For example,
funding programs might consider career awards that are specifically multipolar, aimed at life partners (possibly
real ones). Policies on credit sharing should make sure to avoid penalizing the incentives to collaborate.
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Title: The computational social science of academic career growth

Abstract: Quantitative measures are becoming increasingly prevalent at all scales of scientific
evaluation, from countries, to universities, departments, laboratories, and individuals. In the first part of
this talk I will share our recent work on the reputation effect in science based upon an analysis of
comprehensive career data for several hundred leading scientists from biology, mathematics, and
physics. Reputation is an important social construct in science, which enables informed quality
assessments of both publications and careers of scientists in the absence of complete systemic
information. However, the relation between reputation and career growth of an individual remains
poorly understood, despite recent proliferation of quantitative research evaluation methods. I will
discuss an original framework for measuring how a publication’s citation rate depends on the reputation
of its central author. We find that a new publication may gain a significant early advantage
corresponding to roughly a 66% increase in the citation rate for each tenfold increase in author
reputation. I will conclude with recent evidence on how cumulative advantage underlies trends in
waiting times and citation patterns of individual researchers within high-impact “arenas”. In the second
part of the talk I will discuss new results on the role of tie strength in egocentric collaboration networks.
This study is motivated by the fact that a scientist will encounter many potential collaborators
throughout the career. As such, the choice to start or terminate a collaboration can be an important
strategic consideration with long- term implications. While previous studies have focused primarily on
aggregate cross-sectional patterns of collaboration, here we analyze the ’egocentric’ patterns of
collaboration along individual careers, focusing on tie-formation dynamics characterized by a complex
dichotomy of burstiness and persistence. We develop a framework for quantifying collaborative tie
strength, revealing a new class of ‘super tie’, the analog of a research life partner. Accounting for author-
specific features, we measure a significant positive impact of super ties on a researcher’s productivity
and citations — the ‘apostle effect’ — representing the advantage of extremely tight social ties
characterized by trust, conviction, and commitment.



