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Abstract 

A system of semiclassical dipoles located on a honeycomb lattice 
is considered within the Mean Field approximation. Energy, entropy, 
magnetization, susceptibility and specific heat are computed and the 
phase diagram of the system is constructed. Results are compared with 
the predictions of the planar classical dipolar model and experimental 
data on FeC/3 intercalated graphite compounds. 

1 Introduction. 

The molecules of FeCb intercalated into graphite form monomolecular lay-

ers sandwiched between graphite layers with the Fe3+ ions arranged on a 

honeycomb lattice. The iron ions are in the spin-~ state with the dipole 

moment J..L = 5.5J..LB and the nearest neighbor distance of 3.5A [1]-[4]. Since 

the energy of 0.5]( 0 of the dipolar interaction between two nearest magnetic 

ions is close to the lowest magnetic phase transition temperature in these 

compounds ( 1 J1,/(
0

) thf' rol(> of dipole interaction is certainly of crucial im-

portance at low temperatures. There is both experimental and theoretical 
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evidence [1]- [4] that at low temperatures Fe3+ dipoles are oriented mostly 

in a plane parallel to graphite layers. The resulting picture of dipoles con­

fined to rotate in the plane has been adopted by the Planar Dipolar model 

[4] - [6]. However with temperature increasing the dipoles will tilt out of 

the plane seeking for the maximum of entropy. To provide this possibility 

a model with 3-component dipoles is desirable. Moreover, magnetic prop­

erties of FeCiJ-graphite intercalated compounds in the field pointed along 

the c-axis have been already measured [7]. To interpret experiments [7] a 

model of the above-mentioned kind is also necessary. Taking all this into 

account we will consider a model with magnetic dipoles fixed in the knots 

of the honeycomb lattice but able to rotate around the knots over the three 

dimensional space. 

As a first step we will apply the Mean Field Approximation (MFA) 

which is useful only if the long range magnetic order exists. It is well known 

that neither the ferro- nor the antiferromagnetic Heisenberg model with 

interactions of the finite range have long range order on 1- or 2-dimensional 

lattices at any finite temperatures due to the spin waves excitations [8, 9]. 

In the ferromagnetic classical isotropic planar (XY) model with interactions 

of the finite range the phase transition occurs at some finite T [10]. However 

it results [10, 11] from the decoupling of the pairs of the Thoules-Kosterlitz 

2 



vortices [12) and has nothing to do with the long range magnetic order. The 

same is true [11, 13) for the antiferromagnetic XY model, which is a close 

relative of the Planar Dipolar model [4, 5, 6], Thus a question arises whether 

the Mean Field approximation can give us even a qualitative insight into the 

system's behavior. Our point of view is that ( 1) a dipolar system with long­

range interaction has long range order at low enough temperatures; and (2) 

the 3-component dipolar system on a planar lattice with a short range quasi­

dipolar interaction (i.e. with the dipole interactions only between nearest 

neighbors) also has long range magnetic order. The reason for our belief is 

that the disordered state of a two-dimensional Heisenberg antiferromagnet 

is very marginal: even a very (if not arbitrarily) small amount of anisotropy 

or frustration makes the long range order possible [14), even without the 

long range of the ( anisotropic ) dipole interaction. 

Various antif<'rroma.gnetic and dipolar systems had been analyzed within 

the MFA during last fifty years [15]-[18]. In particular, the Mean Field 

approximation was applied to the classical antiferromagnetric Heisenberg 

model and to the dipolar model on bipartite lattices within the Neel ap­

proximation of two sublattices [18] as well as to the antiferromagnetic Planar 

Rotator (XY) model [13] and Planar Dipolar model [4, 5) on the honeycomb 

lattices assuming different magnetization of each of six sublattices. Never-
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theless, without the oversimplifying Neel approximation the behavior of 3-

component dipoles on the honeycomb lattice has not been analyzed yet even 

within the Mean Field Approximation even for the classical dipoles. The 

possible reason for it is that the ground state of the 3-component dipoles 

on the honeycomb lattice in nonzero fields ( obtained in Section 4 of this 

paper ) has been unknown. 

Classical models considered within the MFA do not satisfy the Third Law 

of Thermodynamics [18]. It means that the MFA treatments [4, 13] of the 

classical models are not reliable at low temperatures. Since the whole issue 

of the weak dipole interaction makes sense only at low temperatures, the 

above mentioned problem is of crucial importance. To clarify the situation 

we consider the semiclassical dipoles with spin S ( the case of S = 5/2 of 

particular interest ) and compare their behavior with the classical dipoles. 

The outline of this paper is as follows. The problem is described and for­

mulated in Section 2 using the variational Raleigh-Ritz procedure restricted 

to the Mean Field Approximation. The method of solution including the 

nearest-neighbor approximation is briefly discussed in Section 3. The ground 

state of the model in nonzero fields is obtained in Section 4. The param­

agnetic and ferromagnetic solutions are given in Section 5 while the dipole 

configuration in the antiferromagnetic phase is described in Section 6. The 
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thermodynamical properties of the Spin S model are studied ( within the 

MFA ) in section 7. Properties of the Spin S, Space Rotator and Planar 

Rotator models are compared with each other and experiment in Section 8. 

The most interesting results of this work are summarized in the Conclusion. 

2 The Model and the Mean-Field Approxima­
tion. 

Consider a system of N dipoles on a honeycomb lattice in an external mag-

netic field H. We assume the dipoles interact by means of the dipolar 

interaction 

11 dip _ Jdip[. • J( • • )( • . )] 
l 'J - lJ 1-li . /-lj - /-li . fjj /-lj . fjj (1) 

and write the Hamiltonian as 

1t = L Uij - ii . L Pi. (2) 
<i,j> 

Here the summation I:<•.J> is taken over all pairings of dipoles, a dipole 

moment at the ith lattice site is ji; = 9JlBS = Jloili (here p0 = 9/-lBS, g = 2 

is the Lande g-factor, JlB = 0.9274 10-23 J /Tl is the Bohr magneton and 

S is the total moment being equal 5/2 for FeCL3 ), jl; = fid Po is a dipole 

moment of unit magnitude at the ith lattice site, Ji~ip is the dipole interac-

tion coupling constant between dipoles It· and 17. ( J~ip = 112 jr?. 11 -
,_, r-J •J r-ejf •J•r-eff-
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9J.LB)S(S + 1)), and H is an external field multiplied by the magnitude of 

the magnetic moment J.Lo· 

The free energy functional F[p] of the system is given by the expression 

F[p] = U- TS = Tr[p( 2: Uij- H ·~Pi+ kTlnp)] (3) 
<t,J> l 

where U and S are the energy and entropy functional correspondingly and p 

is the density matrix. In the Mean- Field Approximation we seek to minimize 

the free energy in the subspace 

where p; is the single particle density matrix normalized to 

Trpi = 1. 

Substitution of ( 4) into ( 3) and the use of ( 1) lead to 

U[p] = I:<i,j> Jjip [ mi · mj - 3( m; . i\j )( mj . i\j) J - .ii . I:; mi 

S[p] = -k Li Tr(pj{,npi) 

where 

iii1 = Tr(pzfii ), i = 1, 2, 3, ... , N 

(4) 

(5) 

(6) 

(7) 

is the average reduced (dimensionless) dipole moment at site i ( "magneti-

zation of the dipole iii''). 
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It is easy to obtain the extremal equation for the functional F[p] given 

by Eq. ( 6) and subject to the constraint Eq. ( 5) (see [ 4]). However analysis 

of the stability and search for the phase transition points is more difficult. 

To work around the last problem the direct minimization approach is used 

in this paper. We choose trial pin the form of Eq. (4), where 

Z-1 (A;·fJ,;) z-1 (- .) 
Pi = i exp ~ = i exp a; · J.Li (8) 

Here ai = AJkT, 1.4;1 < oo and Z; = Z;(ai) does not depend on [1,;. The 

chosen trial function allows us to calculate integrals in Eq. { 3) thus reducing 

the problem to a search for a global minimum of a function instead of a 

functional. Since p of Eq. (8) satisfies the MFA condition Eq. (4) and the 

MFA extremum equation [4], the resulting a; will give us the mean field 

extremals exactly. It will be proven later that the extremum value of the 

variational pa.rametN A; is the mean field a.t the i-th site. 

For the chosen form of p vectors m; and a; are collinear: 

There is one-to-one correspondence between m; and a;. The direction of 

vectors m; and a; a.nd the shape of the function m( a) depends on a chosen 

dipole model. The classical dipoles can be confined to rotate in the lattice 

plane (the planar dipolar rotator) or to rotate over all space (the space 
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dipolar rotator). The semiclassical dipoles can be allowed to have a finite 

25 + 1 number of possible projections onto a given vector A (only two in 

the Ising model, for instance). 1 

In the two-component Planar Rotator model integration over the phase 

plane leads [4] to 

ii; = (a;x,a;y,O), Z; = 27rlo(a;), m(a) = h(a)/Io(a), (10) 

(here In(a) = (7r)- 1 J; cos(nO)eacosOdO is the modified Bessel function of 

order n ). In the three-component Space Rotator model integration over the 

space results in the Langevin function: 

ii; = (a;x,a;y,a;z), Zi = 47rsinh(ai)ja;, m(a) = L(a) = coth(a)-1/a, (11) 

In the three-component Spin S model we get for m( a) the Brillouin function 

s - ( ) z """" rna ;s . h( 25 + 1 )/ . h( a; ) a;= a;x, a;y, a;z , ; = ~. e ' = stn 
5 

a; szn - 5 , . 2 2 
IlL=-.':> 

25 + 1 25 + 1 1 a 
m(a) = Bs(a) = 

25 
coth( 

25 
a)-

25
coth(

25
) (12) 

In the Ising (spin 5 = 1/2) case the summation over two possible states 

gives 

ii; = ( 0, 0, +a;), Z; = ta' + e-a; = 2cosh( ai), m( a) = tanh( a) , ( 13) 

1 Besides we can impose restrictions on the direction of the vector A, for example, 
assuming a priori that A lies along the normal to the lattice plane. Of course in a consistent 
quantum mechanical picture the projection of the magnetic moment onto some vector A 
is not conserving in the presence of an external magnetic field unless vector A is directed 
along the field. 



The classical Langevin function can be obtained from the Brillouin function 

in a standard way by letting S -+ oo and J.LB -+ 0 so that lims-oo 9J.LBS = 

J.Lo = const. 

The entropy, given in Eq. (o), can now be obtained by combining Eqn. (8) 

and Eqns. (9)- (13) as 

N 

S = -k 'l:[aim(ai) -ln(Zi(ai))], (14) 

i=l 

while the internal energy becomes 

N 

u = L Jtip[m;. mj- 3(mi. f;j)(mj. f;j)]- I: il · m;. (15) 
i~j i=l 

It is straightforward to carry out the minimization of the free energy F = 

U - T S with respect to ai (or m;). Using the identity m; = d~; (lnZi) we 

get the equilibrium equatiou 

X- ii + ""'' Jd'p[in - 3r· ·(m . f· ·)] = o l L...,. !) J IJ J I) 
(16) 

where the prime over the summation sign denotes the restriction of j:~i. 

As expected, Eqn. (16) coincides with the Euler-Lagrange equation for the 

free energy functional F[p] in the Mean Field Approximation [4], so that 

Ai has meaning of the mean field at site i. The stability properties of the 

function F( mi) are governed by the Hessian matrix H = 8 
82% where 

m, 0 m 1f3' 

o:,/3 = x,y,z. Our goal now is to find Ai, which minimize the free energy 
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for given H and T. Then the per-dipole magnetization is given by 

N 
- - 1'"' M(T, H)= N L.J mi 

t=l 

from which we can directly compute the magnetic susceptibility as 

where 

( 17) 

( 18) 

(19) 

The specific heat can be obtained either from the internal energy or from 

the entropy: 

(20) 

"A word of caution is necessary about calculating the thermodynamic prop-

erties of a system under the MFA" [18]. In the MFA the last two expressions 

for the specific heat are not necessary identical. In the case of the dipole in-

teraction they are different even in zero field (unlike the Heisenberg model), 

thus providing a useful quantitative measure of the inherent controversy of 

the MFA. 

3 The Method of Solution. 

So far we have ueeu careful iu the formulation to allow dipolar interactions 

between all pairs. From here on, following [4, 5], we restrict our consideration 
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to nearest-neighbor interactions. A honeycomb lattice of N sites can be 

decomposed into n=6 equivalent sublattices with N /6 sites each, so that 

spins in the same sublattice do not interact. A priori, and guided by our 

numerical solutions, we expect the magnetization of the six sublattices to 

be different. Allowing this possibility, enumerating 6 sites of an elementary 

hexagon a.s shown in Fig.l of the work [4] and denoting the number of the 

nearest neighbors by z( z = 3 for the honeycomb lattice), we get for the 

per-site free energy 

J=F/N=u-Ts, 

Jdip n z 1 n 

u = -2- L L [iii; . iiij - 3{ iii;. Tjj )( iiij . Tj )]- -:2: jj. iiii, (21) 
n i:;:l j:;:l' n i:;:l 

k n 

s = -- I)aim(a;) -ln(Zi)]. 
n i:;:l 

Here u and s are the per-site internal energy and entropy correspondingly. In 

the nearest neighbor approximation the equilibrium equation ( 16) reduces 

to six vector equations as follows: 

A, - If + jdtp L:j::;:J' [IIIJ' - Ji"iJ'( llij' . Tjj' )] = 0, I = 1, 2, 3 

.4;,- n + Jdip L:j:;:1[iii1 - 3f;,1(iii1 . f;,1)] = o, i' = 1', 2', 3' 
{22) 

where mj is given by Eqn. {9) , Jdip = 1'-2 ja3 being the nearest neighbor 

interaction, and riJ' is the unit vector pointing from site i to site j'. The 
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Hessian becomes the (18*18) matrix with the following elements: 

~ =!M.L = kT ai, i = j, a= f], 
om,, dm, 

o2J. = 0, i = j, a f; {3, 
om,,.&m;fj 

a2J. = A.)'J _ Jdip _ 3Jdiprara if;j,a=f], 
Eimaa&m 1a - t) t)' 

f12l 
&m, 0 &m113 

= B''" 
t) 

- -3Jdip1.~.,-r(3· 
- t) tJ' 

i cf j, a cf p, 

where i,j = 1, 1', 2, 2', 3, 3' and a, {3 = x, y, z, r[j = Xij and so on. Here 

1-m~- m~/a· 
' • t' 

0 h-2(' ) + -2 -sw. . a.i a.i , 

- (2Stl )2 sinh-2 (~a) + 
2S 2S 1 

1 . h-2(.!!.i..) 4'S!sm 2S , 
cosh-2(a;), 

Planar Rotator model, 
Space Rotator model, 

Spin S model, 
Ising model, 

(23) 

(24) 

The free energy was minimized numerically. The ground state configura-

tion was used as the initial approximation of the ordered state at low fields 

and temperatures. The minimum associated with the lowest free energy 

was identified as the true dipole configuration. The susceptibility and the 

specific heat were ohtainPd by numeric differentiation with the estimated rel-

ative error less than 0.01 and then reevaluated by the Aitken's interpolation 

formula. 

4 The Ground State (T = 0). 

The ground state is one in which the energy 

N N-1 N 

E = L L Jjip[jJ,; 0 P,j- 3(jl,;. f;j)(P,j. f;j)]- L ii 0 jl,;, (25) 
i=J j=J I i=l 

12 



has its minimum ( in the thermodynamical limit N __. oo ). Naturally 

each of the considered models predicts the same ground state. In spherical 

coordinates the energy is expressed as follows: 

N 1\' -I 

E = L L J~ip[cos(Oj}cos(Oj) + sin(Oi)sin(Oj)exy(</>;,<l>j)] 
t=l J=l 1 

N N 
-H"L.cos(Oi)cos(fh)- H"L.sin(Oi)cos(¢;- ¢h)sin(Oh), (26) 

i=l i=l 

where 

(here h = H / Jdip, {1; = ( 1, 0;, </>;) and Oij is the angle that the vector T;j 

makes with the x-axis ). The extremum conditions are 

+H(sinO;cosOh- cosO;sinOhcos(¢;- <i>h)) = 0, (28) 

and 

A solution of the equilibrium equations (28)- (29) is a minimum if the 

following stability conditions are satisfied: 

()2e 

0 
a > 0, detHx.,x; > 0, ... , 

X1 XJ 

lJ 

(30) 



where H x x is the Hessian matrix with respect to the variables xi = (}i, (} j, 
" J 

In the nearest neighbor approximation the energy can be written in the 

following form: 

where for the honeycomb lattice z=3, z' = 3' and h = H / Jdip. The resulting 

changes in all other expressions are straightforward. 

4.1 jj = 0. 

Consider first the ground state for H = 0. In this case Eqs. (28) have one 

"planar" solution ( 1) (}i = (}j = 1r /2, one "parallel" solution (2) (}i = Bj = 0; 

and ''antiparallel .. solutious (J) (}i = kiTr (k; = 0,1), which correspond to 

any other combination of dipoles pointing in any direction along the normal 

to the plane. The second solution corresponds to a maximum, while the 

first gives the lowest minimum. Thus. in accordance with the footnote 3 

of the work [6], the ground state of the 3-component dipolar system on a 

honeycomb lattice in zero field coincides with the ground state of the dipolar 

Planar Rotator model, described in [4, 5, 6]. By symmetry we expect the 

dipoles to be arranged in a symmetric fashion, namely, the dipoles ji1, fi2, ji3, 

and fii',fi2'' Ji3'' making 120° with respect to each other, although there can 
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be relative rotations [4]. Clearly, the ground state is continuously degenerate 

and can be parameterized by one parameter¢ as follows [6]: 

¢; = ( ¢, -¢- 27r /3,¢- 27r /3, -¢- 47r /3,¢- 47r /3, -¢- 27r ). {32) 

In the nearest neighbor approximation the ground state energy per site 

equals to ( -3z/4)Jdip that is -2.25Jdip [4] for the hexagonal lattice. 

4.2 H is collinear to the z-axis. 

The normal field is beyond the consideration of the Planar Rotator model. 

The behavior of the Space Rotator and the Spin S models in the normal 

field is identical. Eqs. (28) have the stable solution: 

where 

cos(O·)- cos(O·)- H/Hcr ' - J - z' 
0; = ()j = 0, 

N-1 

if H :$ H;r; 
if H 2: n;r; 

H CT 0 ~ Jdip 
z = ( 1 - ex Y ) L..... ij · 

j=l' 

(33) 

(34) 

and e~y = exy(¢>i,¢j) with the angles ¢i given for the honeycomb lattice 

by Eqn. (32). In other words th{' dipoles tilt out the plane towards the field 

direction more and more with the increasing field until at H = n;r the first 

order phase transition occurs and all of them become oriented along the 

normal to the plane. In the nearest neighbor approximation 

her - ncr;Jdip- z(l eo ) z - z - - XY • (35) 
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For the honeycomb lattice e'):y = -3/2 and h;r = 7.5. It follows that the 

z-axis susceptibility of the model at T = 0 equals x(T = 0) = 1/ n;r = 

2/15 = 0.1( 3). 

4.3 ff lies in the XY-plane. 

The behavior of each of the considered models is the same. Since cos( Oh) = 0, 

Eqs. (28) have solution Oi = Oj = 1r /2 with </>i given by Eq. (29). The 

critical field is the same in each of three considered models ( Her :::::: 2 for 

the horizontal fi ). 

5 The Paramagnetic and Ferromagnetic Phases. 

Let us consider the situation when magnetizations of all sublattices are 

equal and collinear to external field. Using the identity 'Lj=l' ( nh\j )2 = 

(z/2)(m; + m~) we get the following expression for the free energy of the 

para/ferro magnetic phase in the MFA: 

F/Jdip z - . 
f = N = 4(:27ii2

- 3m;- 3m~)- h · ni + t[am(a) -ln Z(a)), (36) 

where h = fi / Jdip, t = kT/ Jdip. Let us choose the x axis parallel to hxy. 

The equilibrium equations become 

(37) 
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The equilibrium equation (37) for each ( x or z) component is not indepen-

dent from each other due to Eq. (9). The stability conditions (30) become 

where 

(39) 

and a' is given by Eq. (24) 

5.1 Zero temperature ( T = 0 ). 

The aim of the following calculations is to determine the limiting behavior 

of the considered models at absolute zero within the MFA, no matter how 

unphysical it is ( due to the fact that the MFA does not have much sense 

at T = 0 ). Assuming the mean field value A is an analytical function of 

temperature at T = 0, expanding A near T = 0 in the powers of the small 

parameter T: A = A0 + A 1 T + O(T2 ) and using the results of Appendix 

A one can easil.v prove that the equilibrium equations Eq. (37) have two 
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solutions at T=O: the ferromagnetic solution ( A -=I 0 ) 

and the paramagnetic solution ( A = 0 ) 

( 41) 

In zero field the paramagnetic solution is the unstable trivial solution m = 

a = 0, while the ferromagnetic solution becomes either a minimum: mz = 

1, mx = 0, or a maximum mz = 0, mx = 1. Let us consider two most 

interesting directions of the external field: ()H = 1r /2 and ()H = 0. If H lies 

in the lattice plane ( OH = 1r /"2 ), then 

- A - A - :: Jdip H -mz - z - 0, I - 2 + , mx - 1 l (42) 

or 

A J dip . () - H _ () H 3 Jdip = -z , mx = sm = (3/ 2)zJdip, mz- cos , ~ 2z . (43) 

The solution E4. ( -13) ib unphybical while solution Eq. ( 42), which becomes 

the maximum at zero field, does not warrant any discussion. If H is normal 

to the lattice plane ( ()H = 0 ), then 

A - ZJdip - . () H d" -2 ,mx- sm ,mz =cosO= (
3

/ 2)zJdip'H ~ (3/2)zJ 'P. (44) 
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or 

A= H- zJdip,() = O,mx = O,mz = 1, (45) 

The solution Eq. ( 44 ), being a stable minimum, corresponds to unidirectional 

dipoles tilting out of the lattice plane towards the field direction with the 

increasing field until all dipoles ar<' oriented along the normal to the plane. 

The dependence of (}i is different from one for the ground state. The solution 

Eq. (45) makes sense only at H 2: zJdip when the unstable paramagnetic 

solution reaches the limiting value of mx = 1. The solution Eq. (45) is 

also unstable until! H reaches the value of ( 3/2 )zJdip where the solution of 

Eq. ( 45) merges with the stable solution of Eq. ( 44). 

5.2 Zero field ( h = 0). 

The equilibrium equation (37) for a z-component becomes 

(46) 

Since mz a.nd liz should ha.v<• the same sign, the only solution is mz = az = 0. 

It follows that in zero field for any considered model 

.,. z I 
mz = az = 0, mx = m(a),-~m(a)+ta = 0, - 2 +ta > 0, (47) 

where m( a) , given by Eqs. ( 9) , is slightly different in shape for different 

models. The equilibrium equation ( 47) has a trivial solution a = 0 at all 
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temperatures and a nontrivial one at 0 < t < tcw. The trivial solution 

approaches mx = 0, A = Ta = 0 at T -+ 0. For the nontrivial solution 

A= (z/2)Jdip = const > O,a = A/T-+ oo,m(a)-+ l,A = (z/2)Jdip. The 

Z( a), m( a) and s( a) behavior in the limit of the negligibly small and infinitely 

large a is given in the Appendix A. The most important consequence is that 

similar to the Planar Rotator model the Space Rotator model does not 

satisfy the Third Law of Thermodynamics, while the Spin S model does. 

At the bifurcation point (h = 0, t = tcw) these solutions merge in a 

degenerate critical point mx = 0. The trivial solution is stable at t > 

tcw, while the nontrivial solution is stable at 0 < t < tcw. The critical 

temperature 

where 

p= 

tcw = :_ lim(a')-1 = pz/2, 
2 a--+0 

1/2. 
1/3, 
(s + l)/(3s), 

1 ' 
7 /1.1. 

for the Planar Rotator model, 
for the Space Rotator model, 
for the Spin S model, 

for the Ising model, 
for 5=.5/2. 

(48) 

(49) 

In accordance with the Thom theorem [ 19] in our case of two control param-

eters h and t and one behavior (state) parameter a the free energy f( a) in 

the vicinity of the degenerate critical point is of the cusp catastrophe form. 
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5.2.1 The high temperature limit ( T--+ oo). 

The behavior of Z(a), m(a) and s(a) in the high temperature limit is de-

scribed in the Appendix A. In any model 

m = pa, as a --+ 0, (50) 

The equilibrium equation becomes: 

z 

Tp- 1m- ff + L J~ip(m- 3f;j(mf;j)) = o. (51) 
J=l' 

b;ing the identity L~:::J' i·,J(l"iif;J)) = (::/6)1'ii [4], we get the Curie-Weiss 

law 

- ff h 
m = -:-=--=-=-

kT+kTcw- t+tcw' 
(52) 

As expected in the MFA the Curle- Weiss temperature coincides with the 

ferromagnetic transition temperature. 

6 The Antiferromagnetic Phase: Dipole Config­
uration. 

If field is applied along the plane then the behavior of the dipoles in the 

Space Rotator or Spin S models differs little from that of the Planar Rota-

tor model [4]. TIH' application of the magnetic field along the plane lifts the 

infinite degeneracy of the ground state. The configuration with the lowest 

free energy depends on the direction of the magnetic field. Magnetic fields 
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applied along an axis of lattice symmetry tend to pair up dipole magneti­

zations with equal magnitudes. This pairing is broken if H is not along a 

direction of symmetry. The flip of the dipoles denotes the occurrence of a 

phase boundary. 

If field is applied along the normal to the plane then the Space Rotator 

and Spin S models predict a number of new features in the behavior of the 

system. The dipoles tilt out the plane along the field direction conserving 

the infinite degeneracy of the ground state and their symmetrical arrange­

ment. At some critical field her( t) the projections of the dipoles on the plane 

become so small that the dipolar interaction could not oppose the tendency 

of the system to disorder and the pha.se transition occurs. 

7 The Thermodynamical Properties . 

To avoid unnecessary discussion of unimportant differences among the three 

considered models and to make the article shorter we will present in this 

section the results for the Spin S=5/2 model only. Comparison of the ther­

modynamic properties of the models will be given in the Section 8.1. 

7.1 The magnetization. 

The magnetization, normalized to the saturation magnetization M 8 , is shown 

in Fig. 1 as a function of the magnetic field at fixed temperatures, and in 
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Fig. 2 as a function of temperature at fixed magnetic fields. The figures in­

dicate that for the horizontal fields the magnetization possesses a jump in h 

when t is less than the critical temperature, tcr and a cusp in t at h less then 

the critical field her. At higher temperatures and fields the discontinuity is 

replaced by an inflection point. In the fields normal to the lattice plane the 

magnetization possess cusps in both h and t. 

7.2 The susceptibility. 

The susceptibility computed from the magnetization using Eq. (18) is shown 

in Fig. 3 as a function of the applied magnetic field, and in Fig. 4 as a 

function of the temperature. Figure Fig. 3 shows the existence of the jumps 

or cusps in the points of the phase transition. The jump in the x( t) becomes 

a gradual maximum at higher in-plane fields. 

7.3 The entropy and the specific heat. 

Tht' entropy is shown as a function of field a.nd temperature in Figs. 5- 6, 

while the specific heat computed from the entropy using ( 15) is shown in 

Figs. 7- 8. Figures 7- 8 again exhibits sharp jumps in the specific heat at 

the locations of jumps or cusps in the magnetization and susceptibility. 
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7.4 The order parameter. 

We define an order parameter as follows: 

(53) 

where n81 is a number of sublattices and MJ; is the smallest angle between 

dipoles at sites i and i + 1. In the Neel case of two sublattices the definition 

gives us the usual antiferromagnetic order parameter cr = m2 - m1. Note 

that the order parameter equals 1 in the ground state and it equals zero 

in the disordered phase. A plot of the order parameter cr as a function of 

temperature and field is shown in Figs. 9-10. It is seen that in nonzero field 

the order parameter is discontinuous across the boundary between phases 

while in zero field the dependence cr( t) corresponds to the second order phase 

transition. 

7.5 The Phase Diagram. 

The energy of the antiferromagentic phase is always lower than the energy 

of the system of the collinear dipoles whenever the antiferromagentic phase 

exists. Hence the ferromagnetic phase discussed earlier is metastable and 

the ferromagnetic phase transition can not be reached in a. usual experiment. 

The only remaining phase transition is one between the paramagnetic and 

the antiferroma.gnetic phases. One can now construct a phase diagram in the 
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t-h plane by plotting the locus of the susceptibility or specific heat or order 

parameter peculiarities between the paramagnetic and the antiferrornagnetic 

phases. This is done in Fig. 11 for the field applied along the horizontal and 

normal directions. Phase transition curves for fields applied in arbitrary 

directions along the plane are very similar and do not differ by more than 

5%. Fig. 11 shows the existence of two distinct phases I and II. It follows 

from the behavior of the order parameter (see text above ) that phase I 

is the ordered phase where interactions between the dipoles dominate and 

there is the sublattice ordering. 

The critical temperature in zero field can be obtained analytically for 

each of the considered dipolar models using the approach of Zimmerman et 

al. [4]. The result is that 

kT /J
dip _ 3z Jdip 1. m( a) 3z 

N -- ·1m--= -p. 
2 a 2 

substituting z and p from Eq. ( 49) we get 

2.25 
1.5 

for the Planar Rotator model, 
for the Space Rotator model, 

(54) 

d' 9 kTN/J 'P = -p = 
2 

3(s + l)/(2s) 
4.5 

for the Spin S model, (55) 
for the Ising model, 

2.1 for S=5/2. 

The critical field at zero temperature is the same for the Space Rotator and 

Spin S model (and for the Planar Rotator model in the case of fields applied 

along the plane). For normal direction the critical field is determined only 
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by the energy of the system in zero field having the value of 7 .5Jdip. For the 

horizontal direction the critical field is 2Jdip. At H = 0 the phase transition 

is of the second order. In nonzero fields the system undergoes the first order 

phase transition. 

8 Discussion. 

8.1 Comparison of the SpinS, Space Rotator and Plane Ro­
tator dipolar models. 

The ground state of the 3-component dipoles on a honeycomb lattice in zero 

field coincides with the ground state of the Planar Dipolar model. The latter 

model a.t nonzero temperatures a.nd nonzero fields directed along the lattice 

plane was considered within the Mean Field approximation in [4]. The 

refined phase diagram [4] is represented in Fig. 12. The only substantial 

difference is that the "high-field" transition curve is not confirmed by our 

calculations. 

The thermodynamic properties of the Space Rotator model are very 

similar to those of the Spin S model. The major difference is the entropy 

behavior (see Fig. 13). At T--+ oo the entropy limit ( ln(47r) = 2.53) in 

the Space Rotator model is substantially greater than that of the Spin S 

model ( ln( 6) = 1.8 ) due to extra degrees of freedom. When approaching 

the absolute zero the entropy of the classical Space Rotator model goes to 
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minus infinity while the entropy of the Spin S model equals zero. However 

that pathological behavior manifests itself only very close to zero. Hence the 

first factor plays the key role at all other temperatures and the predicted 

critical temperature of the Space Rotator model is much smaller ( 1.5Jdip) 

then the critical temperature 2.1Jdip of the Spin S model. 

The entropy of the Planar Rotator model also becomes infinitely negative 

at absolute zero. But due to the lucky coincidence the entropy contribution 

into the free energy at infinite temperatures ( ln(27r) = 1.8) is approximately 

the same as that of the Spin S model. Therefore in the case of the Planar 

Dipolar model the pathological behavior of the entropy plays the major role 

in the differences between the models and the critical temperature value 

of 2.5Jdip is greater than that of the Spin S model. The resulting phase 

diagrams for each of the considered models are compared in Fig. 14. 

The most important feature of the Space Rotator and Spin S models is 

their ability to describe the system's behavior in the fields applied along the 

normal to the lattice plane. Both models predict the existence of two phases 

and the order-disorder phasp transition in the normal field at a value greater 

than the critical field for directions along the plane. The ratio of the critical 

fields increases with the temperature going down and reaches approximately 

3.75 at T = 0 ( See Fig. 11). 
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8.2 Artifacts of the theory. 

The considered semiclassical dipolar model is very far from the reality of 

the FeCl3 graphite intercalated compounds (GIC). In spite of this we be­

lieve that the model catches some of the important statistical aspects of 

the compound behavior. Our belief is confirmed by the comparison of the 

theoretical predictions with experiment ( see next section). 

The ordered state of the model in zero fields is continuously degenerate. 

It means the entropy per spin is infinite so that the system should undergo 

the zero-th order phase transitions at some critical temperature Tcr when 

changing temperature at zt•ro field, and at zero field when applying it at 

temperatures below Tcr· This behavior is suppressed by thermal and/or 

dilution and/or field fluctuations reducing the continuous degeneracy to a 

discrete symmetry [ 6]. In calculations we have frozen the polar angle of 

one of the dipoles on one of the sublattices which parameterizes the con­

tinuously degenerate ordered state. This primitive way of choosing one of 

the infinitely deg<>nerate states "by hand" instead of allowing fluctuations 

to cull it, together with the used MFA, results in a monotonous shape of the 

critical curve, 1'cr( H). 

It is a well known fact that the MFA predicts wrong critical indices. 
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The values of the critical field and temperature are also known do differ 

considerably from the results of more refined approaches. However the pre-

dieted differences of critical temperatures for different models should not be 

substantially affected by this fact. 

8.3 Comparison of the theoretical results with experiment. 

8.3.1 The phase diagram. 

The most important result of our calculations is that the considered model 

has phase transitions in both normal and in-plane magnetic fields, with the 

critical field stronger in the normal direction ( Fig. 11 ). Measurements [7] 

of the in-plane susceptibility in the in-plane and c-axis magnetic fields show 

that the susceptibility has a peak in both cases ( see Fig. 11 of Ref. [7] ). 

Assuming the position of the peak coincides with the critical point ( or at 

least is not far from it ), the phase diagram (Fig. 15) can be qualitatively 

constructed from the data [7]. It is clear from Fig. 15 that the c-axis critical 

field is several times greater than the in-plane one. The range of experimen-

tally investigated fields and temperatures makes it difficult to estimate the 

ratio H~r(T = 0)/ H~~(T = 0), but, evidently, theoretical prediction of 3.75 

is within the tolerance of the experimental data 2 . Hence the underlying hy-

2 A rough estimate of the experimental ratio of critical fields, H~;:a"'"(T = 
0)/ H~~-ptane(T = 0), can be obtained from the measured values of Ho, which is close 
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pothesis of the major role of the dipole interaction in the lowest temperature 

phase transition in the FeC/3-graphite intercalated compounds is strongly 

supported by our calculations. The orientational dependence of the experi-

mental phase diagram finds its natural explanation in the two-dimensional 

nature of the ground state of a dipole system on bipartite plane lattices. 

Theoretical (MFA) values of the critical temperature differ substantially 

from the experimental one. The spin 5=5/2 model predicts Tcr = 2.1Jdip = 

lJ( 0 , compared with the ycr = 1.8]( 0 measured for the stage 6 FeCl3 GIC 

[7]. 

8.3.2 The in-plane susceptibilty. 

Now let us compare theoretical predictions and experimental observations 

[7] on the susceptibilty in more details. 

The interpretation [4] of the maximum of the x(T) curves as originated 

from the critical behavior of the magnetic dipolar subsystem near the ori-

entational order/ disorder phase transition is fully supported by our calcula-

tions. This is clear from the comparison of Figs. 2-5 of Ref. [7] and Fig. 4 if 

one takes into account that approximations beyond MFA will smooth out the 

to the point where the susceptibility maximum stops shifting towards higher temper­
atures with the increase of the applied magnetic field. Since the critical field at ab­
solute zero, Hcr(T = 0), should grow with the increasing H0 faster than Ho, the 
measurements (7) provide us with the lower limit of the ratio of the critical fields: 
H;;a:m(T = 0)/ H~~-plano(T = 0) ~ H~-a:ri• / H~n-plane = 17/7.5 ~ 2.3 
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susceptibilty curve in non-zero fields at the right-hand side of the transition. 

The shift of the maximum towards high temperatures with the magnetic field 

increasing is the evident consequence of the critical temperature increase in 

weak magnetic fields, which is beyond our consideration. 

Two distinctive features of the experimental behavior of the in-plane 

susceptibility versus magnetic field, namely sharp peak at very low fields and 

decreasing of the susceptibility at higher fields ( Figs. 5 and 6 of Ref. [7] ) 

are reproduced by the theory very well ( Fig. 3 ). However, theory also 

predicts the strong dependence of the peak position of the x( H) curves 

versus the temperature parameter of the curves, which is not observed in 

the experiments [7]. The theory also fails to explain the origin of the second 

broad maximum at hi!!;her fields ( see Fig. 6 of Ref. [7] ). 

8.3.3 The c-axis susceptibility. 

Almost constant value of the c-axis susceptibility and weak anomaly at the 

critical temperature. observed in the experiments [7], are in an excellent 

agreement with the theoretical results which predict constant c-axis suscep­

tibility up to the transition point, where the derivative of the susceptibilty 

changes discontinuously ( Fig. 4 (b) ). 
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8.3.4 The high temperature susceptibilty. 

The MFA predicts the Curie-Weiss form of the dependence of the suscepti­

bilty upon temperature at high T. The Curie- Weiss law has been observed 

in the phases 1 and 2 of the FeCl3 GIC [7]. However in phases 3 and 6 

the susceptibility behavior is much more complex, indicating the existence 

of other responses to the applied magnetic field besides the reorientation of 

magnetic dipoles, interacting by classical magnetic forces. 

The MFA also predicts the metastable ferromagnetic phase underneath 

the a.ntiferroma.gnetic phase at low enough temperatures. The Curie-Weiss 

temperature gives the estimate of the critical temperature of the ferromag­

netic phase transition. 

9 Conclusion. 

We have calculated properties of three dipolar models ( Planar Rotator, 

Space Rotator and Spin S=5/2 ) on a. honeycomb lattice using the Raleigh 

-Ritz minimization approach restricted to the Mean Field Approximation. 

The behavior of the ground state in nonzero normal fields has been calcu­

lated analytically. No profound differences between models have been found 

except in the very narrow region near absolute zero where the MFA predicts 

infinite entropy for classical models [18]. The utilized technique allowed us 
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to clarify the phase digram for the Planar Rotator model first calculated 

in work [4] and to obtain the phase diagram in the wide range of in-plane 

and normal-plane fields and temperatures taking the quantization of spins 

into account ( in the semi-classical manner of Brillouin). The metastable 

ferromagnetic phase underneath the antiferromagnetic phase at low enough 

temperatures has been also predicted. 

The results of the calculations of the Spin S=5/2 model have been com­

pared with the experimental data [7] on the FeCh graphite intercalated 

compounds and a surprisingly good agreement has been found. The pecu­

liarities of the measured magnetic properties have been successfully inter­

preted as the phase transition phenomena; the anisotropy of the magnetic 

properties has found its natural explanation in the two-dimensional nature 

of the ground state of a dipole system on bipartite plane lattices. In spite 

of the fact that the experimentally observed [7] increase of the critical tem­

perature in weak magnetic fields have not been reproduced in the present 

work. we believ<' that the considered dipolar model catches the main sta­

tistical aspects of the FeCL3 graphite intercalated compounds behavior at 

temperatures of several degrees above absolute zero. 
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APPENDIX 

A High and low temperature and field limits for 
the dipolar models. 

For a given dipolar model functions m(a), Z(a) and s(a) depends only on 

the dimensionless parameter a= AfT which in its turn depends on H and T 

through A = A(H, T). Let us first find the behaviour ofthe above mentioned 

functions in the limits a - 0 and a - oo. 

A.l The Planar Rotator model. 

Using the known expressions [20] for the Bessel functions: 

_ a ., = (a2/4l 
I.,(a)-(-) Lk'f( k )' ata-O,v-:f-1,-1, ... (56) 

2 k=O • II+ + 1 

eu Jl-1 (JI-I}(p-9) 2 
l.,(a) = !'iL":( 1- -~- + . 

1 2 
- ••• ), at a~ oo,J.L = 411 (57) 

y27ra ~a 2.(8a) 

or 

2 a2/4 (a2j4)3 
lo(a) = 1 +a /4 + (2!)2 + (

3
!)2 + ... , at a-+ 0, (58) 

a a2 f4 (a2/4)2 (a2j4)3 
I1(a) = 2(1 + 2! + (2!)(3!) + (3!)(4!) + ... ), at a- 0, (59) 

ea 1 32 

Io(a) = y'27W( 1 + Sa + 2!(Sa)2 + ... ), at a- oo, (60) 

ea 3 15 
h(a) = J27rli(1- Sa- 2!(Sa)2 + ... ), at a-+ oo, (61) 
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we get 

2/ a2 q (a2 /4)3 
It (a) a 1 + a 4 + (2!) + ~ + . .. a a3 4 

m(a) = [,(a) = 2 a2/ 4 (a2 / 4 )2 ~ = 2- 16 + O(a ), at a_,. 0, (62) 
0 1 + 2! + ('2'f){3!) ' + 13f)(4TJ + ... 

( ) - Jl(a) - 1- fa-~+ ... - 1 1 11 t (63) 
m a - lo(a) - 1 3 - - -2 - 2(8 )2' a a _,. oo ' 1 + Sa + 2!(8a)2 + ··· a a 

Z(a) = 27rlo(a),(64) 

s(a) = ln Z(a)- am(a) = ln(27r)- a2f4, at a_,. 0, (65) 

1 
s(a) =In Z(a)- am( a)= '2( -In a+ ln(27r) + 1), at a--+ oo , (66) 

A.2 The Space Rotator model. 

Using known expansions of the hyperbolic functions 

1 3 9 5 22n a a a 2n-1 2 2 
coth(a) = ~ + 3- 45 + 945 + ... + (

2
n)!B2na , a < 1r , (67) 

coth(a) = 1 + 2(e-2a + e-4a + e-6 a + ... ), e-2a < 1, (68) 

a3 a5 
sinh(a) =a+ I+ I+ ... ,a2 < oo, (69) 

3. 5. 

we get 

1 3 9 5 22n 
( ) ·- h( ) _ a a a 2n-1 2 2 ( ) m a - cot a - - - - - - + - + ... + -( )' B2na , a < 1r , 70 

a 3 45 945 2n . 

1 1 
m(a) = coth(a)-- = 1-- + 2(e- 2a + e-4a + e-6a + ... ),e-2a < 1, (71) 

a a 

sinh(a) a3 a 5 . 2 Z(a) = 47r = 47r(a+ 1 + 1 + ... ,a < oo, at a_,. 0, (72) 
(/ 3. .). 

eu 
Z(a) = 211"-(1- e- 2a), (73) 

a 

a2 
s(a) = ln(47r)- 6 , at a_,. 0, (74) 
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s(a) = -ln(a) + ln(211") + 1, at a---+ oo , (75) 

A.3 The Spin S model. 

Let us denote a = 2s + 1, {3 = 2s. Expanding coth(x) as before we get 

the following expressions for the Brillouin function B 8 (a) = ~ coth( a~) -

!coth( af {3): 

a 2 - 1 a 4 - 1 22n B a 2n - 1 
m(a)=Bs(a)=~a+ 45,64 a3+ ... + (2n)~n f32n a2n-1+ ... ,(76) 

a2 < 71"2 * ,62/a2, 

m(a) = l _ ~(e-afs(l- f-2u) + e2a/s(l- e-4a) + e-4a/s(l _ e-6a) + ... ),(n) 
8 

e-afs < 1, e-2a < 1. 

Using expansion for sinh( u) (see A.2) we get the expression for the "partition 

, sinh(~a) 
sum Z = sinh(!) at small arguments: 

The most useful expression for the "partition sum" at large arguments is: 

Using the well knowu expansion 

x2 x3 
ln(l- x) = -(x +- +- + ... ) 

2 3 
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we get for the "entropy" s = lnZ- am : 

s + 1 2 
s ln(2s + 1)- --a + ... ,a__. 0, (81) 

6s 
oo -2n.!!.a oo -2n.l! oo 

p 8 p 8 a na 

s = '( ) + '(--) +- 't:-2 -;(1- t:-Zna),a ~ oo(82) 
L... n L... n sL... 
n;l n;l n;l 

A.4 Summary. 

The behaviour of the functions m(a), Z(a) and s(a) in the limits of great 

and small arguments is summarized in the following table. 

Table 1. High and low a limits for z, m, s. 

Model lim a z m s/k 
Planar rotator a-->0 211" a/2 ln(27r)- a~ /4--> ln(27r) = 1.838 

a-. oo 21rea /( J2"7ffi) 1- 1/(2a) _i(-lna+ln(27r)+1)-> -oo 
Space rotator a--0 411" a/3 ln( 47r)- a~ /2 --> ln( 47r) = 2.531 

(/- ')(, "l.rif "1 o 1 - 1/a + 2t- 20 - ln a + ln ( 21r) + 1 -. - oo 
Spin S a-0 "l.S' + 1 .2±la 

35 ln(2S + 1)- 3]
1 a2 --> ln(2S + 1) 

a- oo c" 1 _ ~e-afS (a/ S)e-afS __. 0 
Spin S=5/2 a-->0 6 (7/15)a ln6- (7/15)a2 -+ln6 = 1.792 

a-+0 ea 1- (2/5)e-2a (2/5)ae-2a-+ 0 
Ising a-->0 2 a ln 2- a 'I. -+ ln 2 = 0.69315 

a.~ 00 ea 1- 2e-2a 2ae-2a-+ 0 

Using the obtained asymptotic behaviour of the functions m( a.), Z( a) and 
s(a) and physically evident asymptotic behaviour of the magnetization M 
a.s the function of temperature and external field we get the correspondence 
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between limits of a, T and H as represented at Table 2. 

Table 2. High and low temperature and field limits for a. 

Model lim T lim H lim a 
Planar rotator T-oo H _.., 0 a--+0 

T--o H-oo a_. oo 
Space rotator T--+oo H _. 0 a--+0 

T--+0 H--+oo a--+ oo 
SpinS T--+oo H-+0 a-+0 

r-o H-+oo a_. oo 
Spin S=5/2 T-+oo H-+0 a-+0 

T _. oo H-+0 a-+ oo 
Ising T-+oo H-+0 a-+0 

T-o H--+oo a-+ oo 
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Figure 1: The magnetization as a function of the magnetic field at fixed 
temperatures. Fields are applied along the horizontal (a) and normal (b) 
directions. 

Figure 2: The magnetization as a function of the temperature at fixed mag­
netic fields. Fields are applied along the horizontal (a) and normal (b) 
directions. 

Figure 3: The susceptibility as a function of the magnetic field at fixed 
temperatures. Fields are applied along the horizontal (a) and normal (b) 
directions. 

Figure 4: The susceptibility as a function of the temperature at fixed mag­
netic fields. Fields are applied along the horizontal (a) and normal (b) 
directions. 

Figure 5: The entropy as a function of the magnetic field at fixed tempera­
tures. Fields are applied along the horizontal (a) and normal (b) directions. 

Figure 6: The entropy a.s a function of the temperature at fixed magnetic 
fields. Fields are applied along the horizontal (a) and normal (b) directions. 

Figure 7: The specific heat as a function of the magnetic field at fixed 
temperatures. Fields are applied along the horizontal (a) and normal (b) 
directions. 

Figure 8: The specific heat as a function of the temperature at fixed magnetic 
fields. Fields are applied along the horizontal (a) and normal (b) directions. 

Figure 9: The order parameter as a function of the magnetic field at fixed 
temperatures. Fields are applied along the horizontal (a) and normal (b) 
directions. 

Figure 10: The order parameter as a function of the temperature at fixed 
magnetic fields. Fields are applied along the horizontal (a) and normal (b) 
directions. 
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Figure 11: The phase diagram of semiclassical dipoles ( spin S=5/2 ) on 
a honeycomb lattice. Fields are applied along the horizontal and normal 
directions. 

Figure 12: The phase diagram of classical dipoles on a planar honeycomb 
lattice. Field is applied along the horizontal direction. The "high-field" 
branch of the critical curve predicted in the work [3] is not confirmed by our 
calculations. 

Figure 13: The entropy of a Planar Rotator, Space Rotator and Spin S=5/2 
models as a function of the temperature at zero magnetic field. 

Figure l..t: Thf' pha:->P diagra111 of dipolP system Oil a. honeycomb lattice for 
the Planar Rotator, Space Rotator and Spin S=5/2 models. Field is applied 
in the horizontal direction. 

Figure 15: The experimental phase transition curves for the stage 6 of the 
FeCl3 -grpahite intercalated compounds for the lowest temperature phase 
transition [7]. Field is applied along the c axis ( normal direction) or along 
the plane (in-plane direction). /leff = 5.51J.B, Jdip = 7017 10-20 erg. 
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