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Ahstract-The local .lahn-Teller dynamics of the CuO" ocrahedra are explored using the conventional 
Jahn-Teller effect approach. The vibronic interaction of the symmetrized and hybridized electronic states with 
the doubly degenerate vibrations leads to four local minima of monoclinic symmetry. These results are in 
agreement with experimental neutron scattering data. While the obtained local minima and their combinations 
could be used to represent the overall crystal structure, they are different from the previously calculated free­
energy minima of the crystal. J998 Elsevier Science Ltd. All rights reserved 
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Several investigations have centered on the micro­

scopic theory of structural phase transitions in the 2-1-4 

high- To superconductors [1-7]. The investigations, based 

on the cooperative pseudo-Jahn-Teller effect theory 

taking into account experimental data and symmetry 

group analysis, answered the following questions: (1) 

what is the symmetry and structure of local distortions 

around the Cu ion, and how they are connected to the 

"tilting" -mode and other crystal lattice modes; (2) how 

does the soft "tilting"-mode affect the electronic states; 

(3) how are the electronic states involved in the mechan­

ism of the structural transitions? 

Very important experimental data about the the local 

structure of the systems under consideration ha ve become 

available [8]. Using the pair distribution function data 

obtained in the experiments on neutron powder diffrac­

tion for La2_xBa,Cu04, Billinge et al. [8] showed that in 

contrast to the predictions of the crystal structure models, 

the CuOg octahedra do not change their tilt direction in 

different crystal phases. The long-range structure of the 

high temperature phases can be considered as linear 

superpositions of the [11O]-direction tilts. (The [110] 

designation may change depending on the authors' 

choice of the principal axes.) 

We show below that the experimental data are in 

agreement with the earlier developed microscopic 

theory. Our numerical calculations confirm that the 

local adiabatic CU06 potential does have four minima 

phenomenologically suggested in Ref, [8]. The symmetry 

of each of the minima is monoclinic, however, the 

increase in the temperature leads to the tunneling aver­

aging between nearest-neighbor minima [at the phase 

transition from low temperature tetragonal (L TT) phase 

to the low temperature orthorhombic (L TO) phase] and 

then between all four minima [at the phase transition from 

the L TO phase to the high temperature tetragonal (HTT) 

phase]. The long range structures are the combinations of 

these averaged local distortions. 

The crystal Hamiltonian considered earlier [5-7] can 

be written as: 

(1) 

where the first term describes the elastic energy of the 

crystal strained in the structurally ordered phase and the 

electron-strain interaction, H ph is the phonon energy, and 

the next two terms ~re the electron-phonon interaction 

and the crystal field energy splitting. 

Because we are interested in the local dynamics of the 

CU06 octahedra, we will initially ignore the crystal phonon 

dispersion, and in terms of the electron-vibration interac­

tion, we will deal with the local distortions Qm instead of 

using the creation and annihilation phonon operators. With 

this approach. the second and third terms are: 

~K (I'Yn2 + I'Yn2) + V(E"'Qm2 EI.!E, I.!E) x E, 

+ G (l"(Q",2 - 1'Y712) + G (JmQt~ I'Y" (2)I z Ex 'LEy 2 x E). \!-E." 

where the first term is the elastic energy of the CU06 

cluster, and the last three terms correspond to the linear 

and quadratic electron-vibration interaction, KE is the 

elastic constant of the E g(D4h) distortions, V, Gland G 2 

are the linear and quadratic vibronic constants. The 

electronic operators 0';' and 0'; are represented by 

the matrices: 

(3) 
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Fig. I. Perspective view of the four lowest adiabatic potentials as a function of Qx and Q" with KE 3, G 1== 0.5, G 2 = J.5, F = 3, Ll 
andLl] 0.5. 

Fig. 2. Perspective view of the fourlowest adiabatic potential, as a function of Qx and Q,. willl K b == 3, G; = 1.5, G 2 = 0.5, F = 3, Ll 
and LlJ 0.5. Note the 456 rotation of the minima with respect to Fig. I. 
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Fig, 3, View along the Q,.-axis of the first excited adiabatic potential with K£ = 3, G I 0,5, G2 = 1,5, \1= 3, D. = I and D.l 0.5, 

of electronic functions 
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0000 0000 where the ground V Big -state is separated by a D.l-gap 

from the first excited V A, -state, above which is the next 

The Hamiltonian (2) and operators (3) are written as a set excited state vi;" separa~~d from VA" by a 2D.-gap, (For 

(4) 
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Fig, 4, View along the Q),-axis of the first excited adiabatic potential with KE = 3, G I 1,5, G2 0.5, \1= 3, D. = 1 and D.I 0.5. 
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simplicity, we ignore here the 0/B," -excited state between 
o/A,o and because the results and conclusions are 
virtually unchanged by this omission. This can bc 
confirmed qualitatively and quantitatively direct 
calculations. ) 

Samples of the calculations are shown in 1-4 

which show the adiabatic potentials. The value of the 
parameters was chosen so as to illustrate the existence 
of the four minima in the adiabatic 
although those parameters will have to be adjusted to 
describe a real crystal. These figures clearly support our 
conclusions. 
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