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PARAMETER ESTIMATION

I.V. parameter
Suppose we have some known

distribution f and some measured data

.’f o (.T]_.. e o o ,.rl'/'n,)
values

We want to find some estimation of the
parameter theta

we call it the “estimator” ) ( z)
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PRESENTATION TOPICS

e Still only 3 have indicated what they would
like to do. If you don’t tell me by Sunday I will
assign them.

e They will be done during the last 3 classes
randomly assigned...




WHAT ARE WE LOOKING
FOR.?

. best
4(0: 0) A

large
variance

s
J
’
f .
P
J
)
J
|
S
p f
"'.

_-___.- v "'-.___ = e >

biased

)

We would like an estimator that has little or zero bias (i.e. it estimates the true
value of the parameter not something else) - we call this the “systematic error”

We would like an estimator that has a small variance - we call this the “statistical
error”’
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o Suppose the entire result of an experiment (set of measurements) is a collection of
numbers X, and suppose the joint pdf for the data x is a function that depends on a
set of parameters 0O: . 7

: f(;0)

o Now evaluate this function with the data obtained and regard it as a function of
the parameter(s). This is the likelihood function:

L(0) = f(&;0)
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LIKELIHOOD

Consider n independent observations of x: x1, ..., xn, where x follows f (x; 0). The
joint pdf for the whole data sample is:

flx1,...,zn;0) = || f(xs;0)
i=1

The likelihood function is

L) = 1] £(::0)
1=1
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EXAMPLE: EXPONENTIAL

Consider the exponential
probability distribution function

(for example probability of a 1

ticle with lifet to d Tk e
par.lcew1 1fetime T to decay f(th) — —_e T
at time t) T

Suppose we have data t1, t2, ..tn

The likelihood of any particular e
value t is the product of the L (7') = H o
probability density function g Z

evaluated at that T with the
observed data points

Thursday, February 9, 2012



LEL 3 EVALUATE |1

Recall we can maximize the likelihood

by minimizing the -log likelihood

since the log of a product is just the sum
of the logs we can write it:




DOING THE MATH

Setting the derivative equal to 0
and solving for t and using the
properties of the log

We arrive at the simple result that
the best estimate of the lifetime is
just the mean value of the
measured values

Seems to make sense!

olnL(T)

0T
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NUMERIC EXAMPLE

o 1
=
Setting 1=1 and generating 50 B T
random numbers from the
distribution 05 |
We find our estimate to be t = 1.062 s |
Seems to work! T T
o ]
0 1 2 3
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WHAT DO WE DO IN
GENERAL?

For the lifetime example - the likelihood is simple enough that we can just solve it
analytically. In general this is not true.

We can however do this numerically as well...

sum = 0;
for (i=0; i<N; i++) {
sum += log(tau) + t[i]/tau;

Find minimum sum by scanning 1in tau

In general we do something like this...
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EXPECTATION VALUE

1 < 1 <
() =BG t) ==Y B(t)
7t | ge==]

T if there is a bi t 2 1 2 I 5

S I AC LR s B E(T) Soe A, E ti—e 7 dti
the expectation value of our estimator T “ T
f =

Or T

t = t

By explicit computation we see that our E (7/: ) — e 80 2 / e Tdt
estimator is unbiased for all values of n 0
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CONSIDER A SLIGHT

MODIFICATION
1 —:
flt;7) = o
What if we made a
simple substitution tot b :
and used the width T
rather than the =
e e

lifetime and wrote




AGAIN LIKELIHOOD

—In(L) = —NinL +T ) ¢

SO




BIAS?

e You might think because
the estimate for 7 is
unbiased that the estimate
for I' must also be.
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BIAS?

e You might think because
the estimate for T is if you do the
unbiased that the estimate integral and sums...

for I’ must also be.

o Unfortunately this is not
correct!
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HOW DOES§ THIS§ HAPPEN?

Recall the definition E(l) 1 / - f(l)
3 XL L

of the expectation

value E(l) + E(x)

for example by explicit calculation

flz) = Ar




HOW DOES§ THIS§ HAPPEN?

B(e) = [ o(a)

Recall the definition 1 1
| e / e
of the expectation x x

e B(2) # B(z)
Therefore if E(x) is f 1
unbiased E(1/x) SCEXApO DY

et Bebiaced explicit calculation

flz) = Ar




UNCERTIAINTY FROM
LIKELIHOOD

We would also like an estimate of the
uncertainty

Expand Log Likelihood in Taylor Series
about minimum

1 5%InL
InL(0) = InLj, - 5 5;;

so cutting it oft we can

5(0 — 6)?

write

1 62InL

L(6) = Lé6§ 2 [0—6(0—0)?




i 52inL Iezé(e_é)Z

L(@) == LéGQ T
» Around a minimum
the likelihood ;
function looks like a o o
502 ‘ezé

Gaussian with a
variance given by:
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NMEANING OF LIKELIHOOD

n

L(t:lr) = | [ P(t:l7)

=i
The likelihood function is a product of
probabilities

[t tells us something about the probability
of data given a particular t

A priori it does not tell us (directly)about
the probability of a particular t given data

Why not?
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IN GENERAL

P(A|B) # P(B|A)




FORN eXAMPLE

e Say | had a bird as a pet and I told you that it
was a crow and asked you what color it was.

e What would you say?




ALL CROWS§ ARE BLACK
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BUT

o If i told you it was a black bird and asked what
type of bird it was...

e What would you say?




NOT ALL BLACK BIRDS
ARE CROWS
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§0..

P(crow|blackbird) # P(blackbird|crow)
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BAYES THEOREM

Bayes theorem tells
us how to relate the
two!

P(A|B) =

P(B|A)P(A)

P(B)




IN OUR CASE

P(data) - is really

just a
normalization
P(data|T)P(T)
factor P =
(7|data) Pldata)

P(t) is our “prior’
distribution




IN OUR CASE

P(data) - is really just a

normalization factor

Ploidair = P(data|T)P(T)

P(t) is our “prior’ P(data)

distribution

If we assume all T are
equally likely then and  P(r|data) = P(datalr)
ONLY then do we have




REWKITING IT...

1 (60— 6)*

2

InL(0) = logL|,

O

So the value for the likelihood being 1,2,..n
standard deviations away from the central

value is just:

= 1
—InL(0 £ 10) = —logL|; + 5

—lnL(é e 2(7) = —l09L|é 4
1 2

—InL(0 £ no) = —logL|; 5
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GRAPHICALLY

Lifetime Likelihood

37

1|||||111|||1

llll'lllll

]

N T T T TN N N
3(?.35 0.4 0.45

Lifetime

0.75
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§O IN OUR EXAMPLE

e
— il — ts
n ogT 2 - Zzzl

g el N
743§E:ti

0T T .
=1

—InL N
=

|
VaN | PaN
OT T2 T3z
N 9NN
— = | — e
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GOODNESS OF FIT

| Lifetime Fit | | Lifetime Fit |
100

2 Beoz .
c § 3 t=1nS
2 w S50r
E [
; 2w
30C
207
10:_ \
0- | | | g b el et = 1 e
0 0.5 1 1.5 2 2.5 3 3.5 4
Time (nS)

Consider the two data sets above, made into histograms for visualization. Both
result in the same ML estimator for the lifetime.

Surely, data set 1 is “more” likely than data set 2, right?

Surely, since it is more exponential, the value of the likelihood function for the 1st
should be larger than for the 2nd, right? Each events “probability” should be higher,
resulting in a net larger likelihood.
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OOPS

1 n
Unfortunately this is wrong! —LnL = ninT + Z Z L

S
1 T
4 e Nog
1 z nZ i
SO —InLpmin = NIn(#) + 2 Y t, =1
n n(7) + - 2

— nln(% th) | Znti Zti

=n(—Ilnn+1+In th) =n(In7 + 1)
Any distribution with he same sum of times

produces the same likelihood!
No measure of goodness of fit!
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EXAMPLE CODE

o | have placed on blackboard a piece of code

which shows a simple example of how to do a
likelihood fit

o Let’s walk through it

e You can find it as LikelihoodFit.C




LET'S LOOK

YA T e //
void LikelihoodFit() {
[ = e e ccccdccccccccccceaee //

// Set the showing of statistics and fitting results (@ means off, 1111 means all on):
gROOT->Reset(); taI' tS
gStyle->SetOptFit(1111);

gStyle->SetOptStat(1111);
// Set the graphics: ‘ v lth Some Style
gStyle->SetStatBorderSize(1);

gStyle->SetCanvasColor(@); S tu ff

// Parameters of the problem:

We are going
to generate

const int Ntimes = 100; // Number of times

double tau_truth = 1.0; // We choose (like Gods!) the lifetime. 1; ]‘1 (:1_
vector<double> t; // Vector of times Some a e ata
bool verbose = false; // Should the program print (a lot) or not? (true/false) (:1- . .
TRandond 1 and put it 1n

int Nbin_exp = 50; // Number of bins in histogram

THIF *Hist_Exp = new THIF("Hist_Exp", "Hist_Exp", Nbin_exp, 0.0, 10.0); th].S hlStOgram
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ASIDE: STANDANRD
TEMPLATE LIBRARY

Y A e T //
void LikelihoodFit() {
/e e e cmcdcccccccccc e //

// Set the showing of statistics and fitting results (@ means off, 1111 means all on):
gROOT->Reset();

gStyle->SetOptStat(1111);

gStyle->SetOptFit(1111);

// Set the graphics:

gStyle->SetStatBorderSize(l);
gStyle->SetCanvasColor(®);

nOte the COde égnzzri:it:zimzz :hiﬁz:Oblem;/ Number of times

double tau_truth = 1.0; // We choose (like Gods!) the lifetime.

vector<double> t; // Vector of times

bool verbose = false; // Should the program print (a lot) or not? (true/false)
vector<double> ™"

int Nbin_exp = 50; // Number of bins in histogram

TH1F *Hist_Exp = new TH1F("Hist_Exp", "Hist_Exp", Nbin_exp, 0.0, 10.0);

what does this mean?
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STANDARD TEMPLATE
LIBRARY

o Turns out - there are many simple things that
people want to do all the time in C++

e Store data in an ordered way

e Run standard algorithms on data (sort, find,
etc..)




C+t+ HAS A WAY

Unless you are doing something very special and you know something special
about your data (i.e. way it is organized, how it is ordered, etc) it is generally
easiest to use the standard template library to take care of this

C++ experts who have written optimized code how to store and sift through data

e Available to you at no cost!
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EXAMPLE
VECTOR<DOUBLE>

a vector is much like an array (i.e. an ordered list of numbers)
an array is just a declaration of a set of numbers like
double x[3] = {1.2,1.3,0};

A vector acts very much like an array in that it is a set of things but it also has
many built in special functions

unlike an array it can be dynamically sized (you don’t need to know its size
when you declare it)

and a lot of other neat things
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VECTOK

template <class T>
class vector {
public:
vector();
vector (const vector<T>& originalMap);

typedef implementation specific class 1 iterator;
typedef implementation specific class 2 const iterator;

bool empty() const; // true iff logical length is 0
long size() const; // returns logical length of vector
volid clear(); // empties the vector, sets size to 0

void push back(const T& elem);
void pop back();

T& operator[](int 1);

const T& operator[](int 1) const;

iterator insert(literator where, const T& elem);
iterator erase(lterator where);

iterator begin();

iterator end();

const iterator begin() const;
const iterator end() const;
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STL ALSO HAS
ALGORITHMS

#include <algorithm>
#include <iostream>
#include <vector>

static bool sort using greater than(double u, double v)

{
return u > v;
}
int
main()
{
std: :vector<double> v;
v.push back(0.3);
v.push back(0.1);
v.push back(1l.2);
v.push back(0.01);
std::sort(v.begin(), v.end(), sort using greater than);
for(std::vector<double>::size type index = 0; index < v.size(); ++index)
std::cout << v[index] << std::endl;
}
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NMANY CONTAINERS,
MANY ALGOKITHMS

Google C++ Standard Template Library

Best by learning by example!




GENERATE THE DATA

[/ = e em

// Generate data:

[ e e

for (int 1=0; 1 < Ntimes; i++) {
t.push_back(-tau_truth*log(r.Uniform())); // Exponential with lifetime tau.
// t.push_back(r.Exp(tau_truth)); // Could also use this line!

Hist_Exp->Fill(t[i]);

if (verbose) printf(" %5.2f", t[i]);
}
if (verbose) printf("\n\n");

Generate a random number according to the distribution we want

push it back into our fake data histogram as if we measured this from
data
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SCAN VALUES

// Define the number of tau values to test in Chi2 and LLH:
const int Ntau = 1500;

double min_tau = 0.5;

double max_tau = 2.0;

double delta_tau = (max_tau-min_tau) / Ntau;

// Loop over hypothesis for the value of tau and calculate Chi2 and LLH:
/e e eeeee
double tau[Ntau+l], 11lh[Ntau+l];

double 1lh_minval = 999999.0; double llh_minpos = 0.0;

for (int i1tau=0; itau < Ntau+l; itau++) {
double tau_hypo = min_tau + double(itau)*delta_tau; // Scan in values of tau
tau[itau] = tau_hypo;
// Unbinned likelihood (from loop over events):
11lh[itau] = 0.0;
for (int lev=0; iev < Ntimes; iev++) {
1lh[itau] += -2.0*log(1.0/tau_hypo*exp(-t[iev]/tau_hypo));
}
if (1lh[itau] < 1lh_minval) {llh_minval = 1lh[itau]; llh_minpos = tau_hypo;}
}

for one parameter - we don’t need fancy code. Just scan through the range in small
steps

Compute likelihood for different values of tau and store it
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FITTHE RESULT

Could simply draw

2 // Unbinned Likelihood:
:l_ | I 5o TCanvas* c_1lh = new TCanvas("c_11h","",140,80,600,450);
TGraphErrors* graph_llh = new TGraphErrors(Ntau+l, tau, 1lh);

TFL *fit_1lh = new TF1("fit_11h", func_asympara, llh_minpos - ©0.20, llh_minpos + ©0.20, 4);
fit_llh->SetParameters(llh_minval, 1llh_minpos, 20.0, 20.0);

fit_llh->SetLineColor(4);

graph_l1lh->SetMarkerStyle(20);

But easier to see and srumswmescdy:

graph_11h->Draw("AP");

a].].OWS to Calculate c_11h->UpdateQ);
uncertainty
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RUN IT

e In the directory where you have the file do:
e 100t

o .L LikelihoodFit.C

o LikelihoodFit()




RESULTS

Graph *2 I ndf 0.2568 / 396
Prob 1
B p0 213.4 + 0.00195
290 — p1 1.059 + 0.0002391
= p2 125.8 + 0.4043
280 p3 63.51+ 0.227
270—
260—
250
240
230
220—
21 0 ?l 1 | 1 l | 1 1 I | 1 1 I 1 1 | I 1 1 | I 1 1 | I 1 | 1 l | | 1 l | 1
04 06 0.8 1 1.2 14 16 1.8 2
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NMORE COMPLICATED

For simple problems - like the one we just did. It is pretty
straightforward to both construct the likelihood function and minimize
it

For complicated functions in many parameters this is not the case!

Multidimensional minimization is much harder!!
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CHECK TO §€€ IF IT WORKS

e Change the lifetime by a bit (be careful that the
range you scan includes the true value)

e You should find that the -In(likelihood) will
change it’s position is at its minimum




ADDING CONSTRAINTS

e Sometimes we are in the situation where we have external information. For
example if we are fitting a spectrum where we have well known particles with
well known properties (that are much better known than we can measure) and we
would like to include that within our analysis

Since the likelihood function is a product of probability distribution functions we
can modify our likelihood by multiplying a ‘prior” probability distribution to the

likelihood
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EXAMPLE

Let's add a Gaussian Con%traint

L = P(7|Tpdg; Opdg) Hp(ti|7')

so then.. =

nl = InElEi . a0 Z InPld i)

)2

(r—T d n
1 = 5
= —In( & ds gy Aabin )
(QW)Updg ;
n o 2
- ZlnP(mT) | z Zpd‘q) HInV2mo 4,
. 20 ]
=1 pag
original :
5 wandering

1/2 o from pdg
value costs 1/2 unit of likelihood

constant
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WHAT DOES THIS DO?

By including this ‘constraint’ or penalty in the likelihood we enhance the
likelihood in the region close to this value.

We don’t want to fix it because we want our data to count!

So we add a term which penalizes it for moving away from the value where we
have other information (other experimental results)
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IMPERFECT DETECTOK

Of course our detectors aren’t perfect
and the resolution can affect the

spectrum that we measure P(t|7)= Exp(t' ,T)® G(0,0)

1 - . _(I—t.)z
Let’'s Convolute the function with a — J e te 20 gf
gaussian resolution indicating that we 2ror

know that we have an uncertainty on
every measurement we make
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EXAMINE THE EXPONENT

1, e
== =201+ +2—1)

20° T
:—L,(t" 2w (1-Z )+ 1)
Expanding it out 7 . .
we can write it _2‘1’{(’ (t__» b . f}
G.

as A




§O THAT

PDF becomes L
| P O U - ))”
P(t|7)= \/7 J'O e'Te e 2 Jf
2ror
. . (' --Z)
—e e ™ j- e 2 dt
T 27"

1 ,,, =1 1 t o
=—e e ¥ —erfc(—=(———)
T 2 fel N2 O T )
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FOR. VARIOUS WIDTHS

|_Lifetime Fit_| Lifetime Fit |
‘m- 30
a0f- C
= 25 =101
201
a .| B
% :
6 w 15+
=
z 5 -
10

rr— 2

§6°é— c=03: Larger OllI'

‘ resolution the
more (Gaussian

it looks
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COMBINING
MEASUREMENTS

e The maximum likelihood method can be used
to combine results from two experiments

e Results from Higgs searches share likelihood
CUTVES

o Simply make a combine likelihood by
multiplying the two




SINGLE PARAMETER

For a single parameter v
you can just scan through
the full range
methodically

Make a graph

Difficult to make a X1 Xz Xs X4 Xs
mistake and if you do
easy to figure it out




MANY PARAMETERS

Parameter space
becomes MUCH
more complex.

Can get stuck in

local minima and

converge on the
wrong answer!
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FORTUNATELY

o For complicated cases their is a small
industry of tools

o [ would suggest using them

e We will discuss some in the next week...
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