EVENT RECONSTRUCTION: TRACKING

FEW POINTS

- Most everyone did not get the 'randomness' part of homework one correctly.
- If you want to generate a random number from a distribution you can just generate a random number within the range of that function uniformly and then apply the function to each random number
- Only 2 people have sent me requests about what topic they would like to report on
- I will start a doodle poll about when to do the presentation (towards the end of the class for the last couple weeks of the course)

HOMEWORK PROBLEM

- Choose bins of zv with roughly equal number of events
- Average the eloss for each of those bins
- Make a new histogram or TGraph plotting these versus each other

- Fit the result to a line

CERN BUBBLE CHAMBER

 1960 S

CMSTRACKING

TRACKING BASICS

- When we talk about tracking we want to :
- Measure the true path of the particle, which lets us know...
- The momentum (3-momentum) if we know the field
- The sign of the charge
- The origin of the particle in space
- without other information we cannot know the mass !

LORENTZ FORCE

$$
F=q(\vec{v} \times \vec{B})
$$

PARTICLETRAJECTORY

- For a charged particle produced at the center of the solenoid how can we describe its trajectory?

ASIDE

- Why is the inner magnet of a colliding beam experiment a solenoid?

1 N 2-D

- The force and hence the acceleration are always perpendicular to the velocity so..

$$
F=q(\vec{v} \times \vec{B})
$$

IN 3 DIMENSIONS

- For a solenoid surrounding the beam pipe we typically take the beam direction to be z - which is where B points

IN 3 DIMENSIONS

- For a solenoid surrounding the beam pipe we typically take the beam direction to be z - which is where B points
- The Lorentz force causes it to trace out a circle in the x, y plane but there is no force so it has constant velocity motion in the z direction

IN 3 DIMENSIONS

- For a solenoid surrounding the beam pipe we typically take the beam direction to be z - which is where B points
- The Lorentz force causes it to trace out a circle in the x, y plane but there is no force so it has constant velocity motion in the z direction
- This means that the distance it travels in z is proportional to the arclength s that the particle traces out in the x, y plane

HELICALTRACK

- For a solenoid surrounding the beam pipe we typically take the beam direction to be z - which is where B points
- The Lorentz force causes it to trace out a circle in the x, y plane but there is no force so it has constant velocity motion in the z direction
- This means that the distance it travels in z is proportional to the arclength s that the particle traces out in the x, y plane
- Think of the motion as a straight line in the s-z plane

HELIX PARAMETERS

- In spherical coordinates

$$
\begin{array}{r}
p_{x}=p \cos \phi \sin \theta \\
p_{y}=p \sin \phi \sin \theta \\
p_{z}=p \cos \theta
\end{array}
$$

HELIX PARAMETERS

- In spherical coordinates

$$
\begin{array}{r}
p_{x}=p \cos \phi \sin \theta \\
p_{y}=p \sin \phi \sin \theta \\
p_{z}=p \cos \theta
\end{array}
$$

- Different experiments use different conventions for the ranges of the angles

$$
\begin{array}{r}
\phi[-\pi, \pi] \\
\theta[0, \pi]
\end{array}
$$

HELIX PARAMETERS

- In spherical coordinates
- Different experiments use different conventions for the ranges of the angles

$$
\begin{array}{r}
p_{x}=p \cos \phi \sin \theta \\
p_{y}=p \sin \phi \sin \theta \\
p_{z}=p \cos \theta
\end{array}
$$

$$
\phi[-\pi, \pi]
$$

- Also need a reference point $\theta[0, \pi]$ for where the helix starts

PARAMETERS

$\left(x_{c}, y_{c}\right)$

- $\mathrm{C}=$ curvature of the track signed with the charge
- $\phi_{0}=$ phi of track at distance of closet approach
- $\delta:=$ distance of closet approach

TRANSVERSE MOMENTUM

- The component of momentum in the plane transverse to the beam line

$$
\begin{aligned}
p_{\perp}[\mathrm{GeV}] & =\frac{B[\mathrm{kG}] c[\mathrm{~mm} / \mathrm{s}] 10^{-10}}{C\left[\mathrm{~mm}^{-1}\right]} \\
& =\frac{B[\mathrm{~T}] c[\mathrm{~cm} / \mathrm{s}] 10^{-13}}{C\left[\mathrm{~cm}^{-1}\right]} \\
p_{\perp} & =p \sin \theta
\end{aligned}
$$

EXAMPLE

\mathbf{p}_{T} vs Curvature in a 4T Homogeneous Field (CMS)

Higgs event $+$

~ 25 minimum bias events

$z=z_{0}+s \tan \lambda$

€NERGY LOSS

- If a charged particle moves through material it can lose energy and slightly change direction

€NERGY LOSS

- If a charged particle moves through material it can lose energy and slightly change direction
- As a particle bends in a magnetic field it can emit radiation and lose energy

ENERGY LOSS

- If a charged particle moves through material it can lose energy and slightly change direction
- As a particle bends in a magnetic field it can emit radiation and lose energy
- Our model of the track trajectory must take these into account

TRACKING DETECTOR

- Should have the least amount of material as possible

TRACKING DETECTOR

- Should have the least amount of material as possible
- Should have as many measurements of the trajectory as possible

TRACKING DETECTOR

- Should have the least amount of material as possible
- Should have as many measurements of the trajectory as possible
- Should have as long a lever arm as possible

TRACKING DETECTOR

- Should have the least amount of material as possible
- Should have as many measurements of the trajectory as possible
- Should have as long a lever arm as possible
- Should have as large a magnetic field as possible

TRACKING DETECTOR

- Should have the least amount of material as possible
- Should have as many measurements of the trajectory as possible
- Should have as long a lever arm as possible
- Should have as large a magnetic field as possible
- Should be as cheap as possible

TRACKING DETECTOR

- Should have the least amount of material as possible
- Should have as many measurements of the trajectory as possible
- Should have as long a lever arm as possible
- Should have as large a magnetic field as possible
- Should be as cheap as possible
- Note - these are conflicting goals!!!

SOME TECHNOLOGIES

- Particle interacts with detector and convert energy loss into signal
- Gas and wires: ions in gas drift towards wire under influence of electric field
- Scintillating Fibers
- Silicon (reverse biased diode)

CMSTRACKER

CMS LAYOUT

STRIP MODULE

2D Point $(r \phi$ or $r z): \bar{x}=\left(\sum i * q_{i}\right) / \sum q_{i}$
r ϕ Si strip module

PRECISION OF SILICON WITH 50 MICRON PITCH

Cluster Width	Resolution
1	$12 \mu \mathrm{~m}$
2	$9 \mu \mathrm{~m}$
3	$14 \mu \mathrm{~m}$
$4+$	$22 \mu \mathrm{~m}$

PRECISION OF SILICON

WITH ~ 50 MICRON PITCH

Cluster Width	Resolution
1	$12 \mu \mathrm{~m}$
2	$9 \mu \mathrm{~m}$
3	$14 \mu \mathrm{~m}$
$4+$	$22 \mu \mathrm{~m}$

Why is the 2 strip cluster the most precise?

ASIDE: UNIFORM DISTRIBUTION

- Consider the uniform distribution which is constant between a lower and upper limit
- Not surprisingly the expectation value is just in the exact middle

- Perhaps surprisingly the standard deviation is the range/sqrt(12)
- prove this for the homework!

$$
\begin{aligned}
E[x] & =\frac{1}{2}(\alpha+\beta) \\
V[x] & =\frac{1}{12}(\beta-\alpha)^{2}
\end{aligned}
$$

PRECISION OF SILICON

WITH ~ 50 MICRON PITCH

Cluster Width	Resolution
1	$12 \mu \mathrm{~m}$
2	$9 \mu \mathrm{~m}$
3	$14 \mu \mathrm{~m}$
$4+$	$22 \mu \mathrm{~m}$

Why is the 2 strip cluster the most precise?

1 strip cluster: somewhere within that strip

PRECISION OF SILICON

WITH ~ 50 MICRON PITCH

Cluster Width	Resolution
1	$12 \mu \mathrm{~m}$
2	$9 \mu \mathrm{~m}$
3	$14 \mu \mathrm{~m}$
$4+$	$22 \mu \mathrm{~m}$

Why is the 2 strip cluster the most precise?

1 strip cluster: somewhere within that strip (~pitch/sqrt(12))

PRECISION OF SILICON

WITH ~ 50 MICRON PITCH

Cluster Width	Resolution
1	$12 \mu \mathrm{~m}$
2	$9 \mu \mathrm{~m}$
3	$14 \mu \mathrm{~m}$
$4+$	$22 \mu \mathrm{~m}$

Why is the 2 strip cluster the most precise?

why does resolution get better for 2 strip?

- Charge Sharing helps locate the position
- But too wide a cluster means less precision

CAN YOU FIND THE 50 GEVTRACK
 gy:gx

HOW ABOUT NOW?

gy:gx

PATTERN RECOGNITION

- Typically pattern recognition is either 'inside-out' or 'outside-in'
- You have to start with some idea of where the track should go to 'seed' the process

PATTERN RECOGNITION

- Typically pattern recognition is either 'inside-out' or 'outside-in'
- You have to start with some idea of where the track should go to 'seed' the process
- Take this seed and extrapolate it to other layers

PATTERN RECOGNITION

- Typically pattern recognition is either 'inside-out' or 'outside-in'
- You have to start with some idea of where the track should go to 'seed' the process
- Take this seed and extrapolate it to other layers

PATTERN RECOGNITION

- Typically pattern recognition is either 'inside-out' or 'outside-in'
- You have to start with some idea of where the track should go to 'seed' the process
- Take this seed and extrapolate it to other layers
- Continue that process until you have found some criterion for a 'good track'

PATTERN RECOGNITION

- Typically pattern recognition is either 'inside-out' or 'outside-in'
- You have to start with some idea of where the track should go to 'seed' the process
- Take this seed and extrapolate it to other layers
- Continue that process until you have found some criterion for a 'good track'
- Once you select the hits on the track fit to those points

ATLAS MUONS

- Since muons penetrate material need to have a special system outside of the calorimeter
- Large Volume Detector
- Would like an independent
 momentum measurement -> B field (Toroidal)
- Over most of the detector we use drift tubes

BASICTECHNOLOGY

 ionize- Voltage difference
 between wire and walls
- Charge drifts towards wire and signal is read out

BASIC OPERATION

- few mm to few cm diameter
- thin wire run down the center under tension
- apply voltage to the wire (few kV)
- ionizing particle creates 'primary' ionization
- ions drift toward wall

- electrons drift toward wall
- Strong field near wire creates 'avalanche' effect as primary ionization causes secondary ionization

SIGNAL FORMATION

cloud chamber
photograph of a charge avalanche

- Recall from basic E\&M

$$
\Phi(r)=-\frac{V_{0}}{\ln \left(\frac{b}{a}\right)} \ln \frac{r}{a}
$$

- Moving charges cause change of potential energy and a voltage pulse on the wire
$E(r)=\frac{V_{0}}{\ln \frac{b}{a}} \frac{1}{r}$

AVALANCHE

Electrons move quickly to wire, ions more slowly to tube surface

VOLTAGE PULSE

$$
\begin{array}{r}
d W=q E(r) d r=C V_{0} d V \\
d V=\frac{q}{C V_{0}} E(r) d r
\end{array}
$$

- Measure 2 basic quantities:
- voltage drop and hence charge

$$
\Delta V=-\frac{q}{C}
$$

- time for leading edge of avalanche to reach the wire

TIME DISTRIBUTION

- What we measure is the drift time.
- By knowing the relationship between the time measured of the leading pulse and how far from the wire the ions we create a so called $r(t)$ function which tells us how far we are away from the

Drift Time Spectrum

ARRANGEMENT

Arrange tubes in chambers of layers to make measurements at different points along trajectory

RECONSTRUCTING THE PATH

- For each tube that the muon passes through we get a time measurement from tube which we convert into a distance from the wire
- Note - we don't actually know where along that circle the charge came from - called "Drift Circle"
- This is resolved by pattern recognition!

- In this case the trajectory is fairly obvious

SEGMENT FITTING

- Over a small distance can approximate the trajectory as a straight line
- For each pair of hits:
- Take outer most hits in a chamber and draw 4 tangential lines
- Draw tangent lines to circle and see how far 'inside hits' are from line
- Fit hits to a line
- Take segment with most hits and best fit
 best fit

HOW DO WE FIT?

$$
\chi^{2}=\sum_{i}^{N} \frac{\left(y_{i}-\lambda_{i}\right)^{2}}{\sigma_{i}^{2}}
$$

- Recall our definition of a chi2
- If we have a model of our data we want to minimize that chi2

STRAIGHT LINE FIT

- here our model is that the particle goes in a straight line so that if $\quad y=a+b x$ we can predict the y position with two parameters
- a, b

DEFINITIONS

- For the linear case this just becomes:

$$
\chi^{2}(a, b)=\sum_{i}^{N}\left(\frac{y_{i}-a-b x_{i}}{\sigma_{i}}\right)^{2}
$$

- How do we minimize it?

DEFINITIONS

- For the linear case this just becomes:
- How do we minimize it ?
- Take derivative with respect to the parameters a and b so that we can find the values a and b which minimize the chi2
- We are assuming we know the

$$
\chi^{2}(a, b)=\sum_{i}^{N}\left(\frac{y_{i}-a-b x_{i}}{\sigma_{i}}\right)^{2}
$$ data y, x and the uncertainty on each point

$$
\begin{aligned}
& 0=\frac{\delta \chi^{2}}{\delta a}=-2 \sum_{i}^{N} \frac{y_{i}-a-b x_{i}}{\sigma_{i}^{2}} \\
& 0=\frac{\delta \chi^{2}}{\delta b}=-2 \sum_{i}^{N} \frac{x_{i}\left(y_{i}-a-b x_{i}\right)}{\sigma_{i}^{2}}
\end{aligned}
$$

SOLVING IT

- First some definitions:
- Such that our minimization becomes:

$$
\begin{gathered}
0=\frac{\delta \chi^{2}}{\delta a}=-2 \sum_{i}^{N} \frac{y_{i}-a-b x_{i}}{\sigma_{i}^{2}} \\
0=\frac{\delta \chi^{2}}{\delta b}=-2 \sum_{i}^{N} \frac{x_{i}\left(y_{i}-a-b x_{i}\right)}{\sigma_{i}^{2}} \\
a S+b S_{x}=S_{y} \\
a S_{x}+b S_{x x}=S_{x y}
\end{gathered}
$$

$$
S=\sum_{i}^{N} \frac{1}{\sigma_{i}^{2}}
$$

$$
S_{x}=\sum_{i}^{N} \frac{x_{i}}{\sigma_{i}^{2}}
$$

$$
S_{y}=\sum_{i}^{N} \frac{y_{i}}{\sigma_{i}^{2}}
$$

$$
S_{x x}=\sum_{i}^{N} \frac{x_{i}^{2}}{\sigma_{i}^{2}}
$$

$$
S_{x y}=\sum_{i}^{N} \frac{x_{i} y_{i}}{\sigma_{i}^{2}}
$$

SOLVING FOR A,B

Defining $\Delta=S S_{x x}-S_{x}^{2}$

$$
\begin{array}{r}
a=\frac{S_{x x} S_{y}-S_{x} S_{x y}}{\Delta} \\
b=\frac{S S_{x y}-S_{x} S_{y}}{\Delta}
\end{array}
$$

Homework: Show that this is true!

NOT QUITE DONE...

- It is not good enough to have an estimate of the parameters a and b.

NOT QUITE DONE...

- It is not good enough to have an estimate of the parameters a and b .
- We must also have an estimate of the uncertainty on a and b and the 'goodness of fit'

PROPAGATION OF GRRORS

- Recall that for any function $f(a, b)$ we can expand in a Taylor series and write:

$$
f \approx f^{0}+\frac{\delta f}{\delta a} a+\frac{\delta f}{\delta b} b+\ldots
$$

- And hence

$$
\sigma_{f}^{2}=\left|\frac{\delta f}{\delta a}\right|^{2} \sigma_{a}^{2}+\left|\frac{\delta f}{\delta b}\right|^{2} \sigma_{b}^{2}+2 \frac{\delta f}{\delta a} \frac{\delta f}{\delta b} \operatorname{cov}_{a b}
$$

PROPAGATION

$$
\sigma_{f}^{2}=\left|\frac{\delta f}{\delta a}\right|^{2} \sigma_{a}^{2}+\left|\frac{\delta f}{\delta b}\right|^{2} \sigma_{b}^{2}+2 \frac{\delta f}{\delta a} \frac{\delta f}{\delta b} \operatorname{cov}_{a b}
$$

- Depends on functional dependence of the function
- eg f has is much more sensitive to a if

$$
f(x ; a)=a^{5} x
$$

- Then if

$$
f(x ; a)=a+x
$$

FOR THE CASE AT HAND..

So

$$
\sigma_{f}^{2}=\sum_{i}^{N} \sigma_{i}^{2}\left(\frac{\delta f}{\delta y_{i}}\right)^{2}
$$

with

$$
\begin{aligned}
\frac{\delta a}{\delta y_{i}} & =\frac{S_{x x}-S_{x} x_{i}}{\sigma_{i}^{2} \Delta} \\
\frac{\delta b}{\delta y_{i}} & =\frac{S x_{i}-S_{x}}{\sigma_{i}^{2} \Delta}
\end{aligned}
$$

by summing: $\quad \sigma_{a}^{2}=\frac{S_{x x}}{\Delta}$

$$
\sigma_{b}^{2}=\frac{S}{\Delta}
$$

MATCH SEGMENTS

- Match segments from different layers of the spectrometer
- Look for pairs or triplets that point to each other

- Try all possibilities - and fit resulting hits to a track

FIT BACK TO ID

Package Muid

- Extrapolate track back to production point
- Match with track from inner detector
- Fit combined track

NEXT TIME

- More fun with likelihoods
- practice with some calculations

