EVENT RECONSTRUCTION: TRACKING

Tuesday, February 7, 2012

FEW POINTS

- Most everyone did not get the 'randomness' part of homework one correctly.
- If you want to generate a random number from a distribution you can just generate a random number within the range of that function uniformly and then apply the function to each random number
- Only 2 people have sent me requests about what topic they would like to report on
 - I will start a doodle poll about when to do the presentation (towards the end of the class for the last couple weeks of the course)

HOMEWORK PROBLEM

- Choose bins of zv with roughly equal number of events
- Average the eloss for each of those bins
- Make a new histogram or TGraph plotting these versus each other
- Fit the result to a line

CERN BUBBLE CHÀMBER 19605

CMSTRACKING

TRACKING BASICS

- When we talk about tracking we want to :
 - Measure the true path of the particle, which lets us know...
 - The momentum (3-momentum) if we know the field
 - The sign of the charge
 - The origin of the particle in space
 - without other information we cannot know the mass !

LORENTZ FORCE

Tuesday, February 7, 2012

PARTICLETRAJECTORY

 For a charged particle produced at the center of the solenoid how can we describe its trajectory?

ASIDE

• Why is the inner magnet of a colliding beam experiment a solenoid?

IN 2-D

 The force and hence the acceleration are always
 perpendicular to the velocity so..

IN 3 DIMENSIONS

• For a solenoid surrounding the beam pipe we typically take the beam direction to be z - which is where B points

IN 3 DIMENSIONS

- For a solenoid surrounding the beam pipe we typically take the beam direction to be z which is where B points
- The Lorentz force causes it to trace out a circle in the x,y plane but there is no force so it has constant velocity motion in the z direction

IN 3 DIMENSIONS

- For a solenoid surrounding the beam pipe we typically take the beam direction to be z which is where B points
- The Lorentz force causes it to trace out a circle in the x,y plane but there is no force so it has constant velocity motion in the z direction
- This means that the distance it travels in z is proportional to the arclength s that the particle traces out in the x,y plane

HELICALTRACK

- For a solenoid surrounding the beam pipe we typically take the beam direction to be *z* which is where B points
- The Lorentz force causes it to trace out a circle in the x,y plane but there is no force so it has constant velocity motion in the z direction
- This means that the distance it travels in z is proportional to the arclength s that the particle traces out in the x,y plane
- Think of the motion as a straight line in the s-z plane

HELIX PARAMETERS

• In spherical coordinates

 $p_x = p \, \cos\phi \sin\theta$ $p_y = p \, \sin\phi \sin\theta$ $p_z = p \, \cos\theta$

HELIX PARAMETERS

 In spherical coordinates
 Different experiments use different conventions for the ranges of the angles $p_x = p \cos\phi\sin\theta$ $p_y = p \sin\phi\sin\theta$ $p_z = p \cos\theta$ $\phi[-\pi,\pi]$

 $\theta[0,\pi]$

HELIX PARAMETERS

- In spherical coordinates
- Different experiments use different conventions for the ranges of the angles
- Also need a reference point for where the helix starts

 $p_x = p \cos\phi \sin\theta$ $p_y = p \sin\phi \sin\theta$ $p_z = p \cos\theta$

 $\phi[-\pi,\pi] \ heta[0,\pi]$

PARAMETERS

• C = curvature of the track signed with the charge

 \$\phi_0\$ = phi of track at distance of closet
 approach

δ: = distance of closet approach

TRANSVERSE MOMENTUM

• The component of momentum in the plane transverse to the beam line

$$p_{\perp}[\text{GeV}] = \frac{B[\text{kG}] c[\text{mm/s}] 10^{-10}}{C[\text{mm}^{-1}]}$$
$$= \frac{B[\text{T}] c[\text{cm/s}] 10^{-13}}{C[\text{cm}^{-1}]}$$
$$p_{\perp} = p \sin \theta$$

EXAMPLE

ENERGY LOSS

• If a charged particle moves through material it can lose energy and slightly change direction

ENERGY LOSS

- If a charged particle moves through material it can lose energy and slightly change direction
- As a particle bends in a magnetic field it can emit radiation and lose energy

ENERGY LOSS

- If a charged particle moves through material it can lose energy and slightly change direction
- As a particle bends in a magnetic field it can emit radiation and lose energy
 - Our model of the track trajectory must take these into account

• Should have the least amount of material as possible

- Should have the least amount of material as possible
- Should have as many measurements of the trajectory as possible

- Should have the least amount of material as possible
- Should have as many measurements of the trajectory as possible
- Should have as long a lever arm as possible

- Should have the least amount of material as possible
- Should have as many measurements of the trajectory as possible
- Should have as long a lever arm as possible
- Should have as large a magnetic field as possible

- Should have the least amount of material as possible
- Should have as many measurements of the trajectory as possible
- Should have as long a lever arm as possible
- Should have as large a magnetic field as possible
- Should be as cheap as possible

- Should have the least amount of material as possible
- Should have as many measurements of the trajectory as possible
- Should have as long a lever arm as possible
- Should have as large a magnetic field as possible
- Should be as cheap as possible
- Note these are conflicting goals!!!

SOME TECHNOLOGIES

- Particle interacts with detector and convert energy loss into signal
 - Gas and wires: ions in gas drift towards wire under influence of electric field
 - Scintillating Fibers
 - Silicon (reverse biased diode)

CMSTRACKER

CMS LAYOUT

STRIP MODULE

Cluster Width	Resolution
1	$12 \ \mu \mathrm{m}$
2	$9~\mu{ m m}$
3	14 $\mu { m m}$
4+	$22~\mu{ m m}$

Cluster Width	Resolution
1	$12 \ \mu \mathrm{m}$
2	9 $\mu\mathrm{m}$
3	14 $\mu \mathrm{m}$
4+	$22 \ \mu m$

Why is the 2 strip cluster the most precise?

ASIDE: UNIFORM DISTRIBUTION

- Consider the uniform distribution which is constant between a lower and upper limit
- Not surprisingly the expectation value is just in the exact middle
- Perhaps surprisingly the standard deviation is the range/sqrt(12)
 - prove this for the homework!

$$E[x] = \frac{1}{2}(\alpha + \beta)$$
$$V[x] = \frac{1}{12}(\beta - \alpha)^2$$

Cluster Width	Resolution
1	$12 \ \mu \mathrm{m}$
2	$9~\mu{ m m}$
3	14 $\mu \mathrm{m}$
4+	$22 \ \mu m$

Why is the 2 strip cluster the most precise? 1 strip cluster: somewhere within that strip

Cluster Width	Resolution
1	$12 \ \mu \mathrm{m}$
2	$9~\mu{ m m}$
3	14 $\mu \mathrm{m}$
4+	$22 \ \mu m$

Why is the 2 strip cluster the most precise? 1 strip cluster: somewhere within that strip (~pitch/sqrt(12))

Cluster Width	Resolution
1	$12~\mu{ m m}$
2	$9~\mu{ m m}$
3	14 $\mu { m m}$
4+	$22 \ \mu m$

Why is the 2 strip cluster the most precise? why does resolution get better for 2 strip?

 Charge Sharing helps locate the position
 But too wide a cluster means

less precision

CAN YOU FIND THE 50 GEVTRACK

HOW ABOUT NOW?

- Typically pattern recognition is either 'inside-out' or 'outside-in'
 - You have to start with some idea of where the track should go to 'seed' the process

- Typically pattern recognition is either 'inside-out' or 'outside-in'
 - You have to start with some idea of where the track should go to 'seed' the process
 - Take this seed and extrapolate it to other layers

- Typically pattern recognition is either 'inside-out' or 'outside-in'
 - You have to start with some idea of where the track should go to 'seed' the process
 - Take this seed and extrapolate it to other layers

- Typically pattern recognition is either 'inside-out' or 'outside-in'
 - You have to start with some idea of where the track should go to 'seed' the process
 - Take this seed and extrapolate it to other layers
 - Continue that process until you have found some criterion for a 'good track'

- Typically pattern recognition is either 'inside-out' or 'outside-in'
 - You have to start with some idea of where the track should go to 'seed' the process
 - Take this seed and extrapolate it to other layers
 - Continue that process until you have found some criterion for a 'good track'
 - Once you select the hits on the track fit to those points

ATLAS MUONS

- Since muons penetrate material need to have a special system outside of the calorimeter
 - Large Volume Detector
 - Would like an independent momentum measurement -> B field (Toroidal)
- Over most of the detector we use drift tubes

BASICTECHNOLOGY

Tube Geiger- Müller, 1928

Multi Wire Geometry, in H. Friedmann 1949

- Volume of gas which a charged particle can ionize
- Voltage difference between wire and walls
- Charge drifts towards wire and signal is read out

G. Charpak 1968

BASIC OPERATION

- few mm to few cm diameter
- thin wire run down the center under tension
- apply voltage to the wire (few kV)
- ionizing particle creates 'primary' ionization
 - ions drift toward wall
 - electrons drift toward wall
- Strong field near wire creates 'avalanche' effect as primary ionization causes secondary ionization

SIGNAL FORMATION

cloud chamber photograph of a charge avalanche

• Recall from basic E&M

$$\Phi(r) = -\frac{V_0}{\ln(\frac{b}{a})} \ln \frac{r}{a}$$

 Moving charges cause change of potential energy and a voltage pulse on the wire

$$E(r) = \frac{V_0}{\ln \frac{b}{a}} \frac{1}{r}$$

AVALANCHE

Electrons move quickly to wire, ions more slowly to tube surface

Tuesday, February 7, 2012

VOLTAGE PULSE

- Measure 2 basic quantities:
 - voltage drop and hence charge
 - time for leading edge of avalanche to reach the wire

$$dW = qE(r)dr = CV_0dV$$
$$dV = \frac{q}{CV_0}E(r)dr$$

$$\Delta V = -\frac{q}{C}$$

TIME DISTRIBUTION

- What we measure is the drift time.
- By knowing the relationship between the time measured of the leading pulse and how far from the wire the ions we create a so called r(t) function which tells us how far we are away from the wire

ARRANGEMENT

Arrange tubes in chambers of layers to make measurements at different points along trajectory

RECONSTRUCTING THE PATH

- For each tube that the muon passes through we get a time measurement from tube which we convert into a distance from the wire
 - Note we don't actually know where along that circle the charge came from called "Drift Circle"
 - This is resolved by pattern recognition!
- In this case the trajectory is fairly obvious

SEGMENT FITTING

- Over a small distance can approximate the trajectory as a straight line
- For each pair of hits:
 - Take outer most hits in a chamber and draw 4 tangential lines
 - Draw tangent lines to circle and see how far 'inside hits' are from line
 - Fit hits to a line
- Take segment with most hits and best fit

HOW DO WE FIT?

 $\chi^2 = \sum_{i}^{N} \frac{(y_i - \lambda_i)^2}{\sigma_i^2}$

Recall our definition of a chi2
If we have a model of our data we want to minimize that chi2

Tuesday, February 7, 2012

STRAIGHT LINE FIT

 here our model is that the particle goes in a straight line so that if we know the x position we can predict the y position with two parameters

y = a + bx

• a, b

DEFINITIONS

• For the linear case this just becomes:

$$\chi^2(a,b) = \sum_{i}^{N} \left(\frac{y_i - a - bx_i}{\sigma_i}\right)^2$$

 How do we minimize it ?

DEFINITIONS

- For the linear case this just becomes:
- How do we minimize it ?
 - Take derivative with respect to the parameters a and b so that we can find the values a and b which minimize the chi2

$$\chi^2(a,b) = \sum_{i} \left(\frac{y_i - a - bx_i}{\sigma_i}\right)^2$$

N

$$0 = \frac{\delta\chi^2}{\delta a} = -2\sum_i \frac{y_i - a - bx_i}{\sigma_i^2}$$
$$0 = \frac{\delta\chi^2}{\delta b} = -2\sum_i \frac{x_i(y_i - a - bx_i)}{\sigma_i^2}$$

SOLVING IT

- First some definitions:
- Such that our minimization becomes:

$$0 = \frac{\delta\chi^2}{\delta a} = -2\sum_{i}^{N} \frac{y_i - a - bx_i}{\sigma_i^2}$$
$$0 = \frac{\delta\chi^2}{\delta b} = -2\sum_{i}^{N} \frac{x_i(y_i - a - bx_i)}{\sigma_i^2}$$

 $aS + bS_x = S_y$

 $aS_x + bS_{xx} = S_{xy}$

SOLVING FOR A, B

Defining
$$\Delta = SS_{xx} - S_x^2$$

 $a = \frac{S_{xx}S_y - S_xS_{xy}}{\Delta}$
 $b = \frac{SS_{xy} - S_xS_y}{\Delta}$

Homework: Show that this is true!

NOT QUITE DONE ...

• It is not good enough to have an estimate of the parameters a and b.

NOT QUITE DONE ...

- It is not good enough to have an estimate of the parameters a and b.
- We must also have an estimate of the uncertainty on a and b and the 'goodness of fit'

PROPAGATION OF ERRORS

 Recall that for any function f(a,b) we can expand in a Taylor series and write:

$$f \approx f^0 + \frac{\delta f}{\delta a}a + \frac{\delta f}{\delta b}b + \dots$$

And hence

$$\sigma_f^2 = |\frac{\delta f}{\delta a}|^2 \sigma_a^2 + |\frac{\delta f}{\delta b}|^2 \sigma_b^2 + 2\frac{\delta f}{\delta a}\frac{\delta f}{\delta b}cov_{ab}$$

PROPAGATION

$\sigma_f^2 = |\frac{\delta f}{\delta a}|^2 \sigma_a^2 + |\frac{\delta f}{\delta b}|^2 \sigma_b^2 + 2\frac{\delta f}{\delta a}\frac{\delta f}{\delta b}cov_{ab}$ • Depends on functional dependence of the function

• eg f has is much more sensitive to a if $f(x; a) = a^5 x$

• Then if f(x; a) = a + x

FOR THE CASE AT HAND ..

So

$$\sigma_f^2 = \sum_{i}^{N} \sigma_i^2 (\frac{\delta f}{\delta y_i})^2$$

with

$$\frac{\delta a}{\delta y_i} = \frac{S_{xx} - S_x x_i}{\sigma_i^2 \Delta}$$
$$\frac{\delta b}{\delta y_i} = \frac{S x_i - S_x}{\sigma_i^2 \Delta}$$

by summing:

$$\sigma_a^2 = \frac{S_{xx}}{\Delta}$$
$$\sigma_b^2 = \frac{S}{\Delta}$$

MATCH SEGMENTS

- Match segments from different layers of the spectrometer
- Look for pairs or triplets that point to each other
- Try all possibilities and fit resulting hits to a track

FIT BACK TO ID

- Extrapolate track
 back to production
 point
- Match with track from inner detector
- Fit combined track

NEXTTIME

More fun with likelihoods
practice with some calculations