
Working with data

Tuesday, January 31, 2012

Working with files

ROOT stores information into files called “root tuples”.

You can store basically any root quantity (histograms, graphs, floats, ints)

Today we will discuss how to access that information and how to analyze it both
on the command line and from C++

Today you will be asked to write a bit of code in class accessing a root file i have
prepared.

Tuesday, January 31, 2012

TBrowser
I have placed a file called experiment.root on
my public area on lxplus and on the web

you can retrieve it by doing

scp USERNAME@lxplus.cern.ch:~kblack/
public/experiment.root .

or get it from blackboard site

To open the file with root you can do from the
command line

root experiment.root

Open the TBrowser by doing

TBrowser kb

Tuesday, January 31, 2012

mailto:kblack@lxplus.cern.ch
mailto:kblack@lxplus.cern.ch

TBrowser

Double click on the file experiment.root

there is just one object inside that called tree1

This is a TTree which contains 100,000 ‘simulated’ physics events

Actually almost no real physics here - just a dummy file for you to get some
practice with

In each event an imaginary particle moving in the z direction with energy
‘ebeam’ hits a target at z=0 and travels some distance zv before it gets
deflected

We then measure the momentum of the outgoing deflected particle with
some detector px, py, pz with some degree of confidence measured by the
chi2 variable

Tuesday, January 31, 2012

Right click on the
tree1 and select scan

that will bring up a
window - just hit OK

on your terminal you
should see

Tuesday, January 31, 2012

TTRee organization

Each entry has an event number, ebeam,
px,py,pz,zv,chi2

Tuesday, January 31, 2012

something missing?

There is something missing from my
description of the file which is very important
on interpreting what this all means... What is
it?

Tuesday, January 31, 2012

UNITS!

I didn’t tell you if zv was in mm, cm, miles or what the
units of the energy/momentum were!

In general these aren’t stored in the ntuple!!

Take zv in cm and energy and momentum in GeV

Tuesday, January 31, 2012

Command line

You can scan the tree from the
command line using (same as
before

tree1->Scan()

You can display the variables
without the data with

tree1->Print()

Tuesday, January 31, 2012

Scatter plots

Instead of one variable you can do scatter
plots of two variables,

ttree1->Draw(“ebeam:px”)

ttree1->Draw(“px:py:pz”)

Tuesday, January 31, 2012

We can also make
‘cuts’

What is a cut?

This is a term we often use in HEP analysis

It just means you make a selection or series of
selection on the data

Tuesday, January 31, 2012

Selection

For example if we were trying
to find the top events

One might want to ‘cut’ or
select events with a
discriminant greater than 0.5

This enhances the fraction of
events which are of the type we
are interested in (of course at
the cost of losing some!)

Tuesday, January 31, 2012

Cutting on the command
line

 tree1->Draw("zv")

 tree1->Draw
("zv","zv<20")

Tuesday, January 31, 2012

more interestingly...

One can plot one variable while
making a selection on another.

tree1->Draw("ebeam","zv<20")

 tree1->Draw("ebeam","px>10
&& zv<20")

Tuesday, January 31, 2012

Analyzing data with C++

The following slides show you a great way of
doing some fast basic analysis

However, once you close the root session and
terminal you have to type it all over again!

More complicated analysis is painful to do on
the command line

Better to keep track of it a macro

Tuesday, January 31, 2012

using a macro

Simple way to get a running start

 TFile myFile("experiment.root")

tree1->MakeClass(“Analyze”)

now exit root with .q

makes two files Analyze.C and Analyze.h

Tuesday, January 31, 2012

What are these files

In C++ the convention is to organize code

header files .h (here we put declarations - classes, global variables, functions)

source files .C or .cpp (here we put the implementation of the code)

Basic idea - give people a heads up on what they should be expecting. What
functions exist ? What do they return and what variables do they take as input

This way a user can look through without sorting through a mess of code

Tuesday, January 31, 2012

Let’s look
Loop function

loops over
each entry

in root tuple
and

executes
for

each one

Tuesday, January 31, 2012

closer look

fChain a pointer to the list of data
files the macro will run over

in this case just one

GetEntriesFast() just returns the
number of events stored in the data

nbytes, nb just counting amount of
data read (not essential but comes
with default root reading class)

Tuesday, January 31, 2012

Reading event

Loop over each ‘entry’ or
event

Load the event into memory

count the number of bytes
that have been read

LoadTree and GetEntry load
the event from disk into
memory to be manipulated

Tuesday, January 31, 2012

That is it!

The MakeClass function is one way of getting
root to generate a set of classes which allow
you to access data

Forms a skeleton for you to fill in to make
calculations

Doesn’t actually do anything more than
that ...yet

Tuesday, January 31, 2012

How do you run it

We can run it on the command line

Type

.L Analyze.C

Analyze a

a.Loop()

Try it now - don’t worry nothing really is suppose to
happen yet

Tuesday, January 31, 2012

Confusing?

What do these commands have to do with the root file “experiments.root”

They don’t seem to reference the file, or anything it it. How does it know what to
do?

To understand that we have to notice that the first thing that is done we have to
look at Analyze.h - which is the first thing which the source code .C

Tuesday, January 31, 2012

Analyze.H
The code actually defines a class!

pointer to the “TTree” (this is just
what root calls the organization of
its data)

On the tree are leaves and branches

recall these are the same
variables we saw by looking
directly at the ttree

What does it mean that we see the
branch and b_event and then the
variable event

Tuesday, January 31, 2012

look down further

This tells root to look in
the file for the variables
that are part of the file on
disk

Read them into memory

And assign them to the
addresses of the variables
we defined above

Tuesday, January 31, 2012

Loading the file

Let’s look at the code - it takes an
argument of a TTree

If there is no tree passed to it - it
defaults to the file it was generated
with

When we told root to “MakeClass” it
read in the data structure which is
how it knows what variables to read
in

Tuesday, January 31, 2012

Let’s start editing

Say we want to histogram of the chi2 variable, how can we do that in C++ code

We do this using code that is vary similar to what we learned last time but we will
write it in a slightly different way

We would like the histogram to be available anywhere during the event
processing

We will add it as part of the class

Tuesday, January 31, 2012

First the header file

We would like to add a 1-D histogram
to our class

First we have to tell root where it has
to look to find out what a TH1F is

Declare a pointer to a TH1F in the
class definition

there now exists a member variable
which is a pointer to h_chi2

Tuesday, January 31, 2012

Now the source

We first `book’ the histogram - which
means that we declare it and its
properties:

name, title, number of bins, lower
and upper range

Then for each entry we fill the
histogram

Tuesday, January 31, 2012

Then we execute it

Stop to think about this:
[0] loads the macro

[1] makes an objet t of type Analyze
[2] calls the Loop function

[3] Draws the resulting histogram

Note - if you know anything about chi2s this looks rather fishy! In fact
it is just a gaussian for matter of simplicity...

Tuesday, January 31, 2012

Now lets label ...

 h_chi2->GetXaxis()->SetTitle("chi2");

h_chi2->GetYaxis()->SetTitle("number of
events");

h_chi2->GetYaxis()->SetTitleOffset(1.3)

h_chi2->Draw()

Tuesday, January 31, 2012

now add error bars

h_chi2->Draw(“e”)

Tuesday, January 31, 2012

Now you try

Add histograms to show:

px

py

pz

ebeam

With axis labels an error bars

Tuesday, January 31, 2012

2-D histograms

General syntax:

TH2F hist("hist","Time vs. Energy",50,0,1000,50,0,5.e-9);

similar syntax but note

TH2F rather than 1F

Now two ranges x and y and number of bins in each

Tuesday, January 31, 2012

2-D plots

Make 2 dimensional histograms of

chi2 versus ebeam

pz versus ebeam

px versus py

Tuesday, January 31, 2012

Adding variables

If we want to add a new variable we can
calculate derived variables inside the loop
function

For example , a derived quantity from the
input variables

eg momentum after scattering transverse to
original beam direction or angles in
transverse and longitudinal direciton

Tuesday, January 31, 2012

exercises

Make histograms of the quantities

Transverse momentum after scattering

Angle in azimuthal direction

Angle in longitudinal direction

Note : be careful with arctan!

pT =
�

p2
x + p2

y

θ = tan−1(
pT

pz
)

φ = tan−1(
py

px
)

Tuesday, January 31, 2012

Applying a cut

Write C++ code which counts the number of
events with pz LESS than 145 GeV

Have it output the answer to the terminal

Tuesday, January 31, 2012

energy loss

For a highly relativistic particle we
can ignore the mass compared to
momentum

We imagine that in interacting
with the target the particle looses
some energy

We will do a small study on this

E2
measured = p2

x + p2
y + p2

z

Eloss = Ebeam − Emeasured

Tuesday, January 31, 2012

tasks

Calculate E measured and plot it

Calculate E loss and plot it

Make a 2D scatter plot between E loss and the
zv.

Is there are relationship between the two?

Tuesday, January 31, 2012

