INTRODUCTION TO UNIX,
C++ ,AND ROOT

INTRODUCTION

Today we will start to introduce the technical bits you will need to learn

My approach will be pragmatic - there are 1000 page books on C++ that you can
use as references but you can literally make a career out of it

Here we will introduce some basics and then add on more things as we go along
during the series of lectures

Thursday, January 26, 2012

UNIX - WHAT 1§ IT

o UNIX s an operating system which was first developed in the 1960s, and has been
under constant development ever since. By operating system, we mean the suite
of programs which make the computer work. It is a stable, multi-user, multi-
tasking system for servers, desktops and laptops.

e Modern implementations can have graphical interfaces - we won’t be talking
about these much as they are mostly self explanatory

o We will review what UNIX is and how to do some basics. I will then show you
some references for more information - as with C++ there is a rabbit hole to go
down if you choose but we will focus on functional use of the tools

Thursday, January 26, 2012

WHAT I§ UNIX

Composed of three elements
Kernel

“hub of the operating system, allocates time for
the cpu , memory, handles files, does underlying
work for all operations

The Shell

an interface between the user and the kernel.
This is the program that is running when you log
into a terminal

Programs

the instructions that you ask the computer to
follow

8006

pb-d-128-141-134-240

pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:
pb-d-128-141-134-240:

M

LT ST ST ST SN ST SUNY SUNY JUNY JNNY SUNY SN SN SN SUNT SUNY SUNY SNNE ST S S S

Terminal — bash — 80x24

kmblack$
kmblack$
kmblack$
kmblack$
kmblack$
kmblack$
kmblack$
kmblack$
kmblack$
kmblack$
kmblack$
kmblack$
kmblack$
kmblacks$
kmblack$
kmblack$
kmblack$
kmblack$
kmblack$
kmblack$
kmblack$
kmblack$
kmblack$
kmblacks

)

NIRRT = |

Thursday, January 26, 2012

o if you have a file called notes.txt and you type into your
terminal

e Im notes.txt

e (1) shell requests kernel to go find program called rm and
pass it the argument “notes.txt’

o (2) kernel searches for program and calls it

o (3) program rm tells kernel to go find file notes.txt and
delete it 2

o (4) kernel does it

niotes.txt

program
class.txt

e (5) kernel returns control to shell

Is,rm, root

Thursday, January 26, 2012

SHELLS

There are several shells Bourne, C, Z shell
roughly they are equivalent, small differences in the syntax of some commands
on most machines there are a few different shells that

To find out what shell you are using type

echo $SHELL

Thursday, January 26, 2012

FILES AND PROCESSES

Everything in unix is either a file or a process

a process is just an executing program (in unix each gets a PID -
process ID)

a file is a collection of information

a text file, source code for a program, a directory

l docs I pics 'lreport.doc'

Thursday, January 26, 2012

BASIC UNIX COMMANDS

Open a unix terminal (if you run linux you know how to do this, on a mac you run
the program terminal)

For windows machines you will need an ssh client

http:/ /www.openssh.org / windows.html

http:/ / www.chiark.greenend.org.uk / ~sgtatham / putty / download.html
Do this now or work with a friend today if you don’t have one

We will go through a series of basic commands that will allow you to get started .
if you already have experience with unix based systems this will be review

Thursday, January 26, 2012

http://www.openssh.org/windows.html
http://www.openssh.org/windows.html

FILES AND DIRECTOKRIES

Listing files

When you first login to a unix machine you will be

in your home directory

To find out what is in your home directory type

Is

Is-a (Chidden files’)
make a directory

mkdir UnixStuff

change directory

cd UnixStuff

print the current directory

pwd

pb-d-128-141-134-240:~ kmblack$ ls -a

.CFUserTextEncoding
.DS_Store
.KoalaNext
.SMART-customer-experience-program-shared-uuid
.Trash

.Xauthority

.Xcode

.Xdefaults
.Xresources
.anyconnect
.bash_history
.config

. Cups

pb-d-128-141-134-240:~ kmblack$ mkdir UnixStuff
pb-d-128-141-134-240:~ kmblack$ cd UnixStuff/
pb-d-128-141-134-240:UnixStuff kmblacks$ s
pb-d-128-141-134-240:UnixStuff kmblack$ I

pb-d-128-141-134-240:UnixStuff kmblack$ pwd
/Users/kmblack/UnixStuff

Thursday, January 26, 2012

SIMPLE FILE COMMAND§

Command Meaning
1s list files and directories tO ﬁI'St Order these are
ls -a list all files and directories
mkdir make a directory the Commands you
cd directory | change to named directory need tO knOW tO 100k
cd change to home-directo .
——— at and go through a unix
cd ~ change to home-directory
ca .. | change to parent directory directory and file structure
pwd display the path of the current directory

Thursday, January 26, 2012

NMORE WITH FILES

Command

cp filel file2

copy filel and call it file2

mv filel file2

move or rename filel to file2

rm file

remove a file

rmdir directory

remove a directory

cat file display a file

less file display a file a page at a time
head file display the first few lines of a file
tail file display the last few lines of a file

grep 'keyword’ file

search a file for keywords

we file

count number of lines/words/characters in file

you don’t have
to memorize these
but you will remember
these basic ones
because you use
them so
often

Thursday, January 26, 2012

DIKECTING OUTPUT

e One of the great advantages of unix is the
ability to redirect output from one command
into the input of another

o [will show a few basic example of why this is
useful

e it turns out that you can combine many of
these commands to do a lot with a single
command!

Thursday, January 26, 2012

Most output

of unix commands goes to the “standard output’

. : pb-d-128-141-134-240:UnixStuff kmblack$ cat > listl
ie. your terminal screen pear
banana
apple
. : : plum
however you can redirect this to files or other pb-d-128-141-134-240:UnixStuff kmblack$ less list1l
commands -
banana
apple
A plum
for example consider the cat command
do the following type
cat > list1

then type in the names of some fruit pressing return
after each one

at the end push control D

Thursday, January 26, 2012

APPENDING A FILE

pb-d-128-141-134-240:UnixStuff kmblack$ cat listl
pear

banana

apple

pLlum

peach

grape

orange

pb-d-128-141-134-240:UnixStuff kmblacks

pb-d-128-141-134-240: UnixStuff kmblack$ ls
: : listl list2
You can append a file by doing pb-d-128-141-134-240: UnixStuff kmblack$ cat listl list2 > biglist
pb-d-128-141-134-240:UnixStuff kmblack$ cat biglist
pear
3 banana
Cat >> 118’(1 apple
plum
peach
and then typing more fruit g::,‘:;e
apricot
kKiwl
can merge two files by directing the output of pb-d-128-141-134-240: UnixStuff kmblacks [}

cat on two files into a third!

Thursday, January 26, 2012

INPUT

use the < symbol to redirect the input

for example the sort command knows how to

alphabetize
if you type
sort .
pb-d-128-141-134-240:UnixStuff kmblack$ sort
dog
and then cat
bird
ape™D
dog ape
bird
cat
cat dog
bird
ape
control D

Thursday, January 26, 2012

PIPES

If you are on a multiuser system
you can see who else is on the
system

who

[kblack@lxplus255]~%

[kblack@lxplus255]~% who

wittgen
maliev
kblack
maliev
dgrandi
itopsisg
peiffer
itopsisg
maliev
mwhitehe
shsun
paul
peiffer
louis
knikolic
khotilov
masmith
suyogs
fballi
kdziedzi
florian
yangyong
maliev
sonnen
kaiwu
shimpei
mwhitehe
flowerde
kaiwu
asakharo
ams
ptedesco
azzi

b mAdae .

pts/0

pts/2

pts/3

pts/5

pts/6

pts/7

pts/8

pts/11
pts/12
pts/13
pts/14
pts/16
pts/19
pts/10
pts/23
pts/24
pts/25
pts/26
pts/27
pts/29
pts/32
pts/35
pts/36
pts/37
pts/38
pts/1

pts/40
pts/43
pts/44
pts/56
pts/60
pts/30
pts/68

kAT

2012-01-16
2012-01-25
2012-01-26
2012-01-25
2012-01-24
2012-01-25
2012-01-25
2012-01-24
2012-01-25
2012-01-25
2012-01-16
2012-01-25
2012-01-25
2012-01-23
2012-01-25
2012-01-23
2012-01-23
2012-01-25
2012-01-25
2012-01-16
2012-01-25
2012-01-18
2012-01-24
2012-01-25
2012-01-25
2012-01-21
2012-01-25
2012-01-23
2012-01-25
2012-01-24
2012-01-19
2012-01-24
2012-01-24

[NA1T A1 NA

22:51
21:16
90:10
15:48
17:00
17:26
18:21
19:59
2NN
14:50
17:22
22:58
13:00
97:10
23:55
19:34
17:11
23:55
23:55
10:13
23:55
22:28
17:34
99:13
14:54
19:20
14:20
11:37
14:55
12:14
15:33
gl
15:20

1%2.1n

(173-228-112-199.dsl.dynamic.sonic.net)
(f052142026.adsl.alicedsl.de)
(aannecy-651-1-76-64.w86-209.abo.wanadoo. fr)
(natr.physik.hu-berlin.de)
(amsmc@4.mib.infn.it)
(dhcpl67.physics.ntua.gr)
(ekplx59.physik.uni-karlsruhe.de)
(143.233.252.2)
(f052142026.ads1l.alicedsl.de)
(iseran.epp.warwick.ac.uk)
(pb-d-128-141-35-189.cern.ch)
(lns-bzn-50f-81-56-198-137.adsl.proxad.net)
(ekplx59.physik.uni-karlsruhe.de)
(jul74-1-88-186-228-163. fbx.proxad.net)
(195.43.57.14)
(hepcms1.physics.tamu.edu)
(heppc2-s153.hep.manchester.ac.uk)
(aannecy-158-1-65-170.w90-52.abo.wanadoo. fr)
(160.235.116.78.rev.sfr.net)
(pb-d-128-141-28-14.cern.ch)
(pb-d-128-141-235-128.cern.ch)
(pccityongnew.cern.ch)
(natr.physik.hu-berlin.de)
(pcac3-5.cern.ch)

(pcamsr@.cern.ch)
(33-56.5-85.cust.bluewin.ch)
(iseran.epp.warwick.ac.uk)
(pcatlas57.mppmu.mpg.de)
(pcamsr@.cern.ch)

(pcth199.cern.ch)

(pcamspg®@.cern.ch)

(localhost:27.0)

(pcpd@l.cern.ch)

IMarcalhas+s.mT

Thursday, January 26, 2012

who > names.txt

sort < names.txt

which does the same thing as
who | sort

the pipe command “pipes” or sends the output
of one command into the other

In this case first executes who
then pipes the output of who into sort

and then sort returns the output to the
standard output

PIPES

[kblack@lxplus255]~% sort < names.txt

ams
asakharo
azzi
dgrandi
fballi
flowerde
itopsisg
itopsisg
kaiwu
kaiwu
kblack
kdziedzi
khotilov
knikolic
louis
maliev
maliev
maliev
maliev
masmith
mwhitehe
mwhitehe
peiffer
peiffer
ptedesco
ptedesco
shimpel
shsun
sonnen
suyogs
wittgen
yangyong

pts/60
pts/56
pts/68
pts/6

pts/27
pts/43
pts/11
pts/7

pts/38
pts/44
pts/3

pts/29
pts/24
pts/23
pts/10
pts/12
pts/2

pts/36
pts/5

pts/25
pts/13
pts/40
pts/19
pts/8

pts/30
pts/42
pts/1

pts/14
pts/37
pts/26
pts/0

pts/35

2012-01-19
2012-01-24
2012-01-24
2012-01-24
2012-01-25
2012-01-23
2012-01-24
2012-01-25
2012-01-25
2012-01-25
2012-01-26
2012-01-16
2012-01-23
2012-01-25
2012-01-23
2012-01-25
2012-01-25
2012-01-24
2012-01-25
2012-01-23
2012-01-25
2012-01-25
2012-01-25
2012-01-25
2012-01-24
2012-01-24
2012-01-21
2012-01-16
2012-01-25
2012-01-25
2012-01-16
2012-01-18

15:
12:
15:
17:
23:
11:
19:
17:
14:
14:
00:
10:
19:
23:
07:
21:
21:
17:
15:
17:
14:
14:
13:
18:
11:
13:
19:
17:
09:
23:
22:
22:

33
14
20
00
55
37
59
26
54
55
10
13
34
55
10
17
16
34
48
11
50
20
00
21
52
19
20
22
13
55
51
28

(pcamspg@®.cern.ch)

(pcth199.cern.ch)

(pcpd@l.cern.ch)

(amsmc@4.mib.infn.it)
(160.235.116.78.rev.sfr.net)
(pcatlas57.mppmu.mpg.de)
(143.233.252.2)
(dhcpl67.physics.ntua.gr)
(pcamsr@.cern.ch)

(pcamsr@.cern.ch)
(aannecy-651-1-76-64.w86-209.abo.wanadoo. fr)
(pb-d-128-141-28-14.cern.ch)
(hepcmsl.physics.tamu.edu)
(195.43.57.14)

(jul74-1-88-186-228-163. fbx.proxad.net)
(f@52142026.adsl.alicedsl.de)
(f852142026.adsl.alicedsl.de)
(natr.physik.hu-berlin.de)
(natr.physik.hu-berlin.de)
(heppc2-s153.hep.manchester.ac.uk)
(iseran.epp.warwick.ac.uk)
(iseran.epp.warwick.ac.uk)
(ekplx59.physik.uni-karlsruhe.de)
(ekplx59.physik.uni-karlsruhe.de)
(localhost:27.0)

(localhost:27.0)
(33-56.5-85.cust.bluewin.ch)
(pb-d-128-141-35-189.cern.ch)
(pcac3-5.cern.ch)
(aannecy-158-1-65-170.w90-52.abo.wanadoo. fr)
(173-228-112-199.dsl.dynamic.sonic.net)
(pccityongnew.cern.ch)

Thursday, January 26, 2012

SUMMANRY OF
COMMAMNDS

Command Meaning
Note that you can do command > file redirect standard output to a file
multiple piles for various command >> file append standard output to a file
UDiX Commands command < file redirect standard input from a file
commandl | commandZ2 pipe the output of command1 to the input of command2

This allows one to do very
cat filel file2 > file0 | concatenate filel and file2 to file0

complicated things in a
very short (but not simple)

sort sort data

set Of Commands who list users currently logged in

Thursday, January 26, 2012

MORE INFORMATION

That is enough information to get you navigating through and familiar with basic
unix files, directories, and processes

Unix: The Complete Reference

just search in google for unix references - there are many!

Thursday, January 26, 2012

C++

o For many years physicists used FORTRAN as the basic computing language
o In the mid 90s HEP migrated to a new programming language we will touch on that today
o C+t+is:

o Object Oriented - We will discuss what this means exactly

o Compiled - this means the code is optimized by a program called (not surprisingly) a compiler and
checked for mistakes before hand

o Complicated - it is a very powerful language - but also one that allows you to hang yourself with the rope
it gives you if you aren’t careful

Thursday, January 26, 2012

WHAT DOES A C++
PROGRAM LOOK LIKE

/ | starting a line tells
the compiler to ignore
this line

get code from
another file

All true C++ programs
have a main function which
is the start of the program
and the end. Everything happens
in between

the main() program
returns an integer
in in order to return control
we have to return some int

//include headers; these are modules that include functions that you may use in your
//program; we will almost always need to include the header that

// defines cin and cout; the header is called iostream.h

#include <iostream.h>

int mainQ) {

//variable declaration

//read values input from user
//computation and print output to user
return O;

}

After you write a C++ program you compile it; that is, you run a program
called compiler that checks whether the program follows the C++ syntax
— 1f 1t finds errors, it lists them

— If there are no errors, it translates the C++ program into a program in machine
language which you can execute

Thursday, January 26, 2012

NOTES

what follows after / / on the same line is considered comment

O

o indentation is for the convenience of the reader; compiler ignores all spaces and
new line ; the delimiter for the compiler is the semicolon

o all statements ended by semicolon

@

Lower vs. upper case matters!!

Void is different than void

D

e Main is different that main

Thursday, January 26, 2012

VARIABLE DECLATION

type variable-name;
Meaning: variable <variable-name> will be a variable of type <type>

Where type can be:
=2t //integer
— double //real number
— char //character

Example:
int a, b, c;
double x;
int sum;
char my-character;

Thursday, January 26, 2012

VARIABLE INPUT

cin >> variable-name;

Meaning: read the value of the variable called <variable-
name> from the user

Example:
cin >> a;
cin >> b >> ¢;
cin >> x;
cin >> my-character;

Thursday, January 26, 2012

VARIABLE OUTPUT

cout << variable-name;

Meaning: print the value of variable <variable-name> to the user
cout << “any message “;

Meaning: print the message within quotes to the user
cout << endl;

Meaning: print a new line

Example:
cout << a;
cout << b <<g;
cout << “This is my character: “ << my-character << “ he he he”
<< endl

Thursday, January 26, 2012

PROGRAM CONTROL

o often we would like to control the flow of a
program depending on a condition that we
occur

e there are several C++ constructions that allow
us to do just that

Thursday, January 26, 2012

|F STATEMENTS

True 5 False
i (condition) { onasen
el
}
else { Sl 2
S2;
}
S3;

S3

Thursday, January 26, 2012

COMPANRISONS

..are built using

Comparison operators

== equal

= not equal

< less than

> greater than

= less than or equal
= greater than or equal

Boolean operators
&& and
| or
! not

Thursday, January 26, 2012

EXAMPLES

Assume we declared the following variables:
int a =24, b=9, ¢=10;

Here are some examples of boolean conditions we can use:
GANE = e

sl tal=by-.

o if (a<=hFc) .

e if(a<=b)é&é& (b<=c)..

e if I((a <b) &e& (b<c)) ...

Thursday, January 26, 2012

|F EXAMPLE

#include <iostream.h>

void main() {
int a,b,c;
cin >>4a>>Db >> ¢;

if (a <=b) {
cout << “min is “ << g << endl;
}
else {
cout << “ min is “ << b << endl;
}
cout << “happy now?~ << endl;
}

Thursday, January 26, 2012

WHILE STATEMENTS

: = T
while (condition) { S
S1;
1 S1
S2;
S2

WHILE EXAMPLE

//read 100 numbers from the user and output their sum
#include <iostream.h>

void main() {

int i, sum, x;

sum=0;

i=1;

while (i <= 100) {
cin >> x;
sum = sum + X;
i=1i+1;

}

cout << “sum is “ << sum << endl;

}

Thursday, January 26, 2012

FOR. LOOP

for (inital statement, expression, increment statement) {statement;}

#include<iostream h>

const int MAXNUMBERS=6;
mt main()
{
it 1, numberf MAXNUMBERS];
for(1=01<=MAXNUMBERS; 1++) //Enter the numbers
{
cout<<”Enter a number :”
cin>>number(1];

}

cout<<endl<<endl;
for(1=0; I<MAXNUMBERS:1++)// Print the numbers

{
cout<<’Number “<<number[1]<<"1s” <<NUMBERS[1]<<endl;

return 0;
}

Thursday, January 26, 2012

ARKITHMETIC

o Arithmetic is performed with operators
e + for addition

- for subtraction

O

o ” for multiplication
o / for division
e ¢ Example: storing a product in the variable

o total_weight

®

total_weight = one_weight * number_of_bars;

Thursday, January 26, 2012

WHAT [§ ROOT?

e In HEP, we collect a large amount of data

average size of one event (raw) can be greater than a megabyte and we record

©

data from the LHC experiments at a few hundred per second

even if we wanted to cannot represent all of that information for all of those

O

events

o need a way to consolidate and extract the most important pieces of that data
out and relate them to basic quantities about the universe

®

We do this by extracting the most relevant information out of each event first
and then further compiling information over a large number of events

Thursday, January 26, 2012

WHAT [§ ROOT?

o ROQT is an object oriented (C++) data analysis framework

o Itis a series of classes which can be used to represent data and manipulate it for
analysis

e many native” data types that are common for HEP analysis (histograms,
graphs, Lorentz vectors, fitting, probability distributions, etc)

o framework is supported by CERN and Fermilab - many users contribute
libraries for common applications

o Today we will start with the basics of what we want to use it for and how to do
simple commands.

o Note that you cannot learn ROOT just by studying lecture notes or reading the
manual - you need to have practice and do it yourself

o Corollary - it is fine to work together and discuss BUT don’t just copy
somebody else’s code (either another student or what you find on the internet).
You will learn much less this way...

Thursday, January 26, 2012

WAYS OF USING ROOT

o Root can be used in one of two ways

o ‘interactively’ or ‘interpretively’ in which ROOT root interprets each line as
you type it or as it reads it in from a text file

O

ADVANTAGE - for very simple tasks this is simple and fast

o DISADVANTAGE - errors get caught at execution time, sometimes leading
to catastrophic failure that is hard to understand and difficult to fix

o “compiled’ - where the code is first compiled and optimized in machine
language by the compiler and then executed afterwards

o ADVANTAGE - compiled code is generally faster and easier to debug as
the compiler catches much problematic code and can also pinpoint the
exact location of something that leads to a crash

Thursday, January 26, 2012

CINT

o The interactive version of ROOT is called ‘CINT” which just means C++
interpreter

o CINT
‘based” on C++ (but not quite standard C++)

o Itis NOT compiled. Sometimes it will do wrong things without warning (eg.
convert or compare numeric types without letting you know). This can be
dangerous and give wrong results!

e you may need to restart root more than you like

o does not distinguish between objects and pointers to objects. This makes it
“easier’ to call and manipulate objects but again can have surprising results

Thursday, January 26, 2012

HOW TO STAKT IT

From the unix prompt you can

% root

t e\root’ E b e e i i e
* WELCOME to ROOT *

[] [] * *
this will take you to the « version 5.20/00 24 June 2007
[) [* *
mteractlve version Of I'OOt * You are welcome to visit our Web site *
* http://root.cern.ch *

* *

E e i e i e i e e

typing .q will quit the
Ijrcw;ralr[ROOT 5.20/00 (trunk@24525, Jun 25 2008, 12:52:00 on linux)

CINT/ROOT C/C++ Interpreter version 5.16.29, June 08, 2008
Type ? for help. Commands must be C++ statements.

TWO WaYS tO Work mteraCtIVelY Enclose multiple statements between { }.
with interpreted root Foot LY

root [@] float myVar = 7

type directly into the (rggzag;.g;:g;ooooooooooooewo

¢ root [2] |
command prompt (basically
only useful for one liners) float x[5] = {10.0, 20.0, 30.0, 40.0, 50.0};
float y[5] = { 1.1, 1.2, 1.3, 1.4, 1.5};
float dy[5] ={ 0.1, 0.1, 0.1, 0.1, 0.1};

create a macro’ using a text
editor

Thursday, January 26, 2012

ROOT MACRO

A macro is just a series of lines of code that are
executed consecutively. Rather than typing them in
all at the command line which can be painful if
you make a mistake you can save it in a file and
then run it.

For example the following text file was saved as
loop.C and then executed

note that everything that is executed is within

U

further note that as written this would
generate compilation error from any standard
C++ compiler (why?)

contents of the file

{

cout<<" a loop to count from @ to 9"<<endl;
for(int 1= 0; i< 10; ++1) {
cout<<"1 1s now "<<i<<endl;

}
}

ob-d-128-141-134-240:~ kmblack$ root loop.C

root 18]
Processing loop.C...
a loop to count from @ to 9
1 1s now @
1s now
1s now
1s now
1s now
1s now
1s now
1s now
1s now
1s now
oot [1]

T il i el il il ST O S S
Mo o~ u & wN =

Thursday, January 26, 2012

fOME ROOT BASICS

e Plotting a function
o Working with histograms
o Working with multiple plots

e Saving your work

aaaaaaaaaaaaaaaaaaaaaaa

I-D FUNCTIONS

root [1] TF1 f1("funcl","sin(x)/x",0,10)

The root class for functions is “TF1” (Everything in root is a TSomething - I don’t know why)
Above is an example of the constructor of the function. What does this mean though:

TF1 - we are constructing a C++ object of the type TF1 (think of int myInt =7) - this just tells us what sort
of object we want

“funcl” is the title of the function
“sin(x)/x” is the functional form
0 is the lower range

10 is the upper range

Thursday, January 26, 2012

FUN WITH FUNCTIONS

f1.Draw()

Draws the function - note that we specified
what range x

We did not however specify the dependent
variable. By default root choses that to show
the full range.

There are many things we can change on the
plot

http:/ /root.cern.ch /root/html/TF1.html

full list - we will show a few examples and
you can then figure it out

| sin(x)/x |

1

0.8

0.6

0.4

S
—
N
w
'
ol
o
~
©
©
-—
=)

note the inexplicable
default off white
background. This is ok
on slides but is very visible on white paper

Thursday, January 26, 2012

http://root.cern.ch/root/html/TF1.html
http://root.cern.ch/root/html/TF1.html

C+H+ ASIDE

On the previous slides I referred to TF1 as being a “class’
This has a very particular meaning in C++.
This gets to the heart of what we call Object Oriented Computing

In particular we say that we instantiate an object of the class type TF1 which is
called f1

Thursday, January 26, 2012

WHAT I§ OBJECTED
ORIENTED PROGRAMING

An object is like a
black box.

The internal details
are hidden.

Identitying objects and assigning
responsibilities to these objects.

Objects communicate to other objects by
sending messages.

Messages are received by the methods of an
object

Thursday, January 26, 2012

WHAT I§ AN OBJECT

o Tangible Things as a car, printer, ...

e Roles as employee, boss, ...
e Incidents as flight, overflow, ...
e Interactions as contract, sale, ...

e Specifications as color, shape, ...

o In HEP we could mean things like - a particle,
a function, a detector element, ...

Thursday, January 26, 2012

WHY DO WeE CARE

o Often in programing for HEP we are describing concepts which we have specific
properties and that we will use over and over again

o Events - each collision that we record

o Particle - Individual particle (sometimes of different types) in the event
o 4-vector

o A drift tube in the detector - one of many thousand

o Object oriented programing tries to represent these concepts in to an abstractions
called classes

o

Each class is suppose to represent that idea and we build in a set of functions and
data for each class

Thursday, January 26, 2012

WHY DO Wt DO THIS

© Modularity - large software projects can be split up in smaller
pieces.

e Reusability - Programs can be assembled from pre-written
software components.

o Extensibility - New software components can be written or
developed from existing ones

e Basically - it is one approach to trying to organize the way we
think about writing code

e Note - for very simple things it is not at all obvious why you
go through all this trouble. If you wanted to make one
calculation once it is far from obvious you would do this!

Thursday, January 26, 2012

EXAMPLE

#include<string>
#include<iostream>

class Person{ -
char name[20]; prlvate
int yearOfBirth; data
public:
void displayDetails() {
cout << name << " bornin"
<< yearOfBirth << endl; public
} processes

B
o

Thursday, January 26, 2012

BUT WAIIT...

root [1] TF1 fl(ﬂfuncl“,“sin(x)/x“,e,10)

O

We say we are ‘constructing’ an object f1 which is of class type TF1

We pass it the name, functional form, and range and these all become private data
members of that object

When we write things like f1.Draw() what we are in fact doing is calling the
member function

We say this is an example of encapsulation. From the purely coding point of view
we don’t know all the details of what Draw() actually does. We didn’t have to
write the code for it. We just use it

This is the heart of the object oriented programming. The idea is to
e make code more organized

e allow us to develop complicated code which the user can call relatively simply

Thursday, January 26, 2012

NOTE OF CAUTION

o The concept of information hiding or encapsulation is
a very useful one for the purposes of writing code

o however, often this is a bit antithetical to what you
want to do as a physicist - i.e you want to know all the
details!

You can always look through the source code to find

out what is actually done. Though sometime this can
be a real effort!

Thursday, January 26, 2012

PARAMETERS

root [26] TFl *fa = new TF1("fa","[@]*x*sin([1]*x)",-3,3);
root [27] fa->SetParameter(®,5);

root [28] fa->SetParameter(1,10);

root [29] fa->Draw()

\ h

Many times we need to have parameters

For example if we know the general shape b

of the distribution but need to extract an 5
amplitude or a frequency -

|lII|IIIIlIIII|IIII|IIII

ROOT allows us to do that by having
parameters which we are free to adjust (or fit

101

1
-
-

for) ASC

2 -1 0 1 2 3

c‘olq-.u_xn

fa->SetParameter(1,5);
It is very common that we have some spectrum a=adrawi)

which has been measured and have an | [0]*x*sin([1]*x) |
15—

expectation or a guess about the shape which
we then want to extract

-
o

L5

we can change the frequency and redraw

n)

'
-
o

wlllllllllllllllllllllll

Thursday, January 26, 2012

CLOSER LOOK

Something is different about the code
syntax in the first line

root
root
root
root

[26]
[27]
(28]
[29]

TF1 *fa = new TF1("fa","[@)*x*sin([1]*x)",-3,3);
fa->SetParameter(0,5);
fa->SetParameter(1,10);

fa->Draw()

Thursday, January 26, 2012

CLOSER LOOK

root [26] TF1l *fa = new TF1("fa","[@]*x*sin([1]*x)",-3,3);
root [27] fa->SetParameter(9,5);
root [28] fa->SetParameter(1,10);

Something is different about the code root [29] fa->Draw()

syntax in the first line

the object that we are requesting
Look at the structure is of type TF1

it contains a C++ keyword new’

TEL fa=new TEL()

creates a pointer to an object pointér to

rather than creating an object it

an object of type TF1 S s

we say it allocates” a block of
memory using the new opperator

Thursday, January 26, 2012

A PARENTHETICAL
COMMENT

REMINDER OF POINTERS

X B 70043573 (memory address)

Computers operate by preforming

binary operations on numbers

you wﬂl. need to take a digital pointer [0013572
electronics class to understand
how this is done in detail
{ »
When you create an int x = 5;
int *pointer;
\Object’ 1n memOI'y thlS refers to a pointer = &x; // &x refers to the memory address of x
cout << "x = " << x << endl;
: 1 cout << "pointer = " << pointer << endl;
particular space in addressable it << "inointer = ® =< tnofnter << enil)
memory where the CPU can L

this means that you can reference
an object rather than access it
directly

Thursday, January 26, 2012

OK FINE - BUT WHY?

X 0 70043573 (memory address)

In the context of the pointer to
the integer you might wonder
why we do this at all?

pointer | 4041573

In the case of this example it
seems a bit silly.

Why not just manipulate the
object itself?

Thursday, January 26, 2012

OK FINE - BUT WHY?

The reason is that C++ objects
can be very complicated and
take up a large amount of
memory - not just one space

imagine that the object is not a

simple integer but rather the sin |
pointer
function or something more

complicated

using as a pointer as a
reference saves a lot of
copying both in memory
space and in time

70043573 (memory address)

70043573

Thursday, January 26, 2012

CLASSIC EXAMPLE

Parameter Passing

pass by value

int add(int a, int b) { Make a local copy of a & b
return a+tb;

}

int a, b, sum;
sum = add(a, b);

pass by reference
int add(int *a, int *b) { Pass pointers that reference
return *a + *b; a & b. Changes made to a

or b will be reflected
outside the add routine

}

int a, b, sum;
sum = add(&a, &b);

Thursday, January 26, 2012

WHY DOES THIS§ MATTER

If you have one function that is called only once with small objects making a local
copy won’t waste much space.

If you have very complicated objects that take a large amount of memory and you
call the function 100,000 times before you can reset the memory - it can be very
slow

Some computer languages handle all memory management “automatically’

o less freedom in how your code executes

but allowing the programer to allocate blocks of memory by him / herself alows
more control - BUT it is very easy create leaks!

Thursday, January 26, 2012

WHAT I§ A MEMORY
LEAK?

The C++ "new’ operator allocates memory to a particular object and freezes it from

O

other uses (so that later in the program you can get back this information)

o However, until you use the keyword “delete’ it remains frozen in memory and
cannot be used by the CPU for any other purpose

e This means there is less space available for other computations and eventually
your program may crash

o Imagine that there are only two slots in memory and you use them both. Now
you want to create a 3rd integer? There is no where to put it and the program
stops execution

o Generally - it also slows down computation as the computer uses (virtual
memory -i.e. temporarily uses the hard disk as memory which takes much
longer to read and write to)

Thursday, January 26, 2012

tEND COMMENT

BACK TO FUNCTIONS

There are two ways to make changes to the
style of plot

interactively through the menus
(easiest for simple things)

directly in through the code

(generally better to do it this way when
you are making a lot of plots and you
almost NEVER make a plot only once!)

Vo W - Y

e00o X cl

Eile Edit View Options Tools

sin(x)/x |

1-

0.8]
0.6
0.4F
0.2 f

o

021

use the menu with the mouse!

Thursday, January 26, 2012

POINT AND CLICK

If you right click on various objects on

the canvas you can access their 5606 2a

Eile Edit View Options Tools

properties through a GUI and add axis =sinédx]

x
= 1

labels, changes colors, line width etc

0.8

The GUI is actually accessing the 0.6
underlying ROOT / C++ objects and 04
modifying their properties. Every

i
rame Border Mode
€ No border
& Raised

i

e
[X)

thing you see on the screen shot is a

e
[X)

o_lllllllllllll

class (function, title, label, canvas, and TR el
the GUI itself!) X

Thursday, January 26, 2012

TGRAPH

Int_t n = 20;
Double t x[n], yInl;
for (Int_t i=0;i<n;i++) {
x[i] = i*0.1;
y[i] = 10*sin(x[1]+0.2);
}
// create graph
TGraph *gr = new TGraph(n,x,Vy);
TCanvas *cl = new TCanvas ("cl","Graph Draw Options",200,10,600,400);
// draw the graph with axis, contineous line, and put a * at each point
gr->Draw ("AC*") ;
}

Besides functions we can also plot data

in several ways. The simplest is a Fie Edit View Oplions Inspect Classes belp
IITGraph// |_Graph_|
10
4
This is just a collection of points which ‘7’
can be connected ¢
3
4
Various drawing and connecting)
2
()¥)ti()r18 ﬂijh;“hhjlhl‘lh;“‘;"32113;.132‘13311151

Thursday, January 26, 2012

CLOSER LOOK

{
Create two arrays of variables of type

double
Fill them with some values

Create a graph with the number of
points and the two variable arrays

you want plotted against each other _!

Int t n = 20;
Double t x[n], yl[nl;
for (Int_t i=0;i<n;i++) {
x[1] = 1*0.1;
y[i] = 10*sin(x[1]+0.2);
}
// create graph
TGraph *gr = new TGraph(n,x,V);
TCanvas *cl = new TCanvas("cl","Graph Draw Options",200,10,600,400);
// draw the graph with axis, contineous line, and put a * at each point
gr—->Draw ("AC*") ;

TCanvas is just ROOTs name for the
little window that pops up and where
you can place one or multiple objects
to be displayed

Note that this time
we explicitly created
a TCanvas for the graph
to be shown on

Thursday, January 26, 2012

HOW TO TITLE AN AXIS§ FROM CODE

®©
=
o
°
=

happiness units

From the pointer to the TGraph you can access pointers
to the axis and set titles

gr->GetXaxis()->SetTitle("hours since last cookie");

IIIIIIIIIIIIIIIIII

IlllllIIIlIIlIlIlIlIlIIIIII

lllll

1.8 2

1.6

gr—>GetYaxis()—>SetTitle("happiness llIlitS"); ' . . ' hours since last cookie

1.4

=
=
N
=
i
=
o
=
o
-
-
N

Everything 1s an object in root! The “GetXaxis()”
function returns a pointer an object of type “TAxis”

Then you set the properties of that particular TAXxis

Thursday, January 26, 2012

ROOT CLASS INDEX

There are so many libraries, options, classes we can’t possibly cover them all.

The "ROQOT class index

http:/ /root.cern.ch /root/html/ClassIndex.html

Contains every class in root - essentially all the source code in an interactive and
online browser

This in combination with the ROOT manual are the best way to figure out how to

Thursday, January 26, 2012

http://root.cern.ch/root/html/ClassIndex.html
http://root.cern.ch/root/html/ClassIndex.html

HISTOGRAMS

Often in HEP we talk about something called “events” Heights of Black Cherry Trees
Q-
For example a proton-proton collision at CMS or
00 —
ATLAS
2
A neutrino interaction in the water of Super K % %
Typically (but perhaps not always) these happen over o -
and over again
O

I I T T I T 1
60 .03 -70 ~ I37"B0 =B8R, 30

By analyzing many events together we can H eight (feet)

measure a quantity related to the probability
distribution

Simplest version - frequency on vertical axis and some
physical quantity on the the x-axis

Thursday, January 26, 2012

WHY HISTOGRAM?

o In HEP we often collect data as a series of
events

e Too much information to collate as a giant list
of 4 - vectors

e helps us summarize and is a sample of the full
distribution with a finite number of events

Thursday, January 26, 2012

THIF

root[] TH1F hl("hl","Histo from a Gaussian",100,-3,3);
root[] hl.FillRandom("gaus",10000);

h1.Draw()

Histo from a Gaussian h1
Entries 100000
Mean -0.001081
2500— RMS 0.9863
2000—
1500 —
1000—
500 —
0 C. 1 1 1 1 l L 1 1 1 l 1 1 1 L l 1 1 1 L l 1 1 1 1 l 1 1 L 1
-3 -2 -1 0 1 2 3

Thursday, January 26, 2012

BEST WAY TO LEAKN

Learn by doing!

http:/ /root.cern.ch /root/html/ tutorials/
Large number of simple (and some complicated) pieces of root macros
Run some of these and try to understand the code

Try making simple modifications and see what happens

Thursday, January 26, 2012

http://root.cern.ch/root/html/tutorials/
http://root.cern.ch/root/html/tutorials/

NEXT WeeK

Reminder first homework due
How we collect data and process it in HEP experiments
More topics in root (data structures, files, basic calculations)

email me with questions!

Thursday, January 26, 2012

