
Introduction to Unix,
C++ ,and root

Thursday, January 26, 2012

Introduction

Today we will start to introduce the technical bits you will need to learn

My approach will be pragmatic - there are 1000 page books on C++ that you can
use as references but you can literally make a career out of it

Here we will introduce some basics and then add on more things as we go along
during the series of lectures

Thursday, January 26, 2012

unix - what is it

UNIX is an operating system which was first developed in the 1960s, and has been
under constant development ever since. By operating system, we mean the suite
of programs which make the computer work. It is a stable, multi-user, multi-
tasking system for servers, desktops and laptops.

Modern implementations can have graphical interfaces - we won’t be talking
about these much as they are mostly self explanatory

We will review what UNIX is and how to do some basics. I will then show you
some references for more information - as with C++ there is a rabbit hole to go
down if you choose but we will focus on functional use of the tools

Thursday, January 26, 2012

What is unix

Composed of three elements

Kernel

`hub of the operating system, allocates time for
the cpu , memory, handles files, does underlying
work for all operations

The Shell

an interface between the user and the kernel.
This is the program that is running when you log
into a terminal

Programs

the instructions that you ask the computer to
follow

Thursday, January 26, 2012

how does this work

if you have a file called notes.txt and you type into your
terminal

rm notes.txt

(1) shell requests kernel to go find program called rm and
pass it the argument `notes.txt’

(2) kernel searches for program and calls it

(3) program rm tells kernel to go find file notes.txt and
delete it

(4) kernel does it

(5) kernel returns control to shell

shell

kernel

program
ls,rm, root

1

2 3
notes.txt
class.txt

4

5

Thursday, January 26, 2012

shells

There are several shells Bourne, C, Z shell

roughly they are equivalent, small differences in the syntax of some commands

on most machines there are a few different shells that

To find out what shell you are using type

echo $SHELL

Thursday, January 26, 2012

Files and processes
Everything in unix is either a file or a process

a process is just an executing program (in unix each gets a PID -
process ID)

a file is a collection of information

a text file, source code for a program, a directory

Thursday, January 26, 2012

Basic unix commands

Open a unix terminal (if you run linux you know how to do this, on a mac you run
the program terminal)

For windows machines you will need an ssh client

http://www.openssh.org/windows.html

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

Do this now or work with a friend today if you don’t have one

We will go through a series of basic commands that will allow you to get started .
if you already have experience with unix based systems this will be review

Thursday, January 26, 2012

http://www.openssh.org/windows.html
http://www.openssh.org/windows.html

Files and Directories
Listing files

When you first login to a unix machine you will be
in your home directory

To find out what is in your home directory type

ls

ls -a (`hidden files’)

make a directory

mkdir UnixStuff

change directory

cd UnixStuff

print the current directory

pwd

Thursday, January 26, 2012

Simple file commands

to first order these are
the commands you

need to know to look
at and go through a unix

directory and file structure

Thursday, January 26, 2012

More with files

you don’t have
to memorize these

but you will remember
these basic ones
because you use

them so
often

Thursday, January 26, 2012

Directing Output

One of the great advantages of unix is the
ability to redirect output from one command
into the input of another

I will show a few basic example of why this is
useful

it turns out that you can combine many of
these commands to do a lot with a single
command!

Thursday, January 26, 2012

Most output

 of unix commands goes to the `standard output’

ie. your terminal screen

however you can redirect this to files or other
commands

for example consider the cat command

do the following type

cat > list1

then type in the names of some fruit pressing return
after each one

at the end push control D

Thursday, January 26, 2012

Appending a file

You can append a file by doing

cat >> list1

and then typing more fruit

can merge two files by directing the output of
cat on two files into a third!

Thursday, January 26, 2012

Input

use the < symbol to redirect the input

for example the sort command knows how to
alphabetize

if you type

sort

and then

dog

cat

bird

ape

control D

Thursday, January 26, 2012

pipes

If you are on a multiuser system
you can see who else is on the
system

who

Thursday, January 26, 2012

pipes

who > names.txt

sort < names.txt

which does the same thing as

who | sort

the pipe command “pipes” or sends the output
of one command into the other

In this case first executes who

then pipes the output of who into sort

and then sort returns the output to the
standard output

Thursday, January 26, 2012

Summary of
commands

Note that you can do
multiple piles for various
unix commands

This allows one to do very
complicated things in a
very short (but not simple)
set of commands

Thursday, January 26, 2012

more information

That is enough information to get you navigating through and familiar with basic
unix files, directories, and processes

Unix: The Complete Reference

just search in google for unix references - there are many!

Thursday, January 26, 2012

C++

For many years physicists used FORTRAN as the basic computing language

In the mid 90s HEP migrated to a new programming language we will touch on that today

C++ is:

Object Oriented - We will discuss what this means exactly

Compiled - this means the code is optimized by a program called (not surprisingly) a compiler and
checked for mistakes before hand

Complicated - it is a very powerful language - but also one that allows you to hang yourself with the rope
it gives you if you aren’t careful

Thursday, January 26, 2012

What does a C++
program look like

//include headers; these are modules that include functions that you may use in your

 //program; we will almost always need to include the header that

// defines cin and cout; the header is called iostream.h

#include <iostream.h>

int main() {

//variable declaration

//read values input from user

//computation and print output to user

return 0;

}

!After you write a C++ program you compile it; that is, you run a program
called compiler that checks whether the program follows the C++ syntax !

–  if it finds errors, it lists them !
–  If there are no errors, it translates the C++ program into a program in machine

language which you can execute

// starting a line tells
the compiler to ignore

this line

get code from
another file

All true C++ programs
have a main function which
is the start of the program

and the end. Everything happens
in between

the main() program
returns an integer

in in order to return control
we have to return some int

Thursday, January 26, 2012

notes

what follows after // on the same line is considered comment

indentation is for the convenience of the reader; compiler ignores all spaces and
new line ; the delimiter for the compiler is the semicolon

all statements ended by semicolon

Lower vs. upper case matters!!

Void is different than void

Main is different that main

Thursday, January 26, 2012

variable declation
type variable-name;

Meaning: variable <variable-name> will be a variable of type <type>!
!
Where type can be: !

–  int

//integer

–  double

//real number

–  char

//character

Example: !
!int a, b, c;

double x;

int sum;

char my-character;

Thursday, January 26, 2012

Variable input

cin >> variable-name;

Meaning: read the value of the variable called <variable-

name> from the user!
!
!
Example:!
!cin >> a;

cin >> b >> c;

cin >> x;

cin >> my-character;

Thursday, January 26, 2012

variable output
cout << variable-name;

!Meaning: print the value of variable <variable-name> to the user !

cout << “any message “;

!Meaning: print the message within quotes to the user!

cout << endl;

!Meaning: print a new line!

!
Example:!
!cout << a;

cout << b << c;

cout << “This is my character: “ << my-character << “ he he he”

<< endl;

Thursday, January 26, 2012

program control

often we would like to control the flow of a
program depending on a condition that we
occur

there are several C++ constructions that allow
us to do just that

Thursday, January 26, 2012

IF statements

!
!
 if (condition) {!

!S1;!
}!
else { !
!S2;!

}!
S3;!

!
!

condition!

S1! S2!

S3!

True! False!

Thursday, January 26, 2012

comparisons
..are built using !
•  Comparison operators!

== equal!
!= not equal!
< less than!
> greater than!
<= less than or equal!
>= greater than or equal!

•  Boolean operators!
&& and!
|| or!
! not!

Thursday, January 26, 2012

Examples

Assume we declared the following variables:!
int a = 2, b=5, c=10;

Here are some examples of boolean conditions we can use:!
•  if (a == b) …

•  if (a != b) …

•  if (a <= b+c) …

•  if(a <= b) && (b <= c) …

•  if !((a < b) && (b<c)) …

Thursday, January 26, 2012

if example

#include <iostream.h>

void main() {

int a,b,c;

cin >> a >> b >> c;

if (a <=b) {

cout << “min is “ << a << endl;

}

else {

cout << “ min is “ << b << endl;

}

cout << “happy now?” << endl;

}!

Thursday, January 26, 2012

while statements

while (condition) {!
!S1;!

}!
S2;!
!

condition!

S1!

S2!

True! False!

Thursday, January 26, 2012

while example
//read 100 numbers from the user and output their sum

#include <iostream.h>

void main() {

int i, sum, x;

sum=0;

i=1;

while (i <= 100) {

cin >> x;

sum = sum + x;

i = i+1;

}

cout << “sum is “ << sum << endl;

}

Thursday, January 26, 2012

For loop
for (inital statement, expression, increment statement) {statement;}

Thursday, January 26, 2012

Arithmetic
Arithmetic is performed with operators

 + for addition

 - for subtraction

 * for multiplication

/ for division

• Example: storing a product in the variable

total_weight

total_weight = one_weight * number_of_bars;
Thursday, January 26, 2012

What is root?

In HEP, we collect a large amount of data

average size of one event (raw) can be greater than a megabyte and we record
data from the LHC experiments at a few hundred per second

even if we wanted to cannot represent all of that information for all of those
events

need a way to consolidate and extract the most important pieces of that data
out and relate them to basic quantities about the universe

We do this by extracting the most relevant information out of each event first
and then further compiling information over a large number of events

Thursday, January 26, 2012

What is root?
ROOT is an object oriented (C++) data analysis framework

It is a series of classes which can be used to represent data and manipulate it for
analysis

many `native’ data types that are common for HEP analysis (histograms,
graphs, Lorentz vectors, fitting, probability distributions, etc)

framework is supported by CERN and Fermilab - many users contribute
libraries for common applications

Today we will start with the basics of what we want to use it for and how to do
simple commands.

Note that you cannot learn ROOT just by studying lecture notes or reading the
manual - you need to have practice and do it yourself

Corollary - it is fine to work together and discuss BUT don’t just copy
somebody else’s code (either another student or what you find on the internet).
You will learn much less this way...

Thursday, January 26, 2012

ways of using root

Root can be used in one of two ways

`interactively’ or ‘interpretively’ in which ROOT root interprets each line as
you type it or as it reads it in from a text file

ADVANTAGE - for very simple tasks this is simple and fast

DISADVANTAGE - errors get caught at execution time, sometimes leading
to catastrophic failure that is hard to understand and difficult to fix

`compiled’ - where the code is first compiled and optimized in machine
language by the compiler and then executed afterwards

 ADVANTAGE - compiled code is generally faster and easier to debug as
the compiler catches much problematic code and can also pinpoint the
exact location of something that leads to a crash

Thursday, January 26, 2012

CINT
The interactive version of ROOT is called ‘CINT’ which just means C++
interpreter

CINT

‘based’ on C++ (but not quite standard C++)

It is NOT compiled. Sometimes it will do wrong things without warning (eg.
convert or compare numeric types without letting you know). This can be
dangerous and give wrong results!

you may need to restart root more than you like

does not distinguish between objects and pointers to objects. This makes it
`easier’ to call and manipulate objects but again can have surprising results

Thursday, January 26, 2012

How to start it
From the unix prompt you can
type`root’

this will take you to the
interactive version of root

typing .q will quit the
program

Two ways to work interactively
with interpreted root

type directly into the
command prompt (basically
only useful for one liners)

create a `macro’ using a text
editor

Thursday, January 26, 2012

Root Macro

A macro is just a series of lines of code that are
executed consecutively. Rather than typing them in
all at the command line which can be painful if
you make a mistake you can save it in a file and
then run it.

For example the following text file was saved as
loop.C and then executed

note that everything that is executed is within
{ }

further note that as written this would
generate compilation error from any standard
C++ compiler (why?)

contents of the file

Thursday, January 26, 2012

Some root basics

Plotting a function

Working with histograms

Working with multiple plots

Saving your work

Thursday, January 26, 2012

1-D functions

The root class for functions is “TF1” (Everything in root is a TSomething - I don’t know why)

Above is an example of the constructor of the function. What does this mean though:

TF1 - we are constructing a C++ object of the type TF1 (think of int myInt =7) - this just tells us what sort
of object we want

“func1” is the title of the function

“sin(x)/x” is the functional form

0 is the lower range

10 is the upper range

Thursday, January 26, 2012

fun with functions

f1.Draw()

 Draws the function - note that we specified
what range x

We did not however specify the dependent
variable. By default root choses that to show
the full range.

There are many things we can change on the
plot

http://root.cern.ch/root/html/TF1.html

full list - we will show a few examples and
you can then figure it out

note the inexplicable
default off white

background. This is ok
on slides but is very visible on white paper

Thursday, January 26, 2012

http://root.cern.ch/root/html/TF1.html
http://root.cern.ch/root/html/TF1.html

C++ Aside

On the previous slides I referred to TF1 as being a `class’

This has a very particular meaning in C++.

This gets to the heart of what we call Object Oriented Computing

In particular we say that we instantiate an object of the class type TF1 which is
called f1

Thursday, January 26, 2012

What is Objected
oriented programing

Identifying objects and assigning
responsibilities to these objects.

Objects communicate to other objects by
sending messages.

Messages are received by the methods of an
object

An object is like a
black box.

 The internal details
are hidden.

Thursday, January 26, 2012

What is an object
Tangible Things as a car, printer, ...

Roles as employee, boss, ...

Incidents as flight, overflow, ...

Interactions as contract, sale, ...

Specifications as color, shape, …

In HEP we could mean things like - a particle,
a function, a detector element, ...

Thursday, January 26, 2012

Why do we care
Often in programing for HEP we are describing concepts which we have specific
properties and that we will use over and over again

Events - each collision that we record

Particle - Individual particle (sometimes of different types) in the event

4-vector

A drift tube in the detector - one of many thousand

Object oriented programing tries to represent these concepts in to an abstractions
called classes

Each class is suppose to represent that idea and we build in a set of functions and
data for each class

Thursday, January 26, 2012

Why do we do this
Modularity - large software projects can be split up in smaller
pieces.

Reusability - Programs can be assembled from pre-written
software components.

Extensibility - New software components can be written or
developed from existing ones

Basically - it is one approach to trying to organize the way we
think about writing code

Note - for very simple things it is not at all obvious why you
go through all this trouble. If you wanted to make one
calculation once it is far from obvious you would do this!

Thursday, January 26, 2012

Example

#include<string>
#include<iostream>
class Person{
 char name[20];
 int yearOfBirth;
public:
 void displayDetails() {
 cout << name << " born in "
 << yearOfBirth << endl;
 }
 //...
};

private
data

public
processes

Thursday, January 26, 2012

but wait...

We say we are ‘constructing’ an object f1 which is of class type TF1

We pass it the name, functional form, and range and these all become private data
members of that object

When we write things like f1.Draw() what we are in fact doing is calling the
member function

We say this is an example of encapsulation. From the purely coding point of view
we don’t know all the details of what Draw() actually does. We didn’t have to
write the code for it. We just use it

This is the heart of the object oriented programming. The idea is to

make code more organized

allow us to develop complicated code which the user can call relatively simply

Thursday, January 26, 2012

Note of caution
The concept of information hiding or encapsulation is
a very useful one for the purposes of writing code

however, often this is a bit antithetical to what you
want to do as a physicist - i.e you want to know all the
details!

You can always look through the source code to find
out what is actually done. Though sometime this can
be a real effort!

Thursday, January 26, 2012

Functions with
parameters

Many times we need to have parameters

For example if we know the general shape
of the distribution but need to extract an
amplitude or a frequency

ROOT allows us to do that by having
parameters which we are free to adjust (or fit
for)

It is very common that we have some spectrum
which has been measured and have an
expectation or a guess about the shape which
we then want to extract

we can change the frequency and redraw

Thursday, January 26, 2012

Closer look

Something is different about the code
syntax in the first line

Thursday, January 26, 2012

Closer look

Something is different about the code
syntax in the first line

Look at the structure

it contains a C++ keyword `new’

rather than creating an object it
creates a pointer to an object

we say it `allocates’ a block of
memory using the new opperator

TF1 *fa = new TF1(...)
pointer to

an object of type TF1 C++ keyword

the object that we are requesting
is of type TF1

Thursday, January 26, 2012

A parenthetical
comment

{
Thursday, January 26, 2012

reminder of pointers

Computers operate by preforming
binary operations on numbers

you will need to take a digital
electronics class to understand
how this is done in detail

When you create an
`object’ in memory this refers to a
particular space in addressable
memory where the CPU can

this means that you can reference
an object rather than access it
directly

Thursday, January 26, 2012

Ok fine - but why?

In the context of the pointer to
the integer you might wonder
why we do this at all?

In the case of this example it
seems a bit silly.

Why not just manipulate the
object itself?

Thursday, January 26, 2012

Ok fine - but why?
The reason is that C++ objects
can be very complicated and
take up a large amount of
memory - not just one space

imagine that the object is not a
simple integer but rather the sin
function or something more
complicated

using as a pointer as a
reference saves a lot of
copying both in memory
space and in time

Thursday, January 26, 2012

classic example

Thursday, January 26, 2012

Why does this matter

If you have one function that is called only once with small objects making a local
copy won’t waste much space.

If you have very complicated objects that take a large amount of memory and you
call the function 100,000 times before you can reset the memory - it can be very
slow

Some computer languages handle all memory management `automatically’

less freedom in how your code executes

but allowing the programer to allocate blocks of memory by him/herself alows
more control - BUT it is very easy create leaks!

Thursday, January 26, 2012

What is a memory
leak?

The C++ `new’ operator allocates memory to a particular object and freezes it from
other uses (so that later in the program you can get back this information)

However, until you use the keyword `delete’ it remains frozen in memory and
cannot be used by the CPU for any other purpose

This means there is less space available for other computations and eventually
your program may crash

Imagine that there are only two slots in memory and you use them both. Now
you want to create a 3rd integer? There is no where to put it and the program
stops execution

Generally - it also slows down computation as the computer uses (virtual
memory -i.e. temporarily uses the hard disk as memory which takes much
longer to read and write to)

Thursday, January 26, 2012

end comment

}
Thursday, January 26, 2012

Back to functions

There are two ways to make changes to the
style of plot

interactively through the menus
(easiest for simple things)

directly in through the code
(generally better to do it this way when
you are making a lot of plots and you
almost NEVER make a plot only once!)

use the menu with the mouse!

Thursday, January 26, 2012

Point and click

If you right click on various objects on
the canvas you can access their
properties through a GUI and add axis
labels, changes colors, line width etc

The GUI is actually accessing the
underlying ROOT/C++ objects and
modifying their properties. Every
thing you see on the screen shot is a
class (function, title, label, canvas, and
the GUI itself!)

Thursday, January 26, 2012

TGraph

Besides functions we can also plot data
in several ways. The simplest is a
“TGraph”

This is just a collection of points which
can be connected

Various drawing and connecting
options

Thursday, January 26, 2012

Closer look

Create two arrays of variables of type
double

Fill them with some values

Create a graph with the number of
points and the two variable arrays
you want plotted against each other

TCanvas is just ROOTs name for the
little window that pops up and where
you can place one or multiple objects
to be displayed

Note that this time
we explicitly created

a TCanvas for the graph
to be shown on

Thursday, January 26, 2012

how to title an axis from CODE

From the pointer to the TGraph you can access pointers
to the axis and set titles

gr->GetXaxis()->SetTitle("hours since last cookie");

gr->GetYaxis()->SetTitle("happiness units");

Everything is an object in root! The “GetXaxis()”
function returns a pointer an object of type “TAxis”

Then you set the properties of that particular TAxis

Thursday, January 26, 2012

root class index

There are so many libraries, options, classes we can’t possibly cover them all.

The `ROOT class index

http://root.cern.ch/root/html/ClassIndex.html

Contains every class in root - essentially all the source code in an interactive and
online browser

This in combination with the ROOT manual are the best way to figure out how to

Thursday, January 26, 2012

http://root.cern.ch/root/html/ClassIndex.html
http://root.cern.ch/root/html/ClassIndex.html

Histograms

Often in HEP we talk about something called “events”

For example a proton-proton collision at CMS or
ATLAS

A neutrino interaction in the water of Super K

Typically (but perhaps not always) these happen over
and over again

By analyzing many events together we can
measure a quantity related to the probability
distribution

Simplest version - frequency on vertical axis and some
physical quantity on the the x-axis

Thursday, January 26, 2012

Why histogram?

In HEP we often collect data as a series of
events

Too much information to collate as a giant list
of 4 - vectors

helps us summarize and is a sample of the full
distribution with a finite number of events

Thursday, January 26, 2012

TH1F

h1.Draw()

Thursday, January 26, 2012

Best way to learn

Learn by doing!

http://root.cern.ch/root/html/tutorials/

Large number of simple (and some complicated) pieces of root macros

Run some of these and try to understand the code

Try making simple modifications and see what happens

Thursday, January 26, 2012

http://root.cern.ch/root/html/tutorials/
http://root.cern.ch/root/html/tutorials/

Next week

Reminder first homework due

How we collect data and process it in HEP experiments

More topics in root (data structures, files, basic calculations)

email me with questions!

Thursday, January 26, 2012

