EVENT CLASSIFICATION PART II

FINAL PROJECT

- Placed an ntuple on blackboard under the folder Final Project
- Simulated LHC data - your job is to convince me for evidence of particle production (of both known and unknown particles!)
- See instructions for detail - due one week from Tuesday

DISCRIMINANT

- Say we have two hypothesis for what an event is:
- background - H0
- signal - H1
- Some variable or discriminant which we can classify the event as
 more likely signal or background
- This can be a function of many variables - but now the question is how to optimally separate the two
$R_{0}\left(\right.$ accept $\left.H_{0}\right)$
$R_{1}\left(\right.$ reject $\left.H_{0}\right)$

DEFINITIONS

Significance Level:
Probability to reject H0

$$
\alpha=\int_{R_{1}} f\left(y \mid H_{0}\right) d y
$$ when it is true...

Power:

Probability to accept H0 when H1 is true...

$$
\beta=\int_{R_{0}} f\left(y \mid H_{1}\right) d y
$$

MISCLASSIFICATION RATE

- Consider the probability that an event is correctly assigned
- We can use Bayes' theorem to calculate this

$$
P\left(s \mid x \in R_{1}\right)=\frac{P\left(x \in R_{1} \mid s\right) P(s)}{P\left(x \in R_{1} \mid s\right) P(s)+P\left(x \in R_{0} \mid b\right) P(b)}
$$

- Note that purity depends on prior probability (i.e. s and b cross-sections)

CHOOSING ONE..

- Characterize the performance by plotting the efficiency versus rejection. Best to be in the upper right hand corner!
- Can use area under curve as a measure of quality

NEYMAN-PERSON LEMMA

- The Neyman-Pearson lemma states: to obtain the highest background rejection for a given signal efficiency (highest power for a given significance level), choose the acceptance region for signal choosing c for a given efficiency
- Equivalently, it states that the optimal discriminant is given by the ratio of probabilities or the likelihood ratio

$$
\frac{p(\vec{x} \mid s)}{p(\vec{x} \mid b)}>c
$$

$$
y(\vec{x})=\frac{p(\vec{x} \mid s)}{p(\vec{x} \mid b)}
$$

Prior odds

Posterior odds

$$
\frac{p(s \mid \vec{x})}{p(b \mid \vec{x})}=\frac{p(\vec{x} \mid s) p(s)}{p(\vec{x} \mid b) p(b)}
$$

Likelihood

Ratio

Since we can't change the prior odds making a cut on the likelihood ratio is equivalent to maximizing the posterior odds of the event classification

so THEN WHAT

- The problem is that we usually don't have explicit formulae for the pdfs $p(x \mid s), p(x \mid b)$, so for a given x we can't evaluate the likelihood ratio.
- Instead we may have Monte Carlo models for signal and background processes, so we can produce simulated data:

COMPROMISE

- Simulate monte carlo events and get an approximate pdf
- Or form a test statistic from those approximate pdfs

FISHER DISCRIMINANT

- Form a test statistic

$$
y(\vec{x})=\sum_{i=1}^{n} w_{i} x_{i}=\vec{w}^{T} \vec{x}
$$ which is a weighted sum of the inputs

- Want large separation between mean value and small variance
- So maximize:

$$
J(\vec{w})=\frac{\left(\tau_{\mathrm{s}}-\tau_{\mathrm{b}}\right)^{2}}{\Sigma_{\mathrm{s}}^{2}+\Sigma_{\mathrm{b}}^{2}}
$$

CALCULATION

$$
\begin{aligned}
\left(\mu_{k}\right)_{i} & =\int x_{i} p\left(\vec{x} \mid H_{k}\right) d \vec{x} \\
\left(V_{k}\right)_{i j} & =\int\left(x-\mu_{k}\right)_{i}\left(x-\mu_{k}\right)_{j} p\left(\vec{x} \mid H_{k}\right) d \vec{x}
\end{aligned}
$$

- Making the optimal selection reduces to the problem of finding the optimal weights of the variables

$$
\begin{aligned}
& \tau_{k}=\int y(\vec{x}) p\left(\vec{x} \mid H_{k}\right) d \vec{x}=\vec{w}^{T} \vec{\mu}_{k} \\
& \Sigma_{k}^{2}=\int\left(y(\vec{x})-\tau_{k}\right)^{s} p\left(\vec{x} \mid H_{k}\right) d \vec{x}=\vec{w}^{T} V_{k} \vec{w}
\end{aligned}
$$

CONTINUED...

$$
\begin{aligned}
\left(\tau_{0}-\tau_{1}\right)^{2} & =\sum_{i, j=1}^{n} w_{i} w_{j}\left(\mu_{0}-\mu_{1}\right)_{i}\left(\mu_{0}-\mu_{1}\right)_{j} \\
& =\sum_{i, j=1}^{n} w_{i} w_{j} B_{i j}=\vec{w}^{T} B \vec{w}
\end{aligned}
$$

and the denominator is
'within' classes

$$
\Sigma_{0}^{2}+\Sigma_{1}^{2}=\sum_{i, j=1}^{n} w_{i} w_{j}\left(V_{0}+V_{1}\right)_{i j}=\vec{w}^{T} W \vec{w}
$$

\rightarrow maximize $J(\vec{w})=\frac{\overrightarrow{w^{T}} B \vec{w}}{\overrightarrow{w^{T} W \vec{w}}}=\frac{\text { separation between classes }}{\text { separation within classes }}$

EXAMPLE

LOG LIKELIHOOD

FINALLY

