
More C++ and root

Thursday, February 16, 2012

Today’s Lecture

Series of topics from C++

Example of thinking though a problem

Useful physics classes in ROOT

Thursday, February 16, 2012

Functions

by this point you are used to the syntax
of a function

Thursday, February 16, 2012

pass by value

Imagine that you wrote
the following code

What would be the
output ?

Thursday, February 16, 2012

pass by value

Imagine that you wrote
the following code

What would be the
output ?

you might be tempted
to say 2 but the answer
is 1

Thursday, February 16, 2012

pass by value

passing by value takes the value of the
variable and assigns it to a new local
copy of the variable

Inside the function the local copy gets
changed to 2

Thursday, February 16, 2012

pass by value

passing by value takes the value of the
variable and assigns it to a new local
copy of the variable

Inside the function the local copy gets
changed to 2

However, after the function ends
nothing is returned and so outside the
function the value of x is still 1

Thursday, February 16, 2012

Pass by reference

There is another way to do this

This takes the address of the variable
and passes a reference to the variable
outside the function

IN this case it DOES return 2

Thursday, February 16, 2012

Scope

The variable y in the definition of pow is local.

 We can use the same variable name outside this function with no
effect on or from the variable y inside pow.

We say that the scope of y inside pow is inside

Thursday, February 16, 2012

Default arguments

Define as usual

Thursday, February 16, 2012

function overload

Can have multiple
functions

which one gets
called depends on
type of argument
passed

Thursday, February 16, 2012

function overload

Can have multiple
functions

called
“overloading”

Thursday, February 16, 2012

Arrays

The number in brackets [] gives the total
number of elements,e.g. the array score above
has 10 elements, numbered 0 through 9.

The individual elements are referred to as
score[0], score[1], score[2], ..., score[9]

Declaring an array: data-type variableName
[numElements];

int score[10];

If you try to access score[10] this is an error!

Thursday, February 16, 2012

Arrays

An array can also have two or more indices. A two-dimensional array is often used to store the values of a
matrix:

const int numRows = 2;

const int numColumns = 3;

double matrix[numRows][numColumns];

Again, notice that the array size is 2 by 3, but the row index runs from 0 to 1 and the column index from 0 to 2.

matrix[i][j], matrix[i][j+1], etc.

The elements are stored in memory in the order:

Usually we don’t need to know how the data are stored internally

Thursday, February 16, 2012

Initialization
One dimensional array:

Multidimension:

Thursday, February 16, 2012

Example

Thursday, February 16, 2012

passing to a function

when we pass an array to a
function in the actual call we
don’t need the brackets

If we include a specific element
of the array then we are actually
evaluating that first - in this case
a double witch happens to be
the ith element of the myMatrix

Thursday, February 16, 2012

pass by reference

note - passing an array to a function works
like pass by reference!

Thursday, February 16, 2012

Pointers

A pointer is the address of a variable in
memory

The notation is to use the * when
declaring a pointer

Note that as long as the star is between
the type and the name it doesn’t matter!

Thursday, February 16, 2012

Pointers

Here & means
“address of”. Don’t
confuse it with the &
used when passing
arguments by
reference.

Thursday, February 16, 2012

Initializing pointers

A statement like

int* iPtr;

declares a pointer variable, but does not initialize it. It will be

pointing to some “random” location in memory. We need

to set its value so that it points to a location we’re interested in,

e.g., where we have stored a variable:

iPtr = &i;

(just as ordinary variables must be initialized before use).

Thursday, February 16, 2012

different pointers

We need different types of pointers because in
general, the different data types (int, float,
double) take up different amounts of memory.

 If declare another pointer and set then the +1
means “plus one unit of memory address for
int”, i.e., if we had int variables stored
contiguously, jPtr would point to the one just
after iPtr.

But the types float, double, etc., take up
different amounts of memory, so the actual
memory address increment is different.

Thursday, February 16, 2012

Pointers in functions

When a pointer is passed as an argument, it divulges an address to
the called function, so the function can change the value stored at
that address - acts like pass by reference...

Thursday, February 16, 2012

Test

What would this piece of code
output?

Thursday, February 16, 2012

Test

What would this piece of code
output?

i is now 7! The second line assigns
the address of the variable j to i.

Change j and now you also change i

Thursday, February 16, 2012

What to do with
pointers

You can do lots of things with pointers in C++, many of whichresult in confusing
code and hard-to-find bugs.

One of the main differences between Java and C++: Java doesn’t have pointer
variables (generally seen as a Good Thing).

The main usefulness of pointers for us is that they will allow us to allocate
memory (create variables) dynamically, i.e., at run time, rather than at compile
time.

Be careful - the misallocation of memory in C++ is a major source of memory
leaks, bugs, and general obfuscation . General advice: keep it as simple as possible

Thursday, February 16, 2012

Classes in C++

A class is something like a user-
defined data type.

Typically this would be in a file
called MyClassName.h and the
definitions of the functions would be
in MyClassName.C

Note the semi-colon after the closing
brace.

Thursday, February 16, 2012

Example class
Say we wanted to represent

vectors in 2-D we might
make a class like:

Thursday, February 16, 2012

Class header

The header file must be included (#include
"MyClassName.h") in other files where the
class will be used.

To avoid multiple declarations we use a

Thursday, February 16, 2012

objects

(Actually, variables are also objects in C++. Sometimes class instances are called
“class objects” -- distinction is not important.)

A class contains in general both:

variables, called “data members” and

functions, called “member functions” (or “methods

Thursday, February 16, 2012

Data members

Their values define the “state” of the object. Because here they are declared
private, a TwoVector object’s values of m_x and m_y cannot be accessed directly,
but only from within the class’s member functions (more later).

The optional prefixes m_ indicate that these are data members.

Some authors use e.g. a trailing underscore. (Any valid identifieris allowed.)

Thursday, February 16, 2012

Constructors

These are special functions called
constructors.

A constructor always has the same
name as that of the class.

It is a function that is called when an
object is created.

A constructor has no return type.

There can be in general different
constructors with different signatures
(type and number of arguments).

Thursday, February 16, 2012

constructors
When we declare an object, the constructor is called which has
the matching signature, e.g.,

The constructor with no arguments is called the “default
constructor”. If, however, we say

then the version that takes two double arguments is called.
If we provide no constructors for our class, C++ automatically
gives us a default constructor

Thursday, February 16, 2012

in action
In the file that defines the member functions, e.g., TwoVector.cc,
we precede each function name with the class name and :: (the
scope resolution operator). For our two constructors we have:

The constructor serves to initialize the object.
If we already have a TwoVector v and we say
TwoVector w = v;
this calls a “copy constructor” (automatically provided).

Thursday, February 16, 2012

functions

These are “setter” functions. As they belong to the class, they are
allowed to manipulate the private data members m_x and m_y.
To use with an object, use the “dot” notation:

Thursday, February 16, 2012

pointers to objects

Thursday, February 16, 2012

This pointer

C++ defines a pointer “this” which is a pointer
to the object that is being called

Thursday, February 16, 2012

INformation hiding

Note that by declaring the m_x and m_y
private this means that we can only access
them via the ‘accessor’ functions

Why do we do this?

Thursday, February 16, 2012

C++ paradigm

The basic idea of the C++ paradigm is to ‘hide’ the implementation of private
member data or function

This way - if the implementation changes inside the class. None of the user code
needs to know about it!

This way we can encapsulate the behavior in a small piece of code that is used by
a large number of clients

Thursday, February 16, 2012

Example

Let’s write a program that checks to see if a
number between 1 and 1000 is a prime number

Thursday, February 16, 2012

let’s think

How do we decide if a number is prime.

Thursday, February 16, 2012

let’s think

How do we decide if a number is prime.

If it is only divisible by itself and 1 then it is
prime

Thursday, February 16, 2012

So

So a straightforward way to test this is to just
try to divide the number by every number
between 2 and N (where N is the test number)
and see if there is any factors

Thursday, February 16, 2012

v

first we will get an
input from the
keyboard to see
what number we
have to test

get_valid_number()

Thursday, February 16, 2012

retrieve the number

Get a number, if it is
out of range output
a error message and
stay in the loop

if it is inside exit
loop and return the
number

Thursday, February 16, 2012

Next step

After a valid input
check to see if it is
prime

Thursday, February 16, 2012

Prime checker

Iterate through all
numbers from 2 to
N-1 and check to see if
there is a remainder
or not

If you can’t find one
return true

Thursday, February 16, 2012

Root physics classes

Example code on
blackboard

An example
introducing some
convenient physics
classes

Thursday, February 16, 2012

Aside : 2 versus 3 body
decay

For a 2 body decay as you showed
in your homework you must have a
fixed energy in the rest frame of the
decaying particle. Conservation of
energy and momentum

For a 3 body decay there is enough
phase space that you expect a
continuous rather than discrete
spectrum of energy

β decay spectrum

Thursday, February 16, 2012

TlorentzVector

http://root.cern.ch/root/html/
TLorentzVector.html

Constructors, and many member
functions which both access the
internal data and know how to
rotate , boost, and add
Lorentzvectors

Thursday, February 16, 2012

http://root.cern.ch/root/html/TLorentzVector.html
http://root.cern.ch/root/html/TLorentzVector.html
http://root.cern.ch/root/html/TLorentzVector.html
http://root.cern.ch/root/html/TLorentzVector.html

Load library

Construct two
LorentzVectors

Thursday, February 16, 2012

Load library

Construct two
LorentzVectors

TGenPhaseSpace

Thursday, February 16, 2012

http://root.cern.ch/root/html/
TGenPhaseSpace.html

Generates n-body phase space events (by
default assumes constant cross-section) ie. only
phase space comes in

Thursday, February 16, 2012

http://root.cern.ch/root/html/TGenPhaseSpace.html
http://root.cern.ch/root/html/TGenPhaseSpace.html
http://root.cern.ch/root/html/TGenPhaseSpace.html
http://root.cern.ch/root/html/TGenPhaseSpace.html

Set properties of phase space
generator

Create histogram

Generate events

Calculate the invariant mass of
the proton and pion both
positive and negative from the
decay products

Draw the histogram

Thursday, February 16, 2012

Dalitz Plot

What we have just generated is
called a Dalitz plot

Provides information on the phase
space of three body decays

Uniform if no angular correlations
between decay products

If resonant structures or correlations
phase space is populated unequally

M(πp)

M(πp)+

-

Thursday, February 16, 2012

Example

proton+antiproton to three neutral
pions

clear structure and resonances
reveals intermediate particles that
were not seen by the detector itself
but can be inferred from the
measurements made!

Thursday, February 16, 2012

Next week

Introduction to Limits (or how I learned to
report just how much i didn’t see new physics)

Root statistics classes

Presentations!!

Thursday, February 16, 2012

