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It would be hard to exaggerate the role that computers 
and numerical simulations have played in the recent 
progress of nonlinear science. Indeed, the term experi- 
mental mathematics has been coined to describe 
computer-based investigations into nonlinear problems 
that are inaccessible to analytic methods. The experi- 
mental mathematician uses the computer to simulate 
the solutions of nonlinear equations and thereby to gain 
insights into their behavior and to suggest directions for 
future analytic research. In the last 20 years, the sym- 
biotic interplay between experimental and theoretical 
mathematics has caused a revolution in our under- 
standing of nonlinear problems [17, 25, 301. 

Nonlinear science has become a discipline in itself, 
simply because nature is intrinsically nonlinear. The 
term nonlinear science, meaning the science of problems 
that are not linear, may seem odd at first: It seems to 
suggest that linear problems are the central issue, while 
in fact precisely the opposite is true. Both mathemati- 
cally and physically, linear equations are the exception 
rather than the rule. Indeed, using a term like nonlin- 
ear science is, as the noted pioneer in experimental 
mathematics Stanislaw M. Ulam has observed, like 
referring to the bulk of zoology as the study of non- 
elephant animals. The reason for the nomenclature and 
for the strong bias toward the study of linear systems is 
expediency: In the past, nonlirzear was nearly synony- 
mous with nonsolvable. Today, thanks in large part to 
computers, many previously intractable nonlinear 
problems have been solved, and the field of nonlinear 
studies has come into its own. 

We must distinguish two separate but related prob- 
lems that occur in nonlinear science. The first of these 
is purely mathematical: Given. an equation, what are its 
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properties, and how can it be solved? The second prob- 
lem involves what we call modeling: Given a process in 
the “real” world, how can we write down the best 
mathematical description or model? As scientists we 
want both to model the real world and to be able to 
solve the resulting models, and so we must address 
both problems, for the interplay between them is cru- 
cial. It is easy, for example, to write down the Navier- 
Stokes equations describing fluid motion; this does very 
little to reveal the nature of turbulent fluid flow, how- 
ever. Similarly, intuition about the qualitative aspects 
of nonlinear behavior can be very valuable as a guide 
toward formulating the best set of equations to use as a 
model. 

In mathematical terms, the essential difference be- 
tween linear and nonlinear equations is clear: Linear 
equations are special in that any two solutions can be 
added together to form a new solution. As a conse- 
quence, there exist established analytic methods for 
solving any linear system, regardless of its complexity. 
In essence, these methods amount to breaking up the 
complicated system into many simple pieces and patch- 
ing together the separate solutions for each piece to 
form a solution to the full problem. In contrast, two 
solutions to a nonlinear system cannot be added to- 
gether to form a new solution. Nonlinear systems must 
be treated in their full complexity. It is therefore not 
surprising that no general analytic approach exists for 
solving them. Furthermore, for certain nonlinear sys- 
tems that generate chaotic motion, in a sense we will 
discuss, there are no useful analytic solutions. 

In modeling a real-world physical process, it is im- 
portant to realize that a natural system that can be 
described by a linear model in some circumstances 
must be described by a nonlinear model in others. An 
example from elementary physics that illustrates this 
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very clearly is that of a pendulum constrained to move 
in a plane. For small oscillations, the motion of the 
pendulum is well approximated by a linear model, and 
it can be shown that the pendulum’s period is inde- 
pendent of its amplitude. This result was first observed 
by Galileo. For the full nonlinear equation, however, 
this result is not true: The period depends on the am- 
plitude, and larger excursions take longer. Since in a 
real clock the amplitude always drifts slightly, a pendu- 
lum making large oscillations keeps very poor time. 

A more striking illustration of the difference between 
a full nonlinear model of the pendulum and its linear 
approximation occurs when the effects of friction are 
included and a periodic driving force is added. In the 
linear model, a closed-form solution can still be ob- 
tained, and the motion can be described analytically for 
all time. For the nonlinear equation, the solution for 
certain values of the driving frequency is periodic and 
not too dissimilar from the solution of the linear model. 
For other values, however, the solution becomes cha- 
otic and behaves in a seemingly random, unpredictable 
manner. As we show in the next section, the motion of 
the pendulum in this chaotic nonlinear regime defies 
analytic description. 

That nonlinear equations can be chaotic has pro- 
found consequences in all of the sciences. The unpre- 
dictability and irregularity inherent in such diverse 
phenomena as fluid turbulence, neural networks, and 
weather patterns exemplify this chaotic behavior. Com- 
puters have played an essential role in elucidating the 
underlying nature of such chaos. 

Computers have always been used for experimental 
mathematics; this approach has significantly shaped the 
modern perspective on fundamental problems. An im- 
portant example is the understanding of the approach 
to thermal equilibrium. It has long been known that 
part of the kinetic energy created by colliding objects is 
converted into heat. More generally, the organized mo- 
tion of a macroscopic collection of atoms is converted 
into the disorganized microscopic motions associated 
with heat, in accordance with the second law of ther- 
modynamics. Although this may sound obvious, a di- 
rect demonstration of this seemingly simple fact is one 
of the outstanding problems in physics. An understand- 
ing bf nonlinear processes and effects is necessary for 
the resolution of this problem, since it is fairly easy to 
show that a finite set of linear equations cannot model 
such behavior. It had long been assumed that the addi- 
tion of nonlinearities would immediately solve this 
problem. 

Shortly after the Maniac I computer was built at Los 
Alamos in the early 195Os, Fermi, Pasta, and Ulam [lo] 

undertook a numerical simulation of a nonlinear sys- 
tein to study the approach to thermal equilibrium. 
They used the Maniac to simulate the behavior of 64 
particles coupled together by nonlinear springs. Dis- 
placing a few of the springs from equilibrium, they 
fully expected to eventually see random-looking “ther- 
mal” motions, with the average vibration spread 
equally among all the particles. Instead, they were sur- 
prised to discover that the original configuration of par- 

ticles recurred-there was no approach to thermal 
equilibrium! This discovery stimulated a considerable 
amount of further investigation, and now, through a 
closely interwoven combination of experimental and 
theoretical mathematics, we know that the underlying 
cause of this unpredicted behavior is solitons, remarka- 
ble pulselike waves that exist in certain nonlinear par- 
tial differential equations. Since then, with the aid of 
computers, we have found out more about how nonlin- 
earities can cause an approach to equilibrium, through 
chaotic behavior, although the problem is still far from 
being resolved. We now know that nonlinear equations 
can generate either order or chaos; the trick is deter- 
mining which to expect and when. 

FINITE DIMENSIONAL DYNAMICAL SYSTEMS 
AND DETERMINISTIC CHAOS 
The pendulum is an example of a dynamical system, 
which can loosely be thought of as a system that 
evolves in time according to a well-defined rule. More 
specifically, a dynamical system is characterized by the 
fact that the rate of change of its variables is given as a 
function of the values of the variables at that time. The 
“space” defined by the variables is called the phase 
space. The position and velocity of a pendulum at any 
instant in time, for example, determine the subsequent 
motion; the pendulum’s behavior can be described by 
the motion of a point in the two-dimensional phase 
space whose coordinates are the position and velocity 
of the pendulum. In a more complicated case, specify- 
ing the time evolution of a glass of water requires a 
knowledge of the motion of every drop of water in the 
glass. The phase space is constructed by assigning coor- 
dinates to every drop. Since the number of drops is 
very large, the dimension (i.e., the number of dimen- 
sions) of the phase space is enormous. Indeed, in the 
standard hydrodynamic description, the dimension is 
taken to be infinite. 

The most interesting aspect of a dynamical system is 
usually its long-time behavior. If an initial condition is 
picked at random and allowed to evolve for a long time, 
what will the nature of the motion be after all the 
“transients” have died out? For dynamical systems with 
friction or some other form of dissipation, special fea- 
tures of particular initial motions will damp out, and 
the system will eventually approach a restricted region 
of the phase space called an attractor. As the name 
implies, nearby initi?l conditions are “attracted”; the 
set of points that are attracted forms the basin of attrac- 
tion. A dynamical system can have more than one at- 
tractor, each with its own basin, in which case different 
initial conditions lead to different types of long-time 
behavior. 

The simplest attractor in phase space is a fixed poinf. 
With fixed points, motion in phase space eventually 
stops; the system is attracted toward one point and 
stays there. This is the case for a simple pendulum in 
the presence of friction. Regardless of its initial posi- 
tion, the pendulum will eventually come to rest in a 
vertical position. Similarly, if a glass of water is shaken 
and then placed on a table, the water eventually ap- 
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proaches a state of uniform :rest. This is true despite the 
fact that the water’s phase space is effectively infinite 
in dimension. 

A fixed point is the only possible attractor of a linear 
system. Nonlinear systems, however, have many more 
possibilities. For instance, motion may tend after a long 
time to an oscillation rather than to a state of rest. A 
good example is a metronome. No matter where the 
metronome is started, for a given setting it always ends 
up making a periodic motion with the chosen fre- 
quency. The limit or attractor of the motion is a pe- 
riodic cycle called a limit cycle. Limit cycles represent a 
spontaneous sustained motion that is not necessarily 
explicitly present in the equations describing the dy- 
namical system. Since linear systems are not capable of 
such behavior, the discovery by van der Pol [26] that 
nonlinear dynamical systems. could possess limit cycles 
was both surprising and significant. 

Van der Pol’s studies were motivated by an interest 
in understanding and modeling the human heart, 
which can be thought of as a dynamical system, albeit 
an unconventional one. The normal rhythmic beating 
of the heart is a limit cycle. That this cycle is an attrac- 
tor is indicated by its persistence under most perturba- 
tions, including sudden shocks or stress. Indeed the 
phrase “my heart skipped a beat” reflects both the ex- 
istence of perturbations to the limit cycle and, implicitly 
but fortunately, the return of the heart to its normal pat- 
tern after the perturbation. Of course, if the disturbance 
is too large-a prolonged electric shock, for instance- 
the heartbeat will permanently stop. In impersonal 
mathematical jargon, the dynamical system has been 
forced into the attraction basin of a different attractor; 
in this case, the attractor is a fixed point-death. 

In addition to developing a crude mathematicai 
model for the heart, van der Pol also built an electric 
circuit to model the heart. With historical hindsight we 
can view this circuit as a primitive analog computer. 
Under normal conditions this computer produces a pe- 
riodic heartbeat, but if certain parameters in the circuit 
are changed, the periodic beating is replaced by a spo- 
radic, nonperiodic pattern, in which pulses are skipped 
at irregular intervals. The analogy to certain patterns 
occurring in heart disorders was striking. Although van 
der Pol did not realize it at the time, his observation of 
this transition to irregular, sporadic behavior, obtained 
through a combination of analytic and analog simula- 
tion, represented the discovery of a third type of attrac- 
tor: a chaotic or strange attractor. 

A trajectory on a chaotic attractor exhibits most of 
the properties intuitively associated with random func- 
tions, although no randomness is ever explicitly added. 
The equations of motion are purely deterministic; the 
random behavior emerges spontaneously from the non- 
linear system. In standard mathematical models of ran- 
dom phenomena, randomness must be assumed to be 
present a priori. These models are a way of dealing 
with ignorance-the randomness summarizes what is 
unknown about the system. Deterministic chaos is 
strikingly different in that random behavior arises in- 
trinsically from the geometry of the dynamical system 

and its attractor. Over short times it is possible to fol- 
low the trajectory of each point, but over longer periods 
small differences in position are greatly amplified, so 
that predictions of long-term behavior are impossible. 
The information originally contained in the initial con- 
ditions is lost, and the behavior of the trajectory be- 
comes unpredictable. Consider a dynamical system 
where a real number is multiplied by two, its integer 
part is dropped, and then this sequence is repeated 
indefinitely. In a binary representation, this corre- 
sponds to a simple left shift. When this process is simu- 
lated on a digital computer, round-off errors replace the 
right-most bit with garbage after each operation, and 
the effect of each multiplication is to destroy the most 
significant bit. If the initial condition is known to 16 
bits of precision, then this information is gone after 
only 16 multiplications, and the remaining number, 
generated entirely from round-off errors, is unrelated to 
the original initial condition. This is true even though 
multiplication by 2 modulo 1 is a completely determin- 
istic operation. It is this amplification of noise or uncer- 
tainty that makes chaotic solutions effectively random 
and gives rise to the phenomenon known as sensitive 
dependence on initial conditions, which characterizes cha- 
otic behavior. 

The discovery, by meteorologist E.N. Lorenz [15, 161, 

of the mechanism by which deterministic chaos arises is 
an outstanding example of the effective practice of ex- 
perimental mathematics. Lorenz believed that the un- 
predictability of the weather should be compatible with 
a deterministic description and embarked on a search 
for a set of equations to illustrate his point. He simpli- 
fied several models of convection in the atmosphere 
and solved them on a small digital computer. After 
some experimentation, he found a chaotic attractor in 
the following seemingly innocuous set of nonlinear dif- 
ferential equations: 

dx 
- = 10x + lOy, 
dt 

dY 
dt- 

- -XZ + 28x - y, and 

dz 8 

z = xy - 2. 

(1) 

A sample trajectory of this system of equations, pro- 
jected on the xz plane, is shown in Figure 1. 

Lorenz tells an anecdote concerning his discovery of 
chaos that illustrates what deterministic chaos entails 
in practical terms. Since his computer was printing out 
a list of the values of x, y, and z, he could stop the 
computer at any intermediate time, examine the series 
of numbers, and then restart it by entering the interme- 
diate set of values. In doing this, he saw that the results 
very quickly began to differ from the original run. This 
difference increased as the simulation proceeded. Since 
the values were not printed out to full machine accu- 
racy, there were very slight differences between the 
initial conditions in the two runs. The large difference 
in the subsequent results was caused by the rapid am- 
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This figure shows the projection onto the x - z plane of a 
single orbit, that is, a single solution of the Lorenz equations 
(1). This orbit, which never closes on itself, defines the Lor- 
enz attractor. The motion oscillates irregularly between the 
two lobes shown in the figure. If a trip around the right lobe 
is labeled “heads,” and a trip around the left “tails,” the 
resulting head-tail sequence has most of the properties of a 
random coin toss. (The figure was made at the University of 
Texas by Alan Wolf.) 

FIGURE 1. The Lorenr Attractor 

plification of the round-off errors. Lorenz’s experience 
is a very precise illustration of the sensitive depen- 
dence on initial conditions phenomenon. 

We should emphasize that the random character of 
chaotic solutions persists even in the absence of round- 
off errors or other external random influences. Chaos is 
spontaneously generated, creating randomness from 
purely deterministic origins. This seeming paradox ex- 
plains the profound changes that have occurred in the 
way we think about random behavior since the discov- 
ery of deterministic chaos. 

Lorenz went on to develop a geometrical picture of 
the underlying mechanism through which the unpre- 
dictability of chaotic dynamical systems can arise. In 
Figure 1, the attractor is roughly a two-dimensional 
sheet. Equation (1) can be viewed as stretching this 
sheet out and then folding it over onto itself, in the way 
a baker would fold bread dough. The process repeats 
itself over and over, and the attractor develops an infi- 
nitely folded structure. Objects of this type are now 
often called fractals [18]. The folding process in some 
sense thickens the sheet, giving it a dimension that is 
between two and three [8, 181. 

Lorenz also reduced his system to a one-dimensional 
map. He observed that the behavior of eq. (1) is analo- 
gous to the chaotic behavior present in the logistic equa- 
tion: 

x,1+1 = X&,(1 - &,I. (2) 

This is a simple nonlinear rule that sends a point x,, to a 
new point x,,+~ and can be thought of as a discrete time 
dynamical system, such as is produced whenever a sys- 
tem of differential equations is simulated on a digital 
computer. For any given parameter X and initial condi- 
tion x0, a sequence of numbers (x1, x2, . . , x,,] is gener- 
ated. For X < 3, x,, approaches a fixed point for large n. 

As X is increased beyond three, the limit x,, begins to 
oscillate between two different values; in our previous 
terminology, the attractor of the equation is a two-point 
limit cycle. When h is increased still more, the period 
of the limiting sequence successively doubles, yielding 
cycles of periods 4, 8, 16, 32, etc. This process finally 
stops when the period goes to infinity, at a value of A 
approximately equal to 3.57. At many of the values 
greater than 3.57, the dynamical behavior is chaotic, 
and the resulting sequence of points (x,,) generated by 
this equation never repeats itself. 

This series of events, referred to as a period-doubling 
cascade, is one of the standard routes from regular to 
chaotic behavior (see Figure 2). In numerical studies 
originally begun on a pocket calculator, Feigenbaum [9] 
discovered that the spacing of the parameter values 
where period doublings occur is universal in that, for a 
wide class of systems, it is independent of the details of 
the equations. Since then many of Feigenbaum’s and 
Lorenz’s results have been recast into a more rigorous 
mathematical framework. The crucial insights, how- 
ever, were provided by experimental mathematics. 

Chaotic dynamics has now been implicated in a vari- 
ety of areas, ranging from the already mentioned exam- 
ples of heart failure and meteorology to economic mod- 
eling, population biology, chemical reactions, neural 
networks, arrays of parallel processors, leukemia, and 
(more speculatively) manic-depressive behavior. In 
view of this daunting range of applications, two basic 
points are worth reiterating. First, dynamical systems 
need not be complicated for chaos to occur. Systems as 
simple as the driven, damped pendulum (shown in Fig- 
ure 3) or the logistic equation can exhibit chaotic be- 
havior. Second, the computer remains the essential tool 
for studying chaotic dynamical systems. 

SOLITONS 
Although simple dynamical systems with low- 
dimensional phase spaces can model much of the real 
world, the analysis of many physical phenomena re- 
quires a somewhat different approach. For example, in 
describing the motion of a glass of water, we stated that 
the phase space of this system is infinite in dimension. 
More precisely, to specify the behavior of every drop of 
water in the glass, we must specify the values of func- 
tions-the density p(x) and the velocity v(x)-at every 
point x in the water. Deterministic rules for the evolu- 
tion of these functions in time result in (nonlinear) par- 
tial differential equations involving derivatives both in 
time (t) and in space (x). Accordingly, the solution of 
these equations is mathematically even more compli- 
cated than that of finite-dimensional dynamical sys- 
tems, and the insights provided by experimental math- 
ematics even more crucial. 

One such insight is the surprisingly widespread oc- 
currence of an “orderliness” in nonlinear problems. 
This orderliness reflects the existence of highly stable, 
pulselike waves-solitons-in certain nonlinear partial 
differential equations. The discovery of solitons, which 
are an interesting and physically important phenome- 
non in their own right, demonstrates the success of the 
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The “bifurcation diagram” of the logistic equation (2) indicates 
the position of points in the attracting set on the x axis and 
the bifurcation parameter X on the y axis. This figure was 
made by fixing the parameter X and then iterating until tran- 
sients had disappeared, so that x was near its attractor. The 
parameter X was then changed, and the process repeated. 
For X c 3 there is a unique attracting fixed point. Above 

X = 3, at the bottom of the figure, the solution bifurcates into 
a period-two limit cycle. Following across the page, one can 
see the period doubling cascading eventually accumulating 
as the period goes to infinity at X, = 3.57. For values of 
X > 3.57, chaotic solutions are intricately interspersed with 
limit cycles. (From Crutchfield, J., Farmer, J.D., Huberman, B. 
Phys. Rep. 92,46 (1982)). 

FIGURE 2. The Bifurcation Diagram of the Logistic Equation 

synergistic interplay between computational and ana- 
lytic methods that is experimental mathematics. Com- 
puter simulations led to a qualitative understanding of 
soliton behavior and directly stimulated the develop- 
ment of the analytic techniques that now give us a 
deeper understanding of most soliton-bearing systems. 

Though solitons were discovered less than two dec- 
ades ago [31], they have come to be associated with a 
wide variety of problems in mathematics and the natu- 
ral sciences [24]. From DNA and a-helix proteins [7] to 
the Red Spot of Jupiter [19], from laser-plasma interac- 
tions [x!] to gigantic ocean waves [zo], solitons have 
been implicated in wide range of important and often 
beautiful natural phenomena. Indeed, the impact of this 
concept on nonlinear science has been justly termed 
the soliton revolution [26]. 

To define a soliton, we begin by considering the mo- 
tion of a wave described by some general (not necessar- 
ily linear) wave equation. A traveling-wave solution to 

such an equation is one that depends on the space (x) 
and time (t) variables only through the combination 
x - vt, where v is a constant velocity. The traveling 
wave moves through space without changing its shape 
and in particular without spreading out or “dispersing.” 
If the traveling wave is a localized single pulse, it is 
called a solitary wave. A soliton is a solitary wave with 
the crucial additional property that it preserves its form 
when it interacts with other similar waves. In a sense, 
these special solitary waves are like particles, and in- 
deed the name soliton was chosen to resemble the 
names physicists traditionally give to atomic and sub- 
atomic particles [14]. 

Early in the 1960s Kruskal and Zabusky began the 
experimental mathematical study that led to the intro- 
duction of the term soliton [14, 17, 25, 301. They were 
trying to understand the puzzling recurrences that had 
been observed in the computational simulations of 
Fermi, Pasta, and Ulam [lo] a few years before. 
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Through a series of asymptotic approximations, they 
related the recurrence question for the system of oscil- 
lators studied in [lo] to the nonlinear partial differen- 
tial equation 

dU(X, f) au(x, t) 
- + 4% 0 --L$-- 

at 

I d3Uk t) _ o 

ax3 . 
(3) 

This “Korteweg-deVries” equation had first been de- 
rived in 1895 [13] as an approximate description of 
water waves moving in a shallow, narrow channel. To 
look for a solitary wave, one seeks a localized solution 
u,(E) that depends only on t = x - vt, thereby reducing 
the partial differential equation to an ordinary differen- 
tial equation in .$. For solutions vanishing at infinity, 
the resulting equation can be integrated explicitly to 
yield 

u,(x - vt) = 3v sech’ 1 (x - vt). (4) 

Intuitively, we understand the existence of this solitary 
wave as resulting from a delicate balance in eq. (3) 
between the “dispersive” term 

a%+, t) 
a2 1 

which tends to spread out an initial pulse, and the 
nonlinear term 

which tends to increase the pulse where it is already 
large and hence to bunch up the disturbance. This bal- 

solitons. which was eloquently communicated in one of 
the earliest recorded observations of the phenomenon. 
Writing in 1844, the British naval designer and amateur 
scientist John Scott Russell noted 

I was observing the motion of a boat which was rapidly 
drawn along a narrow channel by a pair of horses. when the 
boat suddenly stopped-not so the mass of water in the 
channel which it had put in motion: it accumulated round 
the prow of the vessel in a state of violent agitation, then 
suddenly leaving it behind, rolled forward with great veloc- 
ity, assuming the form of a large solitary elevation, a 
rounded, smooth and well-defined heap of water, which 
continued its course along the channel apparently without 
change of form or diminution of speed. I followed it on 
horseback, and overtook it still rolling on at a rate of some 
eight or nine miles an hour, preserving its original figure 
some thirty feet long and a foot to a foot and a half in height. 
Its height gradually diminished, and after a chase of one or 
two miles I lost it in the windings of the channel. [XI] 

Although eq. (4) is by our definition clearly a solitary 
wave, is it a soliton? In other words, does it preserve its 
identity when it collides with another solitary wave? 
Here the analytic insight of the 1960s flagged, and to 
answer this question, Zabusky and Kruskal turned to 
careful digital computer studies of the interactions of 
these waves. The a priori expectation was that the non- 
linear nature of the interaction would break up the 
pulses, causing them to change their properties dramat- 
ically and perhaps to disappear entirely [14, 17, 25, 301. 
When the computer gave the startling result that soli- 
tary waves emerged from interaction unaffected in 
shape, amplitude, and velocity, Zabusky and Kruskal in 
1965 invented the term soliton to dramatize their sur- 
prising and important discovery [31]. Figure 4 illus- 
trates this behavior in the “sine-Gordon” equation, a 
well-known soliton system that can be viewed physi- 

ante of dispersion by nonlinearity is the underlying 
mechanism in soliton-bearing systems. This dry mathe- 
matical description, however, obscures the beauty of 

If a pendulum is both damped 
and periodically driven, at some 
parameter values, the resulting 
motion is chaotic. An impression 
of the motion can be obtained by 
making a stroboscopic picture. 
Imagine taking a snapshot once 
every cycle of the driving force. 
The result is shown here. The 
variable labeled “Position” plots 
the angle of the pendulum in units 
of 2~. The multiple images result 
from motions in which the pendu- 
lum swings over the top. The fig- 
ure illustrates the intricate fractal 
structure of the underlying 
strange attractor. (From Huber- 
man, B., Crutchfield, J., and 
Packard, N. Appl. Phys. Leff. 37 
(1980), 750.) 
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FIGURE 3. The Damped, Driven Pendulum 
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The remarkable robustness ‘of solitons is indicated in this As time develops (toward the reader), the two steplike soli- 
projected space-time plot of the interaction of two nonlinear tary waves-called kink solitons-approach each other, in- 
waves in the sine-Gordon equation, teract nonlinearly, and then emerge unchanged in shape, 

d%(x, f) #3(x, t) 
amplitude, and velocity. (This figure was made at the Los 

- - ----j-l + sino(x, t) = 0. Alamos National Laboratory by Michael Peyrard of the Uni- 
ar2 versity of Dijon, France.) 

FIGURE 4. The Interaction between Two Solitons 

tally as a set of simple pendulums coupled together in a 
particular manner. 

The remarkable results in soliton research raise two 
questions that are central to nonlinear science. First, 
since models possessing solitons are quite special math- 
ematically, how relevant is the concept to the real 
world? Second, if the robustness of the soliton is a re- 
flection of a very orderly and coherent phenomenon, 
quite in contrast to the erratic and chaotic behavior 
discussed above, then how can order and chaos be rec- 
onciled? 

For the first question, it has already been shown that 
a surprisingly large number of models for natural phe- 
nomena possess solitons. More important, an even 
larger class of phenomena is described by models that 
are, in a mathemat.ical sense, “close” to soliton systems. 
There now exists a variety of numerical and analytic 
perturbation techniques for studying these “nearly” sol- 
iton systems, and it is known that solitons still play an 
important role in many perturbed systems. In these 
nearly soliton systems, the nonlinear wave solutions 
should more properly be called solitary waves, since 
they generally have complicated interactions that de- 
stroy the strict solitonic character of the waves. Indeed, 
recent studies [l, 221 of these interactions provide yet 
another illustration of the dialectic of experimental 
mathematics. In several nearly soliton systems, the in- 
teractions among solitary waves showed an interesting 
and remarkable resonance phenomenon first observed 
in rough numerical simulations. More precise numeri- 
cal studies revealed obvious regularities in the reso- 

nance structure and eventually led to a surprisingly 
simple analytic explanation of the apparently very 
complex behavior [l, 221. 

For the second question, by analogy to the results of 
finite dimensional dynamical systems such as the 
damped, driven pendulum, we would expect that add- 
ing damping and a periodic driving force to a soliton- 
bearing nonlinear partial differential equation would 
set the stage for a struggle between order and chaos. 
Indeed, recent computer studies [ll] have shown that a 
soliton system can be driven to chaotic behavior in 
time, while retaining some of its ordered spatial struc- 
ture. Figure 5 illustrates this “order in chaos” in the 
context of an equation that models the interaction of a 
laser beam with a plasma. Understanding the implica- 
tions of this order in chaos and, more generally, of 
nonequilibrium nonlinear phenomena, has emerged as 
one of the central current challenges for experimental 
mathematics. 

RIGOROUS MATHEMATICAL RESULTS 
FROM COMPUTERS 
From the mathematician’s perspective, experimental 
mathematics may seem suspect. Yet there are by now 
many examples of rigorous results that would have 
been impossible without the aid of computers. Perhaps 
the most familiar is that of the “four-color” problem, for 
which the computer was used to search through the 
enormous number of cases needed to establish the 
theorem. More typically, however, the interplay be- 
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tween computational studies and mathematical theo- question stimulates careful mathematical analysis. 
rem proving proceeds as a classic dialectic. At each An example from the study of hyperbolic conserva- 
stage of the process, the fundamental question is, Do tion laws illustrates the interplay between computa- 
the computer results represent interesting new phe- tional and mathematical research. A conservation law 
nomena inherent in the real-world problem being stud- asserts that the time evolution of a system being stud- 
ied, or are they computational artifacts resulting from ied naturally keeps a particular physical quantity at a 
limitations in numerical methods or modeling? This constant value. For linear conservation laws, such as 

Highly localized nonlinear pulses have emerged from a ran- they individually represent with the temporal chaos in the 
dom initial background in this computer simulation of the self- driven, damped laser-plasma system is the subject of consid- 
focusing instability of a laser beam passing through a erable current research. (From a computer-generated film 
plasma. The localized peaks, although not strict solitons, do made at Los Alamos by Fred Tappert of the University of 
show a substantial robustness, and the interplay of the order Miami.) 

FIGURE 5. Spatial Order in Temporal Chaos 
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those governing the propagation of weak disturbances 
in continuous media, smooth initial data imply the ex- 
istence and uniqueness of smooth solutions. For a non- 
linear equation, however, smooth initial solutions often 
“blow up,” that is, approach infinite values in finite 
time. Hence it is necessary to consider weak solutions, 
which possess discontinuities (representing, for exam- 
ple, abrupt jumps in pressure, density, or velocity), but 
satisfy an integral version of the original partial differ- 
ential equation. As there is an infinite number of weak 
solutions to the initial value problem, however, an ad- 
ditional condition known as an entropy condition is nec- 
essary for identifying the unique physically relevant 
solution. Since analytic techniques for laws of conser- 
vation are not generally available, the problem is to 
solve the equations numerically and to guarantee that 
the solution obtained is physically correct. 

in 1965, Glimm [ll] forma.lly proved the existence of 
a solution for all time for nonlinear systems of laws of 
conservation with nearly constant initial data. Chorin 
[Z] used the concepts of Glimm’s proof to devise a nu- 
merical scheme for solving such systems. In particular, 
Chorin adopted Glimm’s ide(a of random sampling from 
the analytic proof and thus departed radically from pre- 
viously existing numerical techniques. Somewhat sur- 
prisingly, the scheme has been found effective even for 
problems that do not satisfy the original assumptions of 
the existence proof. The unexpected success of the 
Glimm/Chorin random choice scheme has motivated 
mathematicians to derive not only new results on the 
convergence and correctness of approximation tech- 
niques, but also broader proofs of existence for solu- 
tions of consertation laws. 

We have seen that the contribution of computers to 
mathematical progress has not been limited to the 
fields of numerical analysis and approximation theory. 
A further area where signific:ant results have been 
obtained on the basis of computational studies is the 
analysis of scale invariance, that is, the analysis of phe- 
nomena whose mathematical properties repeat on 
all length scales. In particular, the work of Collet, 
Eckmann, and Lanford [3] provides a proof [using 
computer-generated estimates) of the existence and 
convergence of a scaling function introduced by Feigen- 
baum for one-dimensional maps; this scaling function is 
the underlying factor producing the “universal” behav- 
ior mentioned briefly in the section on finite-dimen- 
sional dynamical systems. It has now been shown rigor- 
ously for dissipative systems that the universal behav- 
ior characterizing one-dimensional maps can occur 
even when the phase space dimension becomes infi- 
nite. Results on the mathematics of scale invariance 
have also been obtained in such other problems as hier- 
archical models in statistical mechanics and renormal- 
ized quantum fields. 

In a wider context, computers have drastically ex- 
panded the range of nonlinear phenomena that can be 
explored mathematically, and motivated the develop- 
ment of techniques specifically designed to handle non- 
linearities. Mathematical problems that may become 
tractable with computer-generated insight include the 

solution of equations with widely varying time and 
length scales, the global description of a nonlinear sys- 
tem’s dependence on the values of its associated param- 
eters, and the analysis of the effect of random fluctua- 
tions in the coefficients of partial differential equations 
[4]. The techniques used in studying such problems 
usually attempt either to isolate or simplify the inher- 
ent nonlinearities. For example, continuation methods 
approach an intractable nonlinear problem F(x) = 0 by 
attempting to treat it as the limit of a sequence of re- 
lated solvable problems. Specifically, the objective, if 
possible, is to define a “family” of problems, H(x, X) = o 
for 0 5 X 5 1, where H(x, 0) represents an easily solva- 
ble problem, H(x, 1) = F(x) = 0 represents the original 
nonlinear problem, and a computable path x(X) exists 
that connects the solutions for 0 I X 5 1. As yet, the 
techniques for such problems are ad hoc, though their 
analysis and continued application should yield a rich 
mathematical theory. 

PRESENT AND FUTURE TOOLS OF 
EXPERIMENTAL MATHEMATICS 
By its very nature, experimental mathematics is seren- 
dipitous: A hint provided by a numerical simulation 
sparks an intuitive insight that points the way to a 
detailed numerical check that eventually leads to an 
analytic understanding. This step-by-step process illus- 
trates the need in experimental mathematics for a wide 
range of computing resources, from special-purpose 
dedicated machines to advanced general-purpose main- 
frames. In this final section, we reflect in more detail 
on the tools of experimental mathematics as applied to 
nonlinear science. 

Digital computers, at both mainframe and minicom- 
puter levels and in the conventional sequential or par- 
tially pipelined architecture, remain the general- 
purpose tool of experimental mathematicians. Mas- 
sively parallel digital machines, with either single in- 
struction or concurrent processor architecture, offer an 
exciting future alternative. Special-purpose digital com- 
puters, designed for a narrow class of problems, are an 
important new tool, and their use in nonlinear science 
should increase dramatically in the future [Zl]. 

The future use of analog computers in experimental 
mathematics has not been as well covered as digitals, 
and so we begin by outlining their advantages and limi- 
tations, and then conclude by peeking into the labora- 
tory of a future experimental mathematician. Although 
it is difficult to give a general definition of an analog 
computer (since, as van der Pol suggests, any circuit 
built from well-characterized components should be in- 
cluded), it usually consists of a moderate to large num- 
ber of function modules, based on operational ampli- 
fiers, that perform such operations as summation, in- 
version, integration, and nonlinear function generation. 
To program an analog computer, these modules are 
“patched” together in a configuration imitating the ac- 
tual connections in the model system. The behavior of 
the voltages in the computer represents the time evolu- 
tion of the variables in the equation under study. 

In the qualitative studies of finite dimensional dy- 
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namical systems, analog computers have several advan- 
tages over conventional digital machines. First, because 
their modules can be connected in a parallel architec- 
ture, they are typically much faster than digital com- 
puters costing many times more; further, assuming that 
there are a sufficient number of modules to implement 
a given system, simulation speed is independent of the 
number of system variables simulated. In contrast, the 
speed of a conventional digital computer simulation is 
proportional to the size of the model system. Second, 
analog computers are ideally suited for extensive inter- 
active programming. The parameters of the system, in- 
cluding the speed at which the solution is generated, 
can be varied in real time as the simulation proceeds. 
This is essential for a qualitative search through the 
wide range of parameters necessary to probe the whole 
phase space of a dynamical system. Third, analog com- 
puters solve coupled nonlinear equations by mimicking 
a physical system. The error properties of a particular 
digital integration scheme need not ever be considered. 
Indeed, within the range of accuracy limited by the 
tolerances of the components, the unsystematic errors 
caused by the thermal fluctuations and electronic noise 
in an analog simulation can actually be useful; this is 
the case, for example, in qualitative studies of chaotic 
dynamical systems [5, 61. Specifically, these fluctua- 
tions obliterate the detailed fine structure found in the 
mathematical description of chaos and thus effectively 
mimic the coarse-grained behavior that is observed in 
actual physical experiments in, for example, convecting 
fluids or nonlinear electronic circuits. 

Against these advantages must be weighed the disad- 
vantages of a restricted dynamic range for variables, a 
limited accuracy for the final solutions, and the need to 
repatch (instead of rewriting) computer code when a 
new system is studied. These obvious compromises sug- 
gest that analog computers should be used not in isola- 
tion but in conjunction with digital machines. It is pre- 
cisely this kind of hybrid machine that is used in dy- 
namical systems laboratories that have been designed 
expressly to study chaotic behavior. The digital com- 
puter, often a microcomputer, is the “front end” to the 
conventional analog computer. The digital machine is 
useful for configuring the analog computer for simula- 
tion-it sets initial conditions, parameters, and nonlin- 
ear functions in lookup tables. Since no commercially 
available hybrid computer as yet automatically patches 
the desired simulation, these values must be entered by 
the analog programmer. The most important role of the 
digital computer is to record statistics from the analog 
simulation and to generally “observe” it. The digitized 
data so obtained are then down-loaded to a larger mini- 
computer for statistical analysis. 

This hybrid configuration resembles our conception 
of the experimental mathematics facility of the future. 
To bring this conception into sharper focus, we should 
recall the three general requirements imposed by the 
nature of nonlinear science. If we want to study nonlin- 
ear problems in toto, instead of piecing together solu- 
tions to separate parts, we must consider them over 
wide ranges of initial and boundary values in essen- 

tially all regions of phase space. This means generating 
and analyzing massive amounts of data. To meet these 
requirements, a computational facility should provide 
three key features: (1) It should be extremely fast and 
highly interactive, to permit broad but efficient param- 
eter searches and to generate and manage a large 
amount of data; (2) it should have extensive graphics 
capabilities, to display data and to stimulate intuition; 
and (3) it should be user friendly, to encourage the 
widest participation by researchers from the many dif- 
ferent disciplines that can utilize nonlinear science. 

An extensively parallel architecture seems essential 
for interactivity and speed. Although a massively paral- 
lel general-purpose mainframe could be used, a more 
efficient synthesis of the digital and analog worlds for 
the simulation of nonlinear differential equations 
would seem to be the digital differential analyzer 
(DDA), first introduced during the late 1950s. The ar- 
chitecture of a DDA, like that of an analog computer, is 
a parallel configuration of function modules. The differ- 
ence is that these modules and the signal pathways are 
completely digital. The parallel architecture brings high 
speed to ordinary differential equation simulation; for 
high accuracy, one would want the basic data type to 
be 32- or 64-bit floating-point numbers. The use of the 
floating-point format would almost entirely eliminate 
the dynamic range problems routinely encountered in 
traditional analog programming. We would provide a 
general-purpose digital computer as a host or “front 
end” for the floating-point DDA, as per already existing 
hybrid systems. The host would maintain real-time 
user interaction with the simulation by controlling the 
solution displays, initial conditions, and parameters. 

We should not underestimate the size of the parallel 
structures needed to attack the important problems in 
nonlinear science. In the analysis of three-dimensional 
time-dependent fluid flow, 1000 modules are necessary 
just to introduce 10 mesh points in each spatial direc- 
tion; for applications requiring several dynamic vari- 
ables per mesh point, such as magnetohydrodynamics 
or lattice gauge theories, this number is even greater. 
At this point, one naturally begins to think of using 
VLSIs in the floating-point DDA to reduce cost and size. 
With the relative simplicity of the function modules 
and the relatively low speed required for each, one can 
easily imagine an entire floating-point DDA with sev- 
eral dozen modules and a switching network integrated 
on a single chip. 

The second desired feature-extensive graphics ca- 
pability-facilitates the manipulation and the rapid as- 
similation of the overwhelming masses of data gener- 
ated in studies of nonlinear problems. Imagine a central 
console consisting of several high-resolution color dis- 
plays. For input the user would have a standard key- 
board, a scientific (equation) keyboard, and a mouselike 
pointing device. The output, virtually all in graphical 
form, would be provided by the displays. The main 
console display would show immediate user input, 
while a simulation monitor would provide a listing of 
the differential equation’s parameters, the initial condi- 
tions, the run time, and other simulation control infor- 
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mation. The output color displays would be completely 
programmable to show (for the example of ordinary 
differential equations) various time series, phase space 
projections, and cross sections of solutions, and various 
dynamical systems theory statistics such as power spec- 
tra and correlation functions. This sophisticated inter- 
face would be even more important in simulations of 
nonlinear partial differential equations where it is nec- 
essary to follow functions of several spatial dimensions 
as well as the dimension of time. We expect further- 
more that movie animation capabilities will play an 
increasingly important role for the presentation of re- 
sults to the world at large. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

The third feature of our future facility-user friendli- 
ness-is essential for attracting researchers from a wide 
range of disciplines. Some of these researchers might 
have little or no desire to understand, let alone work 
with, the elegant architecture that underlies the com- 
puter facility. Although we could make many specific 
suggestions, one example relevant to an architecture 
based on coupled DDAs will suffice. Here, it is clearly 
essential that a switching network should be provided 
to allow for automatic “patching” of the DDA module to 
simulate a given equation. Ideally the host computer 
would have both an ordinary differential compiler to gen- 
erate the patching for the individual DDA units and a 
partial differential equation compiler to link the individual 
DDAs together appropriately. 

Our proposed experimental mathematics facility syn- 
thesizes highly focused but restricted special-purpose 
machines and general-purpose mainframes. Its archi- 
tecture is tailored for a class of problems that encom- 
passes the bulk of nonlinear iscience. Although we can- 
not hope to foresee all the exciting developments that 
will result when such facilities are available to the ex- 
perimental mathematician, we can be confident that 
the insight recorded by von Neumann in 1946 remains 
true today: 
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