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We study the phase diagram of the half-filled one-dimensional extended Hubbard model at weak
coupling using a novel functional renormalization group (FRG) approach. The FRG method includes in a
systematic manner the effects of the scattering processes involving electrons away from the Fermi points.
Our results confirm the existence of a finite region of bond charge density wave, also known as a “bond
order wave” near U = 2V and clarify why earlier g-ology calculations have not found this phase. We
argue that this is an example in which formally irrelevant corrections change the topology of the phase
diagram. Whenever marginal terms lead to an accidental symmetry, this generalized FRG method may be

crucial to characterize the phase diagram accurately.

DOI: 10.1103/PhysRevLett.96.036408

The one-dimensional extended Hubbard model (EHM)
has been studied extensively for many years, both because
of its rich phase diagram [1] and because of its possible
applications to quasi-1D organic crystals [2] and conduct-
ing polymers [3]. Despite this long history, a controversy
has recently arisen concerning the possible existence of a
bond order charge density wave (BCDW, also called a
“bond order wave’”) phase separating the well-known
spin density wave (SDW) and charge density wave
(CDW) phases of the EHM at half-filling. This phase has
been suggested by Nakamura [4] and supported by quan-
tum Monte Carlo (QMC) [5] and more recently density
matrix renormalization group (DMRG) [6] calculations.
However, this phase was not obtained in earlier numerical
and analytical work [7-13]. In particular, this phase is
absent in standard one-loop g-ology [7,8] and bosonization
[12] calculations. This disagreement poses a serious ques-
tion, which we elucidate here. We reconcile the recent
numerical results [5,6] with g-ology by introducing a func-
tional generalization of the standard g-ology formalism.
Our functional renormalization group (FRG) method offers
a consistent and well-controlled approximation that pre-
dicts a finite region in parameter space in which the BCDW
phase is spontaneously formed for the half-filled EHM at
weak coupling. Our results thus go beyond the important
earlier study of Tsuchiizu and Furusaki [14], who were
able to obtain the BCDW phase with a standard RG using
ad hoc approximations.

The Hamiltonian of the EHM is given by

H= —tZ(c;rH,gcl-y,, + Hc) + UZ”i,T”i,l
i,o i
+ VZ”;’”H—I - Mznp (L
7 7
where ¢, U, and V are the nearest-neighbor hopping, on-site
interaction, and the nearest-neighbor interaction, respec-

tively. Here we study the EHM at half-filling (« = 0). Itis
well established that for repulsive interactions (U, V > 0),
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the system is in a CDW phase for large values of V/U and
in a SDW phase for small V/U. Weak-coupling RG studies
[7,8] find the boundary between these two phases to be at
U = 2V. Early strong-coupling numerical studies [11] and
higher-order perturbation theory [10] have found the phase
boundary to be slightly shifted away from the U = 2V line,
with a larger SDW phase. Stochastic series expansion
QMC studies [5] found that the BCDW phase exists in a
finite region around the line U = 2V and that it ceases to
exist when the interaction exceeds a critical value. There
are disagreements between the published DMRG results.
An earlier result [13] showed that the BCDW exists only
precisely at the CDW/SDW phase boundary at intermedi-
ate couplings. A more recent DMRG calculation [6] ob-
tained the same phase diagram as the QMC study [5].

The standard RG—""g-ology”’ —has proven to be a
powerful method for studying low-energy properties of
interacting one-dimensional systems at weak coupling.
By integrating out high-energy modes, one obtains flow
equations for the marginal couplings such as the two body
interaction vertices. These interaction vertices are, in prin-
ciple, functions of three momenta, which can take any
value within the Brillouin zone and correspond to the
momenta of the incoming and outgoing electrons. The
fourth momentum is determined by momentum conserva-
tion. In standard g-ology, the interaction processes are
classified according to the branch label (right or left) of
the electrons involved. All further dependence on the
momenta, i.e., the dependence on the magnitude of the
momenta, is neglected, since only the dependence on the
direction of the momenta is marginal. The radial depen-
dence is irrelevant according to scaling and power-
counting arguments [15]. It is important to notice that
irrelevant operators renormalize to zero as the RG proceeds
but may not be small in the beginning of the flow. This is
the key issue here, and we will return to it later.

In g-ology, interaction processes are classified into back-
ward scattering (g, ), forward scattering involving electrons
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from two branches (g,) and from the same branch (g,), and
Umklapp process (g3). As the scattering between electrons
with the same spin can be obtained from scattering be-
tween electrons with different spins [16], we shall ignore
all spin indices, leaving it understood that all processes are
between electrons with different spins. For the EHM, the
bare values of the couplings are g; = g3 = U — 2V and
8r = 84 = U+ 2V.

Exactly at U = 2V, both g, and g3 are equal to zero, and
they remain zero under the RG flow, resulting in a massless
theory for both the spin and charge sectors. This is the
underlying reason that conventional weak-coupling calcu-
lations (both g-ology and bosonization) find a direct tran-
sition between the SDW and the CDW phase exactly at
U = 2V, where both gaps vanish simultaneously. An im-
portant insight was provided by Nakamura [4] (and further
explored by Tsuchiizu and Furusaki [14]), who observed
that there is no symmetry principle that enforces g, and g5
to vanish simultaneously and that higher-order corrections
may lift this degeneracy and thereby change the topology
of the phase diagram [17]. They then adopted an idea from
Penc and Mila [18] and applied the following two-step
procedure: for the high-energy part of the band (A >
Acuofr)> second-order perturbation theory is performed to
find corrections for the couplings g; these values are then
used as the initial conditions for the RG procedure, which
is performed for the low-energy part of the band (A <
Acuore)- This is sufficient to generate a finite region of
BCDW phase. Clearly, this procedure is ad hoc and relies
on an arbitrary choice for Ay (Which in Ref. [14] is
chosen to be half the total bandwidth). The subsequent RG
results, in particular, the size of the BCDW region, depend
on the choice of A,y and hence do not deﬁnitivelyJ

dg(ky, ky, k3) _
dA

answer the question whether the BCDW phase is intrinsic
in EHM at half-filling.

The virtue of the one-loop functional RG we develop
and employ below is that it captures the BCDW phase in a
systematic manner without ad hoc manipulations. The key
point is that, while we truncate the flow equations to order
g2 as in standard one-loop calculations, we maintain full
momentum dependence of the interaction vertices. So in-
stead of solving the RG flow equations for four couplings
g1, 82, 83, and g4, we write the functional RG equation for
g(ky, ky, k3), where k;, k,, k3 can be anywhere in the
Brillouin zone. Although the radial dependence is formally
irrelevant and the corresponding terms will eventually flow
to zero, their effect may be finite when the energy cutoff is
near the band edge, thereby breaking the accidental degen-
eracy. Other irrelevant terms, such as higher-order vertices,
are absent in the beginning of the flow and we neglect them
altogether, just as in standard g-ology. We stress that our
procedure should in general not qualitatively change the
phase diagram—irrelevant operators will remain irrele-
vant—but may be crucial when an accidental degeneracy
occurs. In this case very different phases may appear.

Our functional RG equations for the one-dimensional
EHM at one-loop follow closely the approach of Zanchi
and Schulz [16], which itself is an adaptation of the two-
dimensional RG for fermions [15] to the case of an arbi-
trary Fermi surface. This and other formulations of the
functional RG have recently been applied to several two-
dimensional interacting electron systems [19—-23]. The cru-
cial difference is that we consider a finite number N of
divisions of the magnitude of the momenta, while the two-
dimensional calculations discretize the Fermi surface into
angular patches. At one-loop level our equations become:

- [dﬁdjlx[GA(B)GA(k)]g(kl;kz: k)g(p, k, k3) — [dgdtj\[GA(B)GA(gl)]g(P’ ky, q1)g(ky, 1, k3)

- f dp %[GA(B)GA(QZ)][_zg(kD P, 42)8(q2, ky, k)

+ g(p, k1, 42)8(qa, ko, k3) + g(ky, p, q2)8(ka, qo, k3)], ()

where k=k +hk,—p, q =ptks—k, qg=
ptks—ky, p=(p o), [dp= [dpy ,1/2mB), and
G, is the propagator with cutoff A.

The high-energy modes are integrated from the full
bandwidth A to A, towards the Fermi surface. The cutoff
A is parameterized by the RG parameter ¢ as A =
Ay exp(—¥£). The initial condition for g(k,, k,, k3) is given
by the Fourier transform of the U and V interaction terms.
A direct analytical solution of the functional RG equation
does not seem possible, and we use numerical calculations
for solving the coupled integral-differential equations. For
this purpose, the Brillouin zone is divided into N segments.
Figure 1 shows the discretization scheme for N = 10.

We consider the susceptibilities of SDW, CDW, BSDW,
and BCDW in the long-wavelength limit. Their general

form is x3(m) = [D(L2)f(p)f(p2)chuoCp sma X

{
t c ), where p; is the momentum at energy &;,

Cprtma,Cproy

JD(L2)= [1p 150 dE1T(ED) [16))54 AE2T(E2)Y 51 0y Sy X
S,,» and J(£) is the Jacobian for the coordinate transfor-
mation from k to &;. For 6 = SDW and 6 = BSDW: s; =
1,5y = —1.For 6=CDW and 6 =BCDW: 5; = 1,5, = 1.
For 6 = SDW and 6 = CDW: f(p) = 1. For 6§ =BSDW
and § =BCDW: f(p)=sin(p). In momentum space, the
difference between site and bond ordering is just in the
form factor, which is s wave for site orderings and p wave
for bond orderings.

Under the RG procedure, the susceptibilities also flow,
with the dependence on A appearing both in the integration
and in the flow of the expectation value (. . .). The dominant
instability is determined by the most divergent susceptibil-
ity as € is increased. The RG equations for the susceptibili-
ties are
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FIG. 1. Discretization of the momenta in the Brillouin zone. . 6 /’/"/
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where p = p + (7,0). For § = SDW and 6 = BSDW: . 2 . &

g%(p',p)=—g(p+ m p, p). For 6§ =CDW and 6 =
BCDW: ¢°(p/, p) = 2¢g(p', p + m, p) — glp + m, p/, p).
The function Z°(p) is the effective vertex in the definition
for the susceptibility y?. Its initial condition is 1 for SDW
and CDW, and sin(p) for BSDW and BCDW. The RG
equations for susceptibilities are solved with initial condi-
tion X?\:AO(W) =0.

It is instructive to compare the difference in the suscep-
tibility flows for the (conventional) case of two scattering
points N = 2 and for cases of multiple scattering points
N = 2. We focus on the case U = 1 (in units of ¢) which is
in the weak-coupling regime (U < Ay = 2¢). In the left
panels of Fig. 2 we show the flows of susceptibilities for
N = 2, i.e., for standard g-ology. In the right panels are
results for functional RG with N = 50. For each case,
results are shown for V = 0.46, 0.54, and 0.62. These three
values were chosen to cover the SDW, BCDW, and CDW
phases around the U = 2V line.

First, we note that for N = 2, the susceptibilities tend to
diverge more quickly with €. This is because, in effect, all
the renormalization corrections to the irrelevant couplings
(involving radial excursions away from the Fermi points)
have been assigned to the marginal ones (g, ..., g4 of stan-
dard g-ology). This significantly enhances the rate of in-
crease of the couplings and of the susceptibilities. Second,
for N = 2 the SDW dominates for V = 0.46 where U =
2V, and CDW dominates when U =< 2V, as can be seen for
V =0.54 and 0.62. For N = 2 all the density wave sus-
ceptibilities are degenerate at U = 2V. Therefore, for N =
2 there is no finite region of BCDW phase.

Importantly, for N > 2, we find that the BCDW suscep-
tibility is dominant in a finite range around U = 2V. This
is shown in the Fig. 2 for N = 50, forthe case U = 1,V =
0.54. For smaller (larger) V the system is in the SDW

FIG. 2. The flows of SDW (solid lines), CDW (dotted lines),
BSDW (dashed lines), BCDW (dotted-dashed lines) susceptibil-
ities as function of € for U = 1, and V = 0.46, 0.54, 0.62. The
left column is for N = 2, corresponding to standard g-ology, and
the right column is for N = 50.

(CDW) phase, as predicted by the standard g-ology. The
pattern of SDW-BCDW-CDW for increasing V at a fixed U
can be obtained by having only 6 scattering points along
the band.

For our results to be reliable, it is important that they
converge to a fixed result as N increases. Figure 3 shows
that the phase boundaries converge quickly with N.
Therefore, the N = 50 results presented in Fig. 2 have
reached the large N limit.

The phase diagram we obtain is shown in Fig. 4. By
using the functional RG, we have confirmed that the
BCDW phase extends to very weak coupling (at least
down to U = A,/10) and expands with increasing U.
This regime is difficult to access via QMC studies, and
there has also been a controversy regarding the DMRG
results in this limit. Intriguing phenomena in the strong-
coupling regime, such as the shrinkage of the BCDW phase
cannot be reliably studied by this weak-coupling FRG
method. This method takes into account irrelevant terms
that couple spin and charge degrees of freedom, which has
been argued in Ref. [4] to be the cause for the disappear-
ance of the BCDW phase at strong coupling. Nevertheless,
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FIG. 3. The shifts of the SDW-BCDW and BCDW-CDW phase
boundaries with the number of momentum divisions .

the RG expansion is only valid for weak couplings and we
focus on this limit in the present work.

In summary, we have studied the phase diagram of the
EHM at half-filling using a generalization of the standard
g-ology to a momentum-dependent, functional RG. In
conventional terms, our approach includes formally irrele-
vant terms corresponding to interaction vertices involving
electrons at high momenta. In the present case, our proce-
dure changes the phase diagram qualitatively because it
breaks an accidental symmetry between the backscattering
(g1) and the Umklapp (g3) processes at U = 2V. The full
momentum dependence is included in a systematic way by
discretizing the momenta in the Brillouin zone into N
divisions. We obtain the BCDW phase near U = 2V by
employing this consistent and well-controlled RG method
at one loop level, with no additional interaction terms or
ad hoc approximations. The width of this phase increases
with U, and continues to expand until the RG procedure
breaks down. We have verified that as N is increased the
phase boundaries become independent of the number of

1.0

—e— SDW-BCDW

—o— BCDW-CDW
0.8 1

< BCDW
0.6 CcDW
>
0.4
SDW

0.2 4
0.0

00 02 04 06 08 10 12 14 16
U

FIG. 4. The phase diagram of one-dimensional EHM at half-
filling in the weak-coupling regime.

divisions. Our results confirm that a BCDW phase emerges
spontaneously in the EHM at half-filling and clarify why
this result has eluded earlier standard g-ology and boson-
ization techniques.
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