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'The dynamics of trans-polyacetylene is studied within the adiabatic model of Su, Schrief-
fer, and Beeper. A single soliton has a maximum velocity, v, which can be higher than
the sound velocity. A long-time simulation shows that, from an initial electron-hole pair,
a soliton and antisoliton emerge with velocities +v and that a persistent breather is left
behind. 'This breather may account for the high-energy intragap structure observed in
photoinduced absorption, including isotope dependence.

PACS numbers: 71.38.+ i, 72.15.Nj, 72.80.Le

Charged kink solitons (S) can be generated in
trans-(CH) „either by doping or by photoexcita-
tion. Dynamical studies" of the SSH model'
have shown that a photogenerated electron-hole
pair evolves into a charged soliton-antisoliton
(SS) pair. Photoinduced absorption experiments
have indeed shown features similar to those seen
in the absorption of doped samples. ' ' A "mid-
gap" absorption at -0.5 eV appears, similar to
the doping-induced absorption at -0.6-0.7 eV.
Three infrared lines appear in both cases; the
shifts in their frequencies are well accounted for
by a change of a single pinning parameter. ' In
photoinduced absorption, however, there is an
additional peak at -1.35 eV, 4' which is absent in
doping experiments. This feature has previously
been associated' with a 'Az excited state, which
in finite polyenes is found, "as a consequence of
Coulomb interactions, to lie below the optical
gap. Here we show that there is another mechan-
ism which may explain this absorption feature:
namely, the nonlinear dynamics of the coupled
electron-phonon system.

We begin by studying a single moving soliton
and showing, first by an analytic estimate and
then with quantitative numerical calculations,
that it has a, maximum velocity, v, of propaga, -
tion. To develop the analytic estimate consider a
uniformly moving soliton with the traveling wave
form" b(x) = +tanh[(x -vf)/$(v)], where 2A, is
the optical gap (—= 1.5 -1.6 eV). With this Ansatz
and in the adiabatic limit (ur, «A„~,being the
bare phonon frequency), we find that ((v) is deter-

mined by minimizing the action

A = a, (2/v + (1 —2/~) (1 -x)' —a/x],
where x = g/$„$,=- $(0), a=2v 6, /SwA. vF'~, .
Here vF is the Fermi velocity, and A. the dimen-
sionless electron-phonon coupling constant I=—0.2
in trans-(CH)„].'" The first term in Eq. (1) is
the soliton rest energy, the second is an approxi-
mation (roughly valid" in the region 0 &x&1) to
the excess energy due to the velocity-dependent
shape deformation, and the final term is the
kinetic energy. " Equation (1) has extrema only
when n&n, =0.11; at this critical value, x, 3.
o., provides an immediate upper limit on the soli-.
ton velocity of v =(6va, A)'/'v, $,/a = 1 4k~'v, $,./
a, which corresponds to a kinetic energy of
-0.1~,. (a is the lattice constant and v, = &u,a/2. )

Since the hyperbolic tangent form is a restricted
Ansatz, there may be an instability at a lower
velocity The w.idth $, however, would still stay
close to (,. Now if ((v)/v&~s ', with us= ~,(2g) /'
the renormalized phonon frequency, then the ions
cannot respond to the reversal of the dimeriza-
tion pattern caused by the soliton's motion. This
defines a similar maximum velocity v —=&a„$(v )
= g'~'v, t~/a. Since for (CH)„$o=7a, ' with A,

=0.2 we have v ~4m„. thus the maximum soliton
velocity is greater than the sound velocity.

To test this analytic estimate we have numer-
ically integrated the SSH equations of motion"
and have indeed found a critical velocity (see Fig.
1). For $, =7a, we find v„=2.7v„while for a
system with (, =2.75a, we obtain v =0.6v, . In-
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FIG. 1. Kinetic energy F'& of a moving soliton from
simulations as a function of (v /v, ), where v is the
average velocity and 'p~ =2@)pQ is the sound velocity.
For Ez 2 0.1&p uniform soliton propagation is not ob-
served; an oscillatory tail develops. Parameters are
(notations of Befs. 1 and 2), for solid circles, ~=4.1
eV/A, to-—2.5 eV, K=21 eV/A, ~0 —2.48x10 sec
and for open circles, a=4.8 eV/A tp=2, 5 eV K:17,8
eV/A, and ~0 —2.25 x 10 ~ sec

FIG. 2. Dimerization pattern g„relative to the local
lattice constant (full line); the slope of s„is the change
in the lattice constant (dashed line). Both z„and s„are
in units of the ground-state dimerization Qp —0 10+.
Parameters correspond to the second set of Fig. 1.
(a) Time =279 (in units of 10 '5 sec) after photogenera-
tion; (b) time=299. The time difference of 20 units is
0.54 phonon periods or 0.51 breather periods.

dependent of other parameters, we also find a
critical kinetic energy, E~ =O. IL„aboveIhick
uniform soliton translation is not observed and

an oscillating tail structure develoPs With r.e-
gard to the supersonic propagation of solitons,
we recall that our dynamical simulation is adia-
batic" and ignores quantum phonon emission
which leads to soliton damping. ' However, the
lifetime due to this effect is long" (~10 ' sec)
on the scale of the picosecond photoabsorption
phenomena we now discuss.

Consider the photoexcitation of an electron
from the top of the valence band to the bottom of
the conduction band ' the energy input is 2~,.
As shown previously, "this initial electron-hole
pair quickly develops into a separating pair of
charged" solitons. Our long-time simulations
show that the separating solitons move with v

=v and only modest shape distortion. There-
fore, their total kinetic energy is close to 0.260.
Hence the sum of their rest energy (=4+/m
=1.36,)'" and kinetic energy (& 0.2b, ) is ~1.5+;
the excess energy of 0.5b, is concentrated in
a well-localized, oscillatory "breather" excita-
tion, left behind by the separating solitons. The
breather is charge neutral and hence, like the
ground state, ' should not be strongly sensitive to
Coulomb correlations.

In Fig. 2 we present the results of a dynamical
simulation on a 98-atom chain with periodic
boundary conditions and $0 = 2.75a. The coupling
of the moving solitons to the acoustic phonons re-
sults in a local contraction of the lattice constant
around the solitons' centers. The actual ion dis-
placement at site n is of the form u„=(-1)"u„
+nba, where % is the change in the lattice con-
stant and the (slowly varying) u„represents the
dimerization pattern relative to the local lattice
constant. Hence in Fig. 2 we plot r„=g+-1)"[2u„
-u„+,—u„,j and s„=«I2u„+u„+,-+u„,], so that
r„=u„ands„=nba. As anticipated, the results
for s„indeed indicate that both S and S locally
contract the lattice constant. More striking is
the clear existence of a separate, well-localized
breather excitation; its oscillatory behavior in
time is indicated by the two parts of Fig. 2,
which show two times separated by - —,

' the ob-
served breather period. To check the persistence
of this breather we have isolated the central 42
atoms and followed their dynamics up to 5 ps
(= 5000 time steps of the computer code =130
phonon periods). On this time scale, the breath-
er persists with no appreciable reduction in am-
plitude. '4

Figure 3 shows the time dependence of the elec-
tronic levels. The mid-gap states associated
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In cfog-(CH)„aphotoinduced line is also ob-
served below the band edge. 4 But here the ab-
sence of ground-state degeneracy leads to con-
finement of the electron-hole pair to a localized
exciton, which our dynamical simulations show
oscillates in time qualitatively like the breather
in trans (C-H)„. One important difference, how-
ever, is in the occupation of electronic levels;
the decay of the cis-(CH)„exciton involves an
electronic transition. Hence we expect this de-
cay to be much less sensitive to increased tem-
perature, which is also consistent with the data. '

Finally, a direct manifestation of the nonlinear
ion dynamics would be an isotope dependence of
the 1.35-eV line in trans-(CH)„and the structure
below the gap. Under the assumption that breath-
ers with the same quantum number are generated
in both (CH)„and (CD)„,those in (CD)„should,
from Eq. (4), have lower energies. Recent ex-
perimental data" show such an isotope depen-
dence, demonstrating directly that the nonlinear
ion dynamics considered here is essential for
understanding this phenomenon.
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