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The dynamics of {rans-polyacetylene is studied within the adiabatic model of Su, Schrief-
fer, and Heeger. A single soliton has a maximum velocity, v, , which can be higher than
the sound velocity. A long-time simulation shows that, from an initial electron-hole pair,
a soliton and antisoliton emerge with velocities +¢, and that a persistent breather is left
behind, This breather may account for the high-energy intragap structure observed in
photoinduced absorption, including isotope dependence.

PACS numbers: 71.38.+i, 72.15.Nj, 72.80.Le

Charged kink solitons (S) can be generated in
trans-(CH), either by doping or by photoexcita-
tion, Dynamical studies™? of the SSH model®
have shown that a photogenerated electron-hole
pair evolves into a charged soliton-antisoliton
(SS) pair. Photoinduced absorption experiments
have indeed shown features similar to those seen
in the absorption of doped samples.*™® A “mid-
gap” absorption at ~0.5 eV appears, similar to
the doping-induced absorption at ~0.6-0.7 eV.
Three infrared lines appear in both cases; the
shifts in their frequencies are well accounted for
by a change of a single pinning parameter.® In
photoinduced absorption, however, there is an
additional peak at ~1.35 eV,*% which is absent in
doping experiments. This feature has previously
been associated* with a 1Ag excited state, which
in finite polyenes is found,'® as a consequence of
Coulomb interactions, to lie below the optical
gap. Here we show that there is another mechan-
ism which may explain this absorption feature:
namely, the nonlinear dynamics of the coupled
electron-phonon system.

We begin by studying a single moving soliton
and showing, first by an analytic estimate and
then with quantitative numerical calculations,
that it has a maximum velocity, v, , of propaga-
tion. To develop the analytic estimate consider a
uniformly moving soliton with the traveling wave
form*! A(x) = Ajtanh[(x —vt)/£(v)], where 24, is
the optical gap (1.5 -1.6 eV). With this Ansatz
and in the adiabatic limit (w, << 4,, w, being the
bare phonon frequency), we find that £(v) is deter-

mined by minimizing the action
A=a{2/7+(1=2/1)(1 =x)>-a/x}, (1)

where x = £/&, & =£(0), a=20"A2/3muvPw,’,
Here vy is the Fermi velocity, and A the dimen-
sionless electron-phonon coupling constant [=0,2
in trans-(CH), ].>*** The first term in Eq. (1) is
the soliton rest energy, the second is an approxi-
mation (roughly valid!! in the region 0<x<1) to
the excess energy due to the velocity-dependent
shape deformation, and the final term is the
kinetic energy.'’ Equation (1) has extrema only
when a<a,=~0.11; at this critical value, x =2,
a, provides an immediate upper limit on the soli-
ton velocity of v, =(671a, ) Y20, & /a=1.42"2v &,/
a, which corresponds to a kinetic energy of
~0.14,. (a is the lattice constant and v, = w,a/2.)
Since the hyperbolic tangent form is a restricted
Amnsatz, there may be an instability at a lower
velocity. The width &, however, would still stay
close to &,. Now if £&(v)/v <wg™, with wg= wO(ZA)l/Z
the renormalized phonon frequency, then the ions
cannot respond to the reversal of the dimeriza-
tion pattern caused by the soliton’s motion, This
defines a similar maximum velocity v, =w z&(v,,)
= \Y2y_¢ /a. Since for (CH), &, ~7a,® with A
~0.2 we have v, ~4v; thus the maximum soliton
velocity is greater than the sound velocity.

To test this analytic estimate we have numer-
ically integrated the SSH equations of motion!*3
and have indeed found a critical velocity (see Fig.
1). For &,=T7a, we find v,, ~2,.7v,, while for a
system with £,=2.75a, we obtain v, ~0.6v,, In-
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FIG. 1. Kinetic energy E, of a moving soliton from
simulations as a function of & /»,)?, where v is the
average velocity and vy = wpa is the sound velocity.
For E, = 0.1A, uniform soliton propagation is not ob-
served; an oscillatory tail develops. Parameters are
(notations of Refs. 1 and 2), for solid circles, a=4.1
eV/R, t,=2.5 eV, K =21 eV/R?, w;=2.48x10" sec™};
and for open circles, a=4.8 eV/A, £;=2.5 eV, K =117.3
eV/A?, and wy=2.25x 10" sec™!.

dependent of other parameters, we also find a
critical kinetic energy, E,~0.14,, above which
uniform soliton translation is not observed and
an oscillating tail structure develops. With re-
gard to the supersonic propagation of solitons,
we recall that our dynamical simulation is adia-
batic'*2 and ignores quantum phonon emission
which leads to soliton damping.'? However, the
lifetime due to this effect is long'? (~10~7 sec)
on the scale of the picosecond photoabsorption
phenomena we now discuss.

Consider the photoexcitation of an electron
from the top of the valence band to the bottom of
the conduction band;*' 2 the energy input is 2A,.
As shown previously,® 2 this initial electron-hole
pair quickly develops into a separating pair of
charged®® solitons, Our long-time simulations
show that the separating solitons move with v
=~y and only modest shape distortion. There-
fore, their total kinetic energy is close to 0.2A,.
Hence the sum of their rest energy (=44,/7
~1,3A,)* ! and kinetic energy (= 0.24,) is 21.5A;
the excess energy of =0.5A, is concentrated in
a well-localized, oscillatory “breather” excita-
tion, left behind by the separating solitons. The
breather is charge neutral and hence, like the
ground state,® should not be strongly sensitive to
Coulomb correlations.
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FIG. 2. Dimerization pattern #, relative to the local
lattice constant (full line); the slope of s, is the change
in the lattice constant (dashed line). Both 7, and s, are
in units of the ground-state dimerization 4= 0.10q.
Parameters correspond to the second set of Fig. 1.

(a) Time =279 (in units of 10~ sec) after photogenera-
tion; (b) time =299, The time difference of 20 units is
0.54 phonon periods or 0.51 breather periods.

In Fig. 2 we present the results of a dynamical
simulation on a 98-atom chain with periodic
boundary conditions and £,=2.75a. The coupling
of the moving solitons to the acoustic phonons re-
sults in a local contraction of the lattice constant
around the solitons’ centers. The actual ion dis-
placement at site # is of the form u, =(-1)"u,
+nba, where 6a is the change in the lattice con-
stant and the (slowly varying) u, represents the
dimerization pattern 7elative to the local lattice
constant. Hence in Fig. 2 we plot », = 3(-1)"[2u,
—Uy 4y —U,_,] and s,=3\2u, +u,,; +U,_,], SO that
r,~u, and s, ~nbda. As anticipated, the results
for s, indeed indicate that both S and S locally
contract the lattice constant. More striking is
the clear existence of a separate, well-localized
breather excitation; its oscillatory behavior in
time is indicated by the two parts of Fig. 2,
which show two times separated by ~ 3 the ob-
served breather period. To check the persistence
of this breather we have isolated the central 42
atoms and followed their dynamics up to 5 ps
(=5000 time steps of the computer code ~130
phonon periods). On this time scale, the breath-
er persists with no appreciable reduction in am-
plitude,

Figure 3 shows the time dependence of the elec-
tronic levels. The mid-gap states associated
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with the separating solitons quickly settle to zero
[Fig. 3(a)]. The next electronic state is also
split significantly from the continuum states and
exhibits large-scale oscillations | Fig. 3(b)].

This state (and its symmetric counterpart above
mid-gap) is associated with the localized breath-
er. From fits to the numerical data its frequency
is ~0,95wj and its average position is shifted
from A, to ~0.84,. Repulsion from the continuum
levels results in the asymmetric form of Fig,
3(b).

An important support for these numerical re-
sults is the following analytic solution for small-
amplitude breathers in the continuum limit. We
start from the effective Lagrangian for A(x, ¢),
which to lowest order in derivatives is'® (the
phase variable is fixed at zero in the present
model’?)

2, 2E, , A% p2Ar A?
£‘E{EAZ<1U 2t 5)' I T 242° Thas }’

T I
(a)
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FIG. 3. Time dependence of electronic levels: (a)
state at top of valence band, rapidly becoming a mid-
gap state; (b) next state in valence band, shifting into
the gap and oscillating with breather frequency. Param-
eters are those of Fig. 2.

(2)

where E is the electronic cutoff energy and A,=2F  exp(-1/2x). Using multiple-scale asymptotic per-
turbation theory or following the strategy previously applied to the ¢* theory,'*'® we expand A(x, ¢)

=Ag(1+0(x, ¢)) and find
o(x, t) =6"2e sech[(12)2ex /£, ] cos[ (1 = 2wyt |

+ 2 €2sech?[(12)V2ex /£, ] {2 cos[ 2(1 = L€ wyt | - 1} +O(e?),

where € is the small expansion parameter, £,
=vp/A, and wg=wy(21)2, The time-independent
term represents a local decrease in the gap.
The breather energy is E z=A,[2V3 /n] e[ 1 -5€2/
9+0(e?)]. The breather can be semiclassically
quantized” by the condition’® [ dx dt(A2/w z?)
=2n7, where the time integral is over one period,
giving

E g =nwg[l = (1%/72)(wg?/ AN + O(n) ] . (4)

Testing the consistency of (3) with the classical
energy expression on the breather shown in Fig.
2, we estimate that € =0.32 and, therefore that
E ;~0.334, and the time-averaged local gap is
shifted from A, to 0.854,, in fair agreement with
the numerical data. Given this consistency and
that the important energies scale only with A
(e.g., critical kinetic and breather energies), we
can directly apply our results with parameters
appropriate to (CH),.

We next show that our results can explain sev-
eral properties of the photoinduced absorption
data which have yet to be explained by the ap-
proach based on Coulomb correlations.*'® The
classical breather has two electronic states in-

(3)

side the normal gap, the lower one doubly oc-
cupied and the upper one empty. Thus the main
experimental signature of the breather is that its
optical absorption contains a line below the con-
tinuum band edge at 2A,. The presence of the
photoinduced absorption at 1.35 eV *°® is thus con-
sistent with our simulations, which show simul-
taneously photogenerated charged solitons and a
breather. For €=0.32 the inferred normal gap

is ~1,6 eV, consistent with other estimates. It
is important to note that the induced absorption
of both the 1.35-eV peak and the mid-gap saturate
at the same input power.’® This indicates that
both phenomena are generated simultaneously,

as we predict.

The breather in ¢trans-(CH), can decay to the
ground state by phonon emission, since no elec-
tronic transitions are needed. Thus the absorp-
tion line we attribute to the breather should decay
faster than the infrared and mid-gap absorptions
associated with the charged solitons. This dif-
ference in decay times should be enhanced as the
temperature increases, as is observed experi-
mentally.*®
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In cis-(CH), a photoinduced line is also ob-
served below the band edge.* But here the ab-
sence of ground-state degeneracy leads to con-
finement of the electron-hole pair to a localized
exciton, which our dynamical simulations show
oscillates in time qualitatively like the breather
in trans-(CH),. One important difference, how-
ever, is in the occupation of electronic levels;
the decay of the cis-(CH), exciton involves an
electronic transition. Hence we expect this de-
cay to be much less sensitive to increased tem-
perature, which is also consistent with the data.*

Finally, a direct manifestation of the nonlinear
ion dynamics would be an isotope dependence of
the 1.35-eV line in trans-(CH), and the structure
below the gap. Under the assumption that breath-
ers with the same quantum number are generated
in both (CH), and (CD),, those in (CD), should,
from Eq. (4), have lower energies. Recent ex-
perimental data'® show such an isotope depen-
dence, demonstrating directly that the nonlinear
ion dynamics considered here is essential for
understanding this phenomenon.
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