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Using semiclassical methods, we study the bound-state spectrum in the chiral-symmetric tr model, with SU(N)
fermions and both with and without pions, in one space plus one time dimension. In the o™onlycase, we find

a rich spectrum composed of n (& N)-particle bound states which can be termed "normal nuclei. " In a
specific limit, these states approach exactly those found by Dashen, Hasslacher, and Neveu in the Gross-

Neveu model, and, in general, we argue that the cr model can be viewed as a low-energy, "efFective field

theory" for the Gross-Neveu model. In addition to the "normal nuclei, " the o model contains (previously

known) "shell" states —a $ kink plus n (& N) fermions —which are analogs of the "abnormal" nuclei

suggested by Lee and Wick. We discuss the relations among these "normal" and "abnormal" states; the

solvability of our model allows us to examine approximation schemes used iri recent field-theoretic studies of
"normal" and "abnormal" nuclear matter. In the (cr + m) case we also find a rich spectrum of "normal nuclei. "
There are no kinklike states. In a specific limit the "normal nuclei" approach exactly those found by Shei in

the chiral Gross-Neveu model. However, since our semiclassical results predict in this case the spontaneous

breakdown of a continuous symmetry in two dimensions, their interpretation remains unclear. %'e speculate

on the implications of our predictions for theories with small explicit symmetry breaking and on the

mechanism by which the semiclassical results could be altered by quantum-fluctuations corrections.

I. INTRODUCTION AND SURVEY OF RESULTS

The past two years have seen remarkable pro-
gress in the use of semiclassical approximation
methods to study relativistic quantum field theo-
ries. ' " These methods, which transcend stan-
dard perturbation theory, have revealed unex-
pectedly rich ibound-state spectra in a variety of
model theories. Among these theories is at least
one —the quantum sine-Gordon theory in two di-
mensions —in which the semiclassical methods'
are now known to predict the exact bound-state
spectrum. "

In the present article we apply semiclassical
techniques to find bound states in the two-dimen-
sional version of the familiar o model. " More
precisely, we study that variant of the model with
isoscalar pions and with SU(N)-symmetric fermi-
ons; this is described by the (unrenormaiized)
Lagrangian

Z =y'"'(srsa„g(tr+ftt-r, ))y'"'

+-,'[(a„g)(a"o) + (a tt)(a"v) J

where the index a is the internal [SU(N)J symme-
try label of the fermions. In one space and one
time dimension the theory is superrenormalizable;
the coupling constants g and ~ have dimensions
(mass)' and (mass)', respectively. The constant
f is a dimensionless parameter which measures
the intrinsic strength of the meson coupling (h./4)

O'~O' «~0' (1.2)

i'-0'=red .
Further, as in the Gross-Neveu model, "the ap-
parent SU(N) symmetry is in fact an O(2N) sym-
metry. ' In the tree approximation, the fundamen-
tal field excitations have masses me-- rn =gf and
m = $27,f. When both tr and tt are present, g is
invariant under the continuous chiral transforma-
tions

g g'=o cosg+gsing,

g-g'=n cosg —osing,

y
g —

et reels'

(1.3)

as well as under the SU(N) internal symmetry of

relative to the meson mass squared (m s)„=2'');
thus f' » I is the weak (meson) coupling limit, and
it is in this regime that we expect our semiclassi-
cal analysis to be valid.

A second dimensionless parameter in the theory,
a —= h/gs, which measures the relative strength of
meson-meson to fermion-meson couplings, will in
all our calculations be fixed at a =2. This re-
striction is inextricably tied to our method of
solving the model, as the discussions of Secs. III
and IV will show. A third dimensionless parame-
ter characterizirig the theory is, of course, +, the
index of SU(N). As we indicate below and demon-
strate in Sec. IV, the interplay of this parameter
with f' can have important consequences —particu-
larly for the (tr+tt) case —for the spectrum of
bound states.

When only the c field is present, Q is invariant
under the discrete chiral transformation
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the fermions. The fundamental field excitations
have masses, in the tree approximation,
m& = m =gf, m = $2&f, and m„= 0.""

Both the fundamental distinction between discrete
and continuous symmetries (particularly in two
dimensions)'~ "and certain technical aspects of
our approach dictate that in the ensuing sections
we treat the o-only and (o +&) cases separately.

Apart from the obvious general interest in any
model field theory which can be studied analytically
in a nonperturbative approximation, the o model
possesses specific interest in view of the variety
of contexts in which the four-dimensional version
has recently been studied. In the SLAC "bag" cal-
culations, ' the o model without pions has been used
to study questions regarding quark confinement.
In this analysis, several calculations were moti-
vated and interpretations clarified by an exact
classical solution to the two-dimensional version
of the theory. 7 In nuclear physics, the o model has
recently been used, in the Lee-Wick" and pion-
condensation'9 calculations, to suggest the ex-
istence of "abnormal" states of nuclear matter at
ve ry high baryon density. Furthe r, it has been
analyzed as a possible phenomenological field the-
ory of normal nuclei. ' To study these nuclear
physics applications, we can interpret the SU(N)
symmetry as allowing us to construct bound states
with varying numbers of "nucleons"; hence we can
study the behavior of these "nuclei" as the number
of constituents, n„varies. Here we shall find
some very interesting results, particularly in
comparing the various levels of approximation in
which the theory has been studied.

To describe our results clearly, it is necessary
to indicate briefly the nature of the semiclassical
approximation in the o model; a detailed discussion
of the method appears in Sec. II. In essence, our
approach is identical to that used by Dashen,
Hasslacher, and Neveu (DHN) in their study of the
Gross-Neveu model. '" The bound-state ener-
gies are determined by evaluating a functional
integral over the meson and fermion fields in
which the integrand is the exponential of the action.
Since the fermion fields enter the action bilinear-
ly, they can be integrated out exa&Qy, '" leaving
an effective action in terms of the meson fields
only. The functional integral over the meson fields
is then approximated by the method of stationary
phase. Using certain features of the elegant in-
verse scattering method, '" we are able to find
exact, analytic solutions to the stationary-phase
condition —which in terms of the meson fields
yields a set of coupled, nonlinear, partial differ-
ential equations —subject to the two restrictions
that (1) the meson fields axe time independent and

(2) as noted above, X =2g'. The details of the

manipulations and the origins of these restrictions
are discussed in Secs. III and IV. For time-inde-
pendent meson fields the semiclassical approxi-
mation to the quantum bound-state energies is
simply'

E= -S «(T)/T+ ~ ~ ~,

where S,«(T) is the effective action evaluated at
the stationary-phase point. Actually, a "complete"
semiclassical analysis would require, in addition
to S,«, evaluation of (at least) the Gaussian func-
tional integral corresponding to small fluctuations
about the stationary-phase point. Although we have
been unable to evaluate the appropriate functional
integral explicitly, in Sec. V we discuss certain
important qualitative aspects of these quantum
fluctuations.

One final point on the nature of our approxima-
tions is essential to an understanding of some of
our results. As DHN have shown' —and as we shall
see explicitly in Sec. II—the contributions of the
fermions to the effective action can be separated
into two parts which, roughly speaking, corre-
spond to (1) the "occupied positive-energy states"
and (2) a "negative-energy sea." In the true semi-
classical analysis, both contributions must (and
can) be included. ; this is done in Sec. IV. But we
have also found it extremely instructive to isolate
a further, "classical" approximation, in which
only the effects of the occupied states are included.
Our primary reason for treating this classical ap-
proximation separately in Sec. DI is that it corre-
sponds precisely to an approximation frequently
used in field-theoretic calculations of nuclear
matter. ' Comparison of the semiclassical and
classical results thus allows us to test this ap-
proximation in a solvable model.

With these preliminaries aside, we can now
describe our results, beginning with the c-only
case. From the semiclassical analysis of Sec. IV
we deduce the spectrum indicated schematically
in Fig. 1. The bound states in the leading tower
correspond to time-independent solutions to the
stationary-phase condition and are found explicitly
by our analysis. They are bound states of no fer-
mions: the "nuclei" of the two-dimensional o mod-
el. The other states shown in Fig. 1, which would
follow' from time-dependent solutions, are not
found explicitly, but the arguments advanced in
Sec. IV suggest their existence: the state labeled
"A," for example, is clearly present, since it is
just the elementary o of mass m, ~„„=~Zf=2gf
= 2m, for ~ =2g'. The spectrum shown in Fig. 1
is strikingly similar" to that found by DHN' for
the Gross-Neveu model. Actually, it differs
slight1y from these DHN results in that the details
of the spectrum —as well as the numerical values
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FIG. 1. A schematic illustration of the first few (no
«4, E «4m) bound-state levels in the 0 model for large
N. The equal spacing is approximately valid in this
limit. The states in the "leading tower" (boxed area)
are found explicitly by our time-dependent methods.
The existence of states in the triangular region is
strongly suggested by the correspondence between the 0'

and Gross-Neveu models as discussed in Sec. IV. The
degeneracy of each dot (boson) or box (fermion) is 2¹/

40) 1801

of the energy levels —depend on the parameter
n = 4f'/N, which is, roughly speaking, a measure
of the relative importance of meson-to-fermion
contributions to the bound-state energies. None-
theless, we argue in Sec. IV that despite obvious
differences in the theories, the g model can be
thought of as an "effective field theory" for the
Gross-Neveu model in the same spirit that a field
theory of pions and nucleons would represent a
low-energy, "effective" version of an underlying
theory of quarks and gluons. This connection offers
the exciting opportunity to study the connections
between underlying and effective theories in solv-
able models.

In addition to the states in Fig. I there are in the
o-only ease the previously known SLAC "shell"
states, ' which consist of n, fermions "trapped" in
zero-energy states on a P' "kink. " In Secs. III
and IV we indicate that, in contrast to the "normal
nuclei" discussed above, these shell states are the
two-dimensional analogs of finite "abnormal nu-
clei"—"density isomers"" —first suggested by
Lee and Wick' and subsequently studied by many
authors. "" Perhaps the central result of our
comparison of the classical and semiclassical ap-
proximations is that while the former predicts

that large normal nuclei can fission into two "ab-
normal states" (S+S), in the latter analysis this
possibility essentially disappears. This result
confirms recent assertions of the importance of
including vacuum fluctuation effects in compara-
tive studies of normal and abnormal matter. '

In the (o+n) case the semiclassical predictions
for the bound-state spectra depend strongly on the
parameter a= 4f'/-N. For n» 1, there exist N
bound states with energies

np m
E(no ) no@2

6N a

0 m3

96f~ ' (1.5)

where I ~n &N. These states are thus normal
nuclei, weakly bound in this limit. Note that there
are no obvious analogs of abnormal nuclei in the

(o+v) model because a kinklike state is not topo-
logically stable in this theory. As a is decreased,
the higher-lying bound states disappear, until for
u « I, the spectrum stabilizes at precisely (for
o. - 0) that found by Shei in the chiral Gross-Neveu
model, namely, a total of N/2 bound states with

energies

E(no) = sin ', 1 ~ n0 ~N/2 ~

Nm . mn

w N
(1.6)

Although in view of our previous remarks it is
tempting to view the (o+ v) model for small a as
an effective field theory of the chiral Gross-Neveu
model, there are at least two problems with this
interpretation. First, there are no known analogs
in either model of the time-dependent states shown
in the triangular region of Fig. I. Thus the sim-
ilarity of the spectra here is by no means as cer-
tain as in the o-only case. Second, our semiclas-
sical analysis predicts the spontaneous breakdown
of a continuous symmetry in two dimensions, in

apparent violation of Coleman's theorem. '6 ~" In
the chiral Gross-Neveu model, this violation is
evaded by a decoupling of the putative Goldstone
boson. " In Sec. V we argue that a similar decou-
pling does not appear likely in the (o+v) model
(for o. g 0); hence, the nature of the connection be-
tween the two models remains unresolved.

To conclude these introductory remarks we sum-
marize the contents of the remaining sections. In
Sec. II the details of the semiclassical approxima-
tion in the g model are presented. Section III
treats the classical approximation to the station-
ary-phase conditions and bound-state spectra in
both the g-only and (o+n) cases. The full semi-
classical analysis of these cases is carried out in
Sec. IV. Qualitative considerations regarding
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quantum fluctuation corrections to the semiclassi-
cal analysis and spontaneous breakdown of contin-
uous symmetries are discussed in Sec. V. Finally,
two appendixes provide supplementary technical
details. Appendix A derives the trace identities
for the Dirac equation, which are needed in the cal-
culations of Secs. III and IV. Appendix B details
the explicit reconstruction of the fields which solve
the stationary-phase conditions.

II. THE SEMICLASSICAL APPROXIMATION IN THE g MODFL

To study the bound-state spectrum in the p model
we use the semiclassical techniques developed in a
series of papers by Dashen, Hasslacher, and Neveu. ' '
In particular, our analysis relies heavily on their
treatment' of the Gross-Neveu model, " and we shall
henceforth refere to this specific paper as DHN.

Following DHN, we begin with the expression

T
tre ' = dc& dm d d exp i dt d 2»+ iy 8 —g 0+ivy, (2.1)

where the meson fields satisfy periodic boundary
conditions and the fermion fields antiperiodic
boundary conditions. ' Since the fermions enter the
action bilinearly, the functional integral over
(g, g) is Gaussian and can be computed exactly.
Formally, this procedure yields

tre ' = do dm exp iS,«a, n, T

S,«= dt dx S~ 0, &

+tr In( [ iy 8 —g(o + i my, )] ] . (2.3)

Thus far the manipulations are exact. The semi-
classical approximation will consist of evaluating
the functional integral in (2.2) by the method of
stationary phase. Clearly a full semiclassical
analysis of (2.2) must include all o and m field con-
figurations satisfying the stationary-phase condi-
tions,

(2.2)

where 0 and g are periodic functions of time, and
where the effective action has the form"

where E is the energy of the full field configura-
tion. Thus denoting the action at the stationary-
phase point by S,ff, and ignoring momentarily the
corrections to the lowest-order stationary-phase
approximation, we see that in the semiclassical
approximation the energy of the quantum "bound
state" corresponding to a stationary-phase point
[g, , w, ] will be

g([ ] [ ]) ~off([&sp] i [map], T)
sp 7 sp

(2.6)

To make these formal manipulations more pre-
cise, let us begin by restricting our considera-
tions to time-independent 0 and w. Then the inter-
pretation of the trln term in S,« is intuitively
clear: It represents the fermion loop" (see Fig.
2) in the presence of external fields g(x) and m(x),
and its contribution to 8,«can be expressed in
terms of the eigenvalues ~& of the Dirac equation

(2.'I)

Notice that the p's here are simply two-compo-

58,«
5n'

osp, 7f sp

(2.4)
4

which are generalizations —because of the addi-
tional "tr ln" term in 8,«—of the classical —that
is, c-number —equations of motion for 0 and z.
Each distinct stationary-phase point will corre-
spond, loosely speaking, to a state in the quantum
field theory. Included in the set of stationary-
phase points are g and 7t fields having nontrivial
time dependence. However, in practice we have
been able to solve (2.4) only for time-independent
v and m. Hence we expect to find only a subset of
the complete semiclassical bound-state spectrum.
For time-independent 0 and g fields, $,«has sim-
ple time dependence:

(2.5)

FIG. 2. The fermion loop in the presence of external
o {wiggly lines) and 7t {dashed lines) fields. As dis-
cussed in Sec. II this loop contains contributions from
both "occupied states" and the "negative-energy sea."
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nent, c-number spinors satisfying (2.7); in partic-
ular, they are not anticommuting q numbers (ele-
ments of a Grassmann algebra).

The precise form of the trln contribution follows
most directly from a result of DHN'': For time-
independent o and m,

f [dpi"]][dg{"]]exp~i dt de {"][iy 8 —g((1+i wy, )]&{"]}
~

=exp &!7'N
" (1+e 'r ~~2~)»Jcoj I

2 dLJ1

=expiNT
2

C N, n, exp —iT n, ~,
fn, ) f

(2.8)

where the sums over &o, are over positive and negative eigenvalues of (2.7). Thus the +,. are themselves
functionals of o and m. Further.

Nt
C(N, {n(})=

( )jN- n] n]
(2.9)

and the sum over (I(}is over all finite sets of integers such that 0 & n, & N. Using (2.8) we can write (2.1)
in the form

tee 'e"= P C(Ar, {nr]) f [ria][da]exp{iS,rr([a], [a],{n,])],
fn] )

(2.10)

where

Srr(la] [e],{nr]&=Tf Z (, &d*+, Z],(l ], [ ]&I —Tgnrlnr([a] [al&I. (2.11)

We can interpret the three terms in (2.11) as representing contributions to the action from, respectively,
the meson field configuration, a fermionic "sea" with each state filled by N fermions, and, finally, fer-
mion states occupied by n; &N fermions. Further, C(N, {n;})in (2.13) represents the degeneracy of a con-
figuration labeled by "occupation number" (n(}. At this point we should digress briefly to mention an im-
portant distinction between the (o +][) and a-only cases. Since the pion field is odd under charge conjuga-
tion, in the general (o +w) case there is no relation between the positive and the negative (d, . However, in
the cr-only ease these energy eigenvalues must come in charge-conjugate pairs, -co& = (d&~' &0. ln this
case, the degeneracy of the bound-state spectrum is clarified by rewriting (2.8) as'

N

[dr) ][dd" ]exP[id (iy ~ 2 —sa)P ] =exP —rirT P rar g (c2,Ar{nr]e&xP —iT P nrrar),
Q)~ & O

(pal
QJ] 00

(2.12)

where in the sum over (n, }, 0 &n, & 2N. In (2.12) we have used the symmetry &u{&
] =-&u{&'] to sum over only

negative-energy states in the filled sea and over only positive-energy occupied states. Note that: the de-
generacy of a configuration labeled by occupation numbers fn, }is now C(2N, (n, }).Thus in the o-only
case, the analogs of (2.10) and (2.11) are

tre '" = Q C(2 A(){fnr[]da]exp{iS «([a],{n,])]
(n] 3

(2.13)

and

S rr( [a], {n,])= Tf Z„(a&dx —Ay+ n, ( [ra] ) —T Q n,. rar ( [a]) .
Ql &0f ur &0t

(2.14)

The expressions (2.10) and (2.13) are exact in their respective cases, subject only to our restriction to
time-independent meson fields. To proceed with our semiclassical analysis, we approximate these exact
functional integrals by the method of stationary phase. Restricting our comments to the o-only case for
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notational simplicity, we see that, formally, this yields

tre '"r = g C(2N, (n( j)exp(iS„,) [do']exp i + 2
—+ ~

'. O'S,« ' (o —o~)'

fn) f

Seff= P C(2N, {n, ].) exp. (iS,«) det
6o' (2.15)

Here o, is the solution to the stationary-phase condition, which is formally

and S„f=—S,«([o, ],jn, ]). Further, the final approximate equality comes from evaluating the Gaussian
integral over o, =—o —o, that results from neglecting higher than second-order terms in the expansion of
S,ff around o, . From (2.15) using (2.14) and (2.6) we can write the semiclassical approximation to the
(unrenormalized) energy of a quantum bound state labeled by (n, ] as

)l br )d&+ Q &;(ar([(r ))+N Q tdr([&.,l) + ——train ', )+ ~

~()0
(d ~ & p (d &p T2 5o

S f

(2.16)

This result requires several clarifying and inter-
pretive comments. First, we remark that the final
term, which represents the Gaussian approxima-
tion to quantum fluctuations about the stationary-
phase point, o,p, will be discussed —though not
explicitly evaluated —in Sec. V. Second, we reiter-
ate that the terms in braces, which come from
S,~f, include contributions from occupied positive-
energy states (Q ...n, ~, ) as well as from a field
negative-energy sea (N Q .,0(o,). In a classical
approximation, one would be tempted to include
only the contributions of the occupied states and to
ignore the effects of the negative-energy sea (or,
at best, to include these as a perturbation). Strict-
ly speaking, of course, this does not treat the
fermion effects consistently in orders of k, since
both contributions come from the fermion loop in
Fig. 2. However, this separation of occupied
states and negative-energy sea is often intuitively
reasonable: In field-theoretic treatments of low-
energy nuclear physics, "for example, the approx-
imation of ignoring negative-energy sea effects is
often valid. In other circumstances —as we shall
later see—the two contributions can be compar-
able, and it is essential that both be kept. To il-
lustrate both circumstances we discuss separately
in Sec. III the classical approximation —that is,
the additional approximation to (2.16) in which the
negative-energy sea effects are ignored —before
proceeding to the full semiclassical analysis in
Sec. IV. We emphasize that these two calculations
are quite distinct: The classical approximation
solves the stationary-phase condition including
only occupied fermion states,

Ql ~ & p

(2.17)

whereas the full semiclassical approximation re-
quires that

g& — n, co, —N
Q).& p ~]&p

(2.18)

Finally, we should remark on the method by
which we solve the stationary-phase conditions
(2.17) and (2.18) and their generalizations when
pions are present. As we have indicated, in terms
of o and p these conditions become g-number field
equations which are in fact coupled, nonlinear,
partial —or, in the time-independent case, ordi-
nary —differential equations. In general, it is not
possible to find exact solutions to these equations
directly. However, it will prove possible —as in
several previous analyses of similar mod-
els" "—to solve the equations indirectly, using
certain aspects of the powerful inverse scattering
method. " The details of this approach are pre-
sented in Secs. III and IV.

III. THE CLASSICAL APPROXIMATION33

In the classical approximation only the contribu-
tions of the occupied fermion states are included
in 8 ff Further, to determine the spectrum of
bound states, only those occupied states corre-
sponding to discrete eigenvalues of the Dirac equa-
tion need to be considered. In fact, it suffices to
consider only a single discrete eigenvalue, co„
since additional contributions would enter addi-
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S„,/T= I dx[Z„(o; v)]-n, (o,([o], [v]).
J co

(3.1)

tively in S,«and thus, by (2.6), would lead to no
new bound states in the field theory. '

In the sector in which n fermions occupy a sin-
gle discrete state uo, the classical approximation
to the effective action per unit time can be written
as

tent calculation can be valid in a strong-coupling
limit, "this equivalence offers hope that the semi-
classical results may in some instances be correct
even for strong coupling. Third, there exists a
known solution to the coupled equations (3.2). It
is the two-dimensional "SLAC shell, " which con-
sists of a p4 "kink" with n, fermions occupying an
~, = 0 discrete state. Explicitly, with the conven-
tions @0=0, and y, =io;,

Since there are no infinities in (3.1), no renor-
malizations are required; thus the classical ap-
proximation illustrates the calculational scheme
with a minimum of complication. To proceed with
the detailed calculations based on (3.1), we must
treat the o-only and (o+ m) cases separately.

o'(x) =f tanh[(X/2)' ~~fx]

1

g (x)=N[cosh(y/2)' '/x] ~ '~ '" 'l
0

(3.5a)

(3.5b)

A. The o-only case

Applying the stationary-phase condition to S,ff
as given in (3.1) yields precisely the classical
field equations, which for the (time-independent)
0-only case are~

d
&u,y, +iy, —go(x) P, (x—) =0'dx (3.2a)

2

2 + XO'((7 f ) = -gBO$—0/0. (3.2b)

From the original form of S, in which the fermion
fields enter explicitly, these equations appear ob-
vious. That they in fact follow from 5S,«/5o =0
is made clear by noting first that ur, ([o])must be
determined by (3.2a) and then by observing that,
from first-order perturbation theory,

5(o,/5o(x) = -gg, (x)q, (x),

E~= —,'~2K f'. (3.6)

The a field and fermion density p =$0~/, are plotted
in Fig. 3; the derivation of the forms of o and $0
in (3.5) using our techniques is discussed in Ap-
pendix B.

To solve (3.2) systematically we begin by re-
turning to the explicit form of (3.1) in the time-

2 — (a)
I

'
I

—I.O

-0.5

where N is a normalization factor. Since P, (x)P,(x)
=0, there is no fermion feedback in (3.2b), and
hence the kink in (3.5a) remains a solution. Fur-
ther, since ~, =0, the energy of the shell is inde-
pendent of n„and is given, in the classical ap-
proximation, by

so that varying S,«explicitly with respect to 0.

yields (3.2b). In (3.2b) and (3.3) we have assumed
that I, I, I, I

-4 -2 0 2 - 4

Pot(x)g, (x)dx= 1, (3.4)
)

I
)

I
I

I
)

and thus the factor of n, appears in (3.2b)."
Three remarks should be made concerning (3.2).

First, we reiterate that $0 is an ordinary, two-
component, c-number wave function, satisfying
the Dirae equation with energy eigenvalue e, .
Second, (3.2a) and (3.2b) are clearly "self-con-
sistent" equations for o(x) and $0(x), and indeed
they correspond precisely to the Hartree approxi-
mation familiar from field-theoretic calculations
of nuclear rnatter. ' This observation indicates
why recent studies' of analogous self-consistent
calculations in similar two-dimensional field the-
ories have led to the same results as the semi-
classical methods. Further, since a self-consis-

(b)
I.Q

e Q

I ) I ) I )

-2 0 2 4
x (units of li'g)

QQ

FIG. 3. Plot versus x of the 0 field amplitude (solid
lines, left scale) and the fermion density, g~g (dashed
lines, right scale) with f =2 for (a) the SLAC "shell"
(with A. =2g2), and (b) the unstable "deep-bag" configur-
ation for no=1.
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independent, o-only case:

d 2

S„,/T = — dx ——+ —,'X((r'-f ')'

—n, (o,([o]). (3.7)

Summarized very briefly, our approach will be
to replace this expression for S,«by an equivalent
expression in terms of the (as yet undetermined)
scattering data —the discrete energy eigenvalues
and normalizations and the reflection coefficient—
associated with the "potential" [here, a known
function of o(x)] in the Dirac equation (3.2a). Vary-

ing the action with respect to the scattering data
(instead of the fields) will yield algebraic equations
which determine these data. Then by solving the
inverse problem for the Dirac equation by the
methods of Frolov, "we can construct explicitly
o(x) and Po(x). That this "change of variables"
is a natural one is suggested by the appearance
of ttt, —the discrete energy eigenvalue of (3.2a)—
in (3.7). That it is possible follows frqm the
"trace identities" for the Dirac equation which
we derive in Appendix A." Referring to this ap-
pendix, we observe that the second trace identity
becomes, in the o-only case,"

d 3 ~00

+—(o' f')' dx—= ' —
~~ q'dq(in[1 —(8,'2'(q) (']+in[i —)8,', '(q) ~'jj

8K 3-=3 ' -Z([s„]). (3.8)

Here «,' =g f' —ur, —', s„(q} is the reflection coeffi-
cient, and to obtain (3.8) from (A17b) we have used
the charge- conjugation symmetry requirement,
&d,
"=

~
&o,

" '
~

= to„which must hold in the o-only
case. Comparing (3.8) with (3.7), we observe that
if X=Zg ~, we can write S,«completely in terms of
scattering data:

ever (n, /4f')& 1. The energy —that is, the mass
of the bound state" —corresponding to a solution
y(n, ) is

E(y(,))= -S.„/7
~ „,

=agf'sin'p(n, )+n~cosp(n, ) (3.13a)

8I(: 3

S„,/T'= —
3

' - ,n(d+E([s t]2) (3.9)
=3gf' sing(no)+ o2 cosg(no), (3.13b)

E.

« =n+/8 (3.10)

which quantizes the energy levels as functions of
no. Defining

co() =gf cosp (3.11a)

Ko =gf Sin(f&

allows us to rewrite (3.10) as

(3.11b)

sin2$(n, ) = (3.12)

This equation determines Q(n, ) and, as can be seen
from Fig. 4(a), admits two solutions for g(no) when-

Thus the origin of the restriction A. = 2g' is clear":
It is a sufficient (and probably also necessary)
condition for making the change of variables which
permits a simple analytic solution to the station-
ary-phase condition.

The independence and completeness of the scat-
tering data allow us to vary S,«separately with
respect to s„and Ko The variation with respect
to the reflection coefficient implies that sy2 sy2'
=0; the potentials are ref lectionless. Varying S,f f
with respect to «„and recalling that to, ' =g f ' —«,',
leads to the algebraic constraint

where (3.13b}follows by using (3.12).
The interpretation of these results is aided by

reconstructing the explicit forms of o(x) and g, (x).
Since the Dirac potential is ref lectionless and has
only one bound state, using the methods of Frolov ~

this reconstruction is straightforward. Referring
to Appendix B for the details, we obtain~'

o(x) =f sech(«—(x+ x,))sech(«(x —x,))K()

g(00

(3.14a)

1/2
(x f) 0 o t cottt

8

/ sech(«, (x+ x,))+ sech(«, (x —x,)))
(-sech(«0(x+xo))+ sech(«(x- x,))) '

(3.14b)

where v and (d, are determined in terms of n, and

f by (3.10) and where tanh«oxo=(gf —&do)/«0, The
dedicated reader can verify that these expressions
do indeed solve the time-independent classical
field equations, (3.2), when (3.10) is invoked. For
no/4f'«1 —the "weak" meson coupling limit —the
two solutions to (3.10) behave as («'0(n )),=gf
—gno /128f' and («'0(no)) = gno/8f. Considering
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looselybound (for smalln, /4f') "normalnuclei" con-
taining n, "nucleons. " The degeneracy of a given
"nucleus" is shown by (2.15) to be (2N!)/[(2N
—no)! no! ]. The deep bags appear to form a se-
quence of states with energies, for no/4f'«1,

I

7r/4
8 3 &+OEns(~.) =fief'+ 18' +"'. (3.16)

the behavior of o as shown by (3.14), we see that
it is natural to call the solutions corresponding
to (x,(no)) "shallow bags" and those corresponding
to (a, (n,)), "deep bags. " As n, /4f '-1, the shal-
low- and deep-bag solutions become equal, and
for no/4f'&1 there are no solutions. Thus at fixed

f there exists a maximum no, and at fixed n~, a
minimum f.

From these results we can determine the clas-
sical predictions for the bound-state spectrum in
the 0 model. The shallow bags should correspond
to a set of bound states with energies, for n, /4f'
(& ].

Bo
SB.(+0) +0@ g 384y3

+ (3.15)

In a picturesque terminology which we shall short-
ly find useful, these states are a sequence of

(c)
A

m/4 m/2
FIG. 4. Graphical solutions to the quantization condi-

tion in the o.-only case. Solid lines represent the left-
hand side and dashed lines the right-hand side of the
quantization equation. The cases shown are as follows:
(a) The classical approximation [Eq. (3.12)]. For np/4f
& 1 (dashed line A), there are no solutions. For n0/4f 2

& 1 (dashed line 3), there are two solutions, correspond-
ing to a stable "shallow bag" [ P (no) «/4] and an unstable
"deep bag" [Q (no) & n'/4]. (b) The semiclassical approxi-
mation [Eq. (4.12)] for 4f 2/N = 1 & 1/7t. Dashed line A

shows the two solutions for no=N: a "shallow bag"
(Q & n/4) and the (&~) state (P =7t'/2). Dashed line 8
shows a unique solution for no &¹(c) The semi-
classical approximation [Eq. (4.12)] for 4f 2/N = 0.1& 1/7t.
Dashed line A shows the unique solution for n p= N:
the (8&) state at Q =~/2. Clearly all no&N also have
unique solutions, which correspond to "shallow bags. "

But recalling that the SLAC shell ("S")solution
has energy, for A. =2g', Ez=,'—+~', we see that the
deep bags also appear energetically unstable to
decay into an (S+S) state; the similarity between
the deep bag and (S+ S) field configurations is in-
dicated in Fig. 3.

This stability analysis can be made more pre-
cise by noting that a necessary condition for sta-
bility is

d E/d4
I e(

From (3.13a) we see that

2dE = 8gf sing(2 —3 sin p) —n, gf cosg~ 2

Q( ao) @Cf10)

= Sgf ' sing(n, ) cos2$(n, ), (3.17)

where the final equality follows by using (3.12).
Thus d'E/dg' is positive only for 0 ~ p & w/4, and
hence aEE the deep bags are indeed unstable.

For the shallow bags, the question of stability is
more subtle. Clearly they all satisfy the necessary
criterion for stability. Further, we can verify di-
rectly from the explicit form of Es~ as a function
of Qo,

Es (n ) = —,gf [—'(1 +n /4f ') ~'

——,
' (1 —pg, /4f ') '~']

(3.18)

that the shallow bags are stable against the pos-
sible decay

SB(n, + n, ) —SB(n,) + SB(n,) (3.19)

But from (3.18) we also observe that for n, /4f' in
the range 0.7s n, /4f' ~1, B(n,/4f')~ 1, so that
E~~(n, ) &2Ez, thus it appears that, in the classical
approximation, the shallow-bag states for "large"
n, /4f ' are energetically unstable to decay in S+S.
Further, these transitions are topologically al-
lowed. Readers familiar with the abnormal nuclear
matter states first suggested by Lee and %'ick"
and subsequently analyzed by numerous au-
thors"'" ' will recognize this possible decay as
the two-dimensional analog of the fission of a nor-
mal nucleus (shallow bag) into two abnormal nu-
clei (S+S)." Of course, ours is only a toy model
of nuclei, since it is two-dimensional and since we
need the SU(N) internal symmetry (all the fermions
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are in the same spatial state) to construct multi-
fermion states. Nonetheless, it is very interesting
to see that, at the classical level, the model does
predict a normal- abnormal transition. In view
of the recent interest in studying the effects of
quantum corrections on the existence of abnormal
nuclei, """it will be perhaps even more inter-
esting to see what happens to these transitions
when the effects of the negative-energy sea are
included.

B. The o + n case

In the case with v and z the stationary-phase con-
dition in the classical approximation yields the

equations

S4ff /T = —
2 Ko —So(Oo([0'], [lT])

3g

+ q'dq(in[1 —/s~»'(q)/']
J

+in[1 —~st„&(q)~']]. (3.23)

Here, in view of our earlier remarks, we have in-
cluded only one occupied positive-energy state
&@~0'~ =-e, &0 in (A17b). Varying (3.23) with respect
to the reflection coefficients establishes s~» = 0.
Varying S,f& with respect to vp leads to the quanti-
zation condition a,&o, =nQ/4 or, in terms of

y
-=tan '(~, /&u, ),

sin2$ = (3.24)
~ d

&u,y, +iy, d
- g(o +ivy, ) tel, (x) = 0,'dx

2d 0'
2 2 2

+ + A.o (o + n f) = - gn-, g,g„

2d 77 2 2 2 ~—
d
—,+Xv(a +w -f ) = —i ng, g,y,(,.

(3.20a)

(3.20b)

(3.20c)

As before there are two solutions, p(g, ), provided
in this case the. t n, /2f'&1. These solutions ha, ve
energies —the putative bound-state masses"—

Z(y(n, )) = —S„,/T ~,&„,

=4 fg' isnP(n, ) n+, fgcosP(n, ) (3.25a)

Again the correspondence with a self-consistent
approach' is manifest. Further, as in the o-only
case, there exists a previously known solution to
(3.20): This is the "chiral-confinement" result, "
which solves (3.20) subject to the constraint (o'
+ w ) =—p =f ', independent of x. For consistency,
this constraint requires that X/g'- ~, and thus
the chiral-confinement solution probes an a Priori
quite different limit of the theory than do our so-
lutions, which are found for Xjg'=2. The explicit
form of the chiral-confinement solution is not nec-
essary for our purposes; we note only that, in the
sector with np fermions, the energy of this solu-
tion is"

(3.21)

Since the solution to (3.20) proceeds almost as in
the o-only case, we can be brief. From (A17b),
we observe that

=~4gf' sing(n, )+ ', cosy(n, ) .
2

I

(3.25b)

To interpret these results we first reconstruct
o(x), v(x), and P, (x). From Appendix B we obtain4'

o (x) =f (a', '/g'f)(1 —tan—hz, x),

n(x) = — ' '(1 —tanhg, x),

(3.26a)

(3.26b)

and

(3.26c)

These expressions solve Eqs. (3.20) exactly. As
x-+~, o-f and v-0, whereas for x- —~, o -f
—2(x,'/g'f) and w -—2&v,z,jg'f. But in each limit,
o'+v'=p' f', and thus the solutions merely con-
nect chiral vacua corresponding to different values
of the chiral angle 8 =—tan '(x/o); as x + ~, 8 0,
whereas for g

~ —,'Z (0' ~ w* -f ') 'I

—n, (u, ([o], [w]) (3.22)

can, fox X=2g', be written entirely in terms of
the scattering data only:

Kp —QP p
(3.27)

Thus, since Q is quantized by (3.24), the change in
the chiral angle 8 is also quantized. "

For n, /2f'«1, the two solutions for x, are
(z, (n, )) =gn, /4f and (z, (n, )) =gf —gn, '/32f '. Thus
the classical prediction for the bound-state spec-
trum includes a sequence of "shallow chiral bags"
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(SCB's) with energies

E sc»1 (no) = no gf—gn o'/96f '+ .. ~ (3.28)

and "deep chiral bags" (DCB's) with energies

gtlo
Enc»» (no) = & gf + + ' ' '

8
(3.28)

From (2.10), we deduce that the degeneracy of the
states with n, fermions is given by%! /[(N n, )—!n, r].
The shallow chiral bags correspond to loosely
bound (for n, /2f «1) nuclei; in this regard, it is
interesting to observe that (for n, /2f'«1), the
chiral-confinement solutions have energies

tion in our analysis of the essential difference be-
tween discrete and continuous symmetries in two
dimensions. A more serious consequence of this
difference is that, since the continuous chiral sym-
metry of this two-dimensional theory with 0+&
seems spontaneously broken, the results of the
present classical analysis are in apparent contra-
diction with Coleman's theorem. " As we shall see
in the following section, this difficulty is not re-
solved by the inclusion of the negative-energy sea
effects. To avoid a necessarily long digression
at this juncture, we postpone until Sec. V a de-
tailed discussion of this vital question.

3
gno

Eoo o gf384f'2+ (3.30) IV. RENORMALIZATION AND EFFECTS
OF THE NEGATIVE-ENERGY SEA

and thus also correspond to loosely bound (for n, /
2f'«1) nuclei. The apparent persistence" of this
type of state in these two a Priori very different
limits of the theory —A/g'=2 in our case, A./g2-~
in the chiral-confinement model —is itself quite
interesting.

For n, /2f'«1, the similarity of the DCB states
and the SLAC shell solution to the o-only case is
striking. Not only are the energies roughly equal
equal —Es =~gf' versus E~~ =~gf +gn, '/8f-
but, from (3.26) we see that rr is everywhere O(n, /
f)-0 and further that as x- —~, o -f—2(rco), 'jg'f
= -f. Thus it appears that the deep chiral bags
correspond to chiral generalizations of the SLAC
shell. However, the necessary stability criterion,
d'E/drtr & 0, is easily seen to be violated by the
DCB states; hence these field configurations are
unstable and do not correspond to states in the
quantum theory. Physically, this result is under-
stood by noting that although o - f as x- —~, —
p—= (o'+rr')' ' +f for both x + ~. The continuous
symmetry of the Lagrangian permits us to change
8 —= tan '(rr/cr) smoothly from —rr to 0 in the region
of large negative x, and thus the DCB states are
not topologically stable. This is the first illustra-

The classical analysis of the preceding section
solved only an approximate version —(2.17)—of the
true stationary-phase condition, (2.18). We chose
to distinguish this approximation because (1) its
similarity to approximation schemes used in re-
cent field theory descriptions of nuclear physics"
allows us to scrutinize these schemes in a solvable
model, and (2) it allowed introduction of our appli-
cation of inverse scattering techniques with a mini-
mum of complications. In the present section, we
show that these same techniques can be used to
solve the full stationary-phase condition. Once
again, for clarity of presentation we treat separa-
tely the cr-only and (o + rr) cases.

A. The 0-only case

When the negative-energy sea effects are in-
cluded, the stationary-phase condition contains in-
finities which must be removed by renormalization.
Following DHN, we perform this renormalization
directly in S,rr by (1) subtracting the vacuum value
of the negative-energy sea and (2) adding a meson
mass counterterm to cancel the divergent self-en-
er'gy graph in Fig. 5. The expression for the re-
normalized effective action then becomes

1 do$„,/z'= — dx
2

— + 4x(cr' f ')' —no»»ro([al)—

+
2 g H~"([ol) ~»'(f6 f~-» '([ol) ~-» '(f)H 26

' " dx«-'-f'). (4.1)

Here the renormalizations are chosen such that
the vacuum expectation value of o is f and the vac-
uum energy (o =f, n, =0) is zero. Further, for
later clarity we have explicitly indicated how the
positive- (c»r&»+» &0) and negative- (co%

~ &0) energy
eigenvalues enter in the negative-energy sea con-
tribution. The explicit value of 6m' is, with a cut-

off at (&~ =~,
~+2 ~A

(A)
(l 2 2 2)1/2 (4 2)

In Sec. III we established that the first two terms
in (4.1) can be expressed in terms of scattering
data provided that A. = 2g'. Using the first trace
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(E, k) which separates the continuum contribution, P„
from that of the bound states at &p(p ) = l(d' '

I
=- (pp».

Note that the "bound-state" energy in the vacuum
is just &up(f ) =gf. Putting the system in a box of
length I„"we have

OCCUPIED
STATES

NEGATlVE-
ENERGY SEA"

( )([ ]) y(k(a)2 2f 2)1/2

~(k) (f )
—+ (k(k) 2+g2f 2 )1/2

where

k&'&I. + a&'~ =2&~

(4.4a)

(4.4b)

(4.5a)

FIG. 5. The fermion oontribution to the meson self-
energy. The term labeled 'Negative-energy sea" di-
verges and must be renormalized.

identity, (A17a), we can also express the mass
counterterm in (4.1) in terms of the scattering
data. We now show that the negative-energy sea
contribution to (4.1) can be written in terms of the
scattering data and, further, that it contains an
infinite (as A- ~) term which cancels the infinity
(for A -~) from the mass counterterm. First we
write

dk/2)f,

and ignoring terms that vanish in the I.-~ limit,
we see that

' kdk(()(+)+5(-))
2 2(f (k2+g2f2)'/' (4.6)

k&'~L, =2nn, (4.5b)

with g+ and 5 as the phase shifts for positive
and negative energies, respectively. Expanding
the differences {&p(')([(f])—&u(') (f)j for large L,
making the replacement

-=N{(pp([(f])—gf]+ Q (4 2)

To reexpress (4.6) in terms of reflection coef-
ficients and bound-state energies, we can use the
dispersion relation for lns» given by (A2):

"
dq {in[1—

I &';2'(q)l']+ hl [1—
I &'12'(q)l'g

q-k (4.V)

Here, as usual, »,'=g'f' —&up2. Combining (4.1)-
{4.V) and {A17), we can write S,ff entirely in terms
of the scattering data K, and j s(2) ~. From the form
of the reflection coefficient contribution to S,fz, it
is easy to see that minimizing with respect to this
parameter yields (as before) s(,'2) =0. With this
simplification, we can write

A kdk tan '(K„/k) . A dk

A-„p (k'+g'f')'/' A- ', (k +g'f )'/2

+ (d p tall (Q) p /K p ) — gf—
(4.10)

2N ~ kdk tan '(K„/k)
ff {k2+g2f 2)\/2

Using the result

(4.8)

SI(. 3
S ff /T = — ', +25m' 2' np(dp+N-(&0p pf)-3g g

Thus

8I(."03 Ãvo
Seff /T = — + (N —ff )(p3g2 0 0

2N
(d p t,all ((p p /K p ) . (4.11)

dta -'(» /k)=k y2+k' (4.9)

and changing the order of integration, we find that

As before, we define P)p=gf cosP, Kp=gf sing.
Then the minimization re(luirement, ()S„f/()»p =0,
becomes in terms of p, the "quantization" con-
dition4'
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4fa .
2 ( )

np 2&(np)
N

sm no =N

E(((N)& =, —',gf *sin'(+ (n, —

18g '
8g + sin Qo — sin go

2N@ 2Ng
r gf cosp+ sing

'(( o(np)

The energy —i.e., the mass of the bound state" —corresponding to a solution (((((np) is

(4.12)

(4.13)

Since the Dirac "potential" remains reflection-
less and with only one bound state, the functional
form of c is exactly as shown in (3.14a). Now,
however, ((p is determined by (4.12) instead of
(3.12). In Fig. 4 the full semiclassical (Iuanti-
zation condition is contrasted with the classical
condition. Note that for each n, &N, there is only
one solution to (4.12). From Fig. 4, it is clear
that these solutions correspond to the shallow-bag
states of Sec. III. Thus, for ~,&N, all deep-bag
field configurations have disappeared.

For no =+, the situation is more complicated. If
n = (4f'/N) & I/(( there exist two solutions, as indi-
cated in Fig. 4(b)."As o.- I/w, the shallow-bag solu-
tion with p(np =N) =Q(,~& m/2 approaches the deep-
bag solution at P(np N) =Q(» =v/2; for o. &1/v, the

no N shallow bag disappears, leaving only the

p(no=N) =v/2 solution; this is shown in Fig 4(c). .
The uniqueness of this last remnant of the deep-
bag solution suggests that we discuss if first.
Since P =v/2, (do~ gf cosy = 0, and thus

I

the occupied states. Again an analogy to nuclear
matter calculations is useful: In a dispersion re-
lation calculation of, say, the meson self -energy
(see Fig. 5) the contribution of particle-hole pairs
in the Fermi sea has a threshold at E = 0, whereas
the particle (antiparticle) contribution begins at
E = 2 m, and is thus relatively damped, except in
the case m 0, where it is a Pro~i as important
as the particle-hole contribution. "'

Returning to the shallow-bag states, we see that
for f'/N»1 (or n p/N«1) the energy of the state
corresponding to P(np) is approximately

np' gf 1

N 24 (4f /N+1
(4.16)

Thus the shallow bags remain a sequence of loosely
bound (in this limit) nuclei; the degeneracies are
still as given by (2.15). ' The stability of these
states can be studied as in Sec. III. The necessary
condition becomes

Ens (np =N) =
o gf '+

~

2Ng (4.14)
1 4f' 8fo

=2Ngf sing(np) —— + cos'p(np)
dQ o(np)

Observing that the SLAC shell corresponds to a
single w, = 0 discrete state —as opposed to a
charge-conjugate pair, ~0+ =~, = 0—we see that,
including the negative-energy sea effects, the
8LAC shell has energy~'

~ fo Ngf (4.15)

As before, this energy is independent of the num-
ber of fermions (0&no &N) in the shell. Further,
from the functional form of g in (3.14a), we see
that when ~,-0, tanhxo ~ and hence x,-~. Thus
this deep-bag field configuration corresponds
Precisely to a noninteracting (S+S) state and does
not represent a new bound state in the theory.

That the inclusion of the negative-energy sea
should have such a profound effect on the deep-bag
field configurations is in fact easy to motivate
physically, at least for f'»1. For the deep bags
of Sec. III, (op(np)-np/f =0 for large f'; hence the
negative-energy discrete state at &~, & 0 lies very
close to &0+ & 0, and thus the effects of this
state should be roughly comparable to those of

o 0,
which shows that for stability we must have

0&y(np) & (t„where"

(4.17)

(4.18)

Notice that d E/dQ'= 0 at p =v/2; this reflects the
"neutral" stability of the noninteracting (S+S)
state.

It is relatively straightforward to show that the
shallow-bag states all satisfy (4.17). Further, one
can show that the shallow-bag states cannot decay
into each other, since

d E gf sin(t((n, )—
dn, ' 2N[1/v —4f /N+(8f'/N) cos y(np)]

(4.19)

is less than zero for all p & ((((p as determined by
(4.18). However, the most interesting aspect of
shallow-bag stability is the essential disappear-
ance of the transition SB S +S suggested by the
classical results of Sec. IIL By rewriting (4.13) in
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the form

Z(y(n, )) =2Z~ sing(n, )

+ 2 sin2$(no) cosp(no),(4f '/N)
4 N+3 7r

(4.20)

we can show that for all n, & N, E(P(n, )) is always
less than 2E~ . Phrased in the picturesque lan-
guage of Sec. III, although the I ee-Wick abnormal
states (SLAC shells, S) exist in the theory, nor-
mal nuclei (shallow bags for n, & N) do not become
unstable to decay into abnormal states as f ' de-
creases or as Qp increases Only that specific
nucleus with n, =N (and then only as n-1/v)
can fission into two abnormal states. The sub-
stantial difference between these semiclassical
yr edic tions and the classical results confirms
the importance of under standing negative- energy
sea effects in comparative studies of normal and
abnorm

Finally, we observe that in the limit n -0, both
the quantization condition (4.12} and the energy
levels [see (4.20)] become exactly equal to the cor-
responding expressions found by DHN from the
time-indeyendent solutions of the Gros s -Neveu
model. ' Further, for 0& o! &1/m, our solutions
remain in one-to-one correspondenc e with the
time -independent Gross -Neveu solutions; for
&1/v, we find one additional state —the n, =N shal-
low bag. In Fig. 1 we have plotted schematically
the bound-state energies in the g model as pre-
dicted by our semiclassical analysis. This figure
is deliberately patterned after DHN, who in the
Gross-Neveu model found in addition to the "lead-
ing tower" of particles —which correspond to time-
independent meson fields —a number of additional
states inside the triangle indicated in Fig. 1. In

the Gross -Neveu model, these states correspond
to time-dependent solutions to the stationary-

phase condition. Since we have been unable to find
such solutions explicitly in the p model and in view
of the similarities in the models, it is of particular
interest to ask whether the missing states in this
triangle should exist here. The answer is clearly
"yes, " as the following observations establish.
Consider the state labeled "A" in Fig. 1, which
should be an O(2N) singlet with mass E =2gf in
the no/N«1 or f'»1 limits. In the Gross-Neveu
model, this is a boson generated dynamically from
vacuum fluctuations. Recalling that m, ~

„=~2Kf
=2gf (for X =2g'), we see that in the o model this
state is simply the elementary p field. Similarly,
the state labeled "8" would correspond in the 0
model to a "o + fermion" bound state with mass
roughly mm -—m, + m = Sgf Furt.her, its antici-
pated degeneracy is just 2N —since each type of
fermion or antif ermion will have the same interac-
tions with the p —which agrees exactly with the
DHN result. ' Thus despite obvious and significant
differences between the Gross -Neveu and o mod-
els —in high-energy behavior (renormalizable vs
superrenormalizable), in symmetry breaking
(dynamically generated o vs elementary o) and in
binding mechanism ("vacuum polarization" vs
explicit meson exchange) —the two theories have
very similar bound-state spectra. In essence, one
can view the ("simpler" ) v model as a low-energy,
effective field theory of the ("more fundamental" }
Gross -Neveu model in the same spirit that a field
theory of nucleons and pions would be a low-energy
effective version of an underlying gauge theory of
quarks and gluons. This perspective strongly sug-
gests that the connection be further investigated,
and we are currently doing so."

B. The (0 + n) case

To renormalize the effective action in the (o'+ v)
case we again subtract the vacuum energy and add
a chiral- symmetric mass counterterm. Thus

do 2 ] 5m'
S,«/T= — dx ——+ ——+ —,X(o + v'- f'}' —n, (u, ([c], [v]) — dx(c + w' f')-

dx 2 dx 2

+ —,
~
2 (~&([ ], Iv]) —~ (Lr, 0]6 + Q (l~ ([~],[v]) I) —(l~)(f 0) ()I, (4.21)

where 5m' is given by (4.2). The steps involved in expressing S,« in terms of scattering data are essen-
tially identical to that in the 0-only case; in particular, the constraint X =2g~ is still required. '

The only
difference here is that, in using the trace identities (A17), we keep only a single, positive-energy dis-
crete state, ~p" =—~p. With this change the calculation proceeds precisely as in the previous case. After
minimizing S,«with respect to the reflection coefficients, with the result s,',"= 0, we obtain

Sef,/T = —,Ko — 'Bo ——(do ——
(d(& tan ((do/Ko) — Ko.

4 3 N N, N
(4.22)

Thus the quantization condition SS„,/Swo= 0 becomes, in terms of / = tan (Ko/(8O),
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sin2&(n ) = —'—Sm no (4.23)

md the "mass" of the bound state corresponding to p(n, ) is

E(p(~,))= (4gf'/3) si nap +gf cosQ n, — + sing

4 '+ g sin n, —8g '3 sin'Ng
y=y(no)

(4.24)

The degeneracy of a state corresponding to Q(no)
is shown by (2.10) to be N! /(N —no)!no!. Compar-
ing (4.23) with (4.12) and (4.24) with (4.13) we find
an exact relation between energy levels in the
(o+ m) and-o only cases, namely, "

E'""(n ) = —'E'"(2n ). (4.25)

Since E"(n) is defined only for n&N, (4.25) deter-
mines the energy levels in the (o+ w) case only up
to no=N/2.

The apparently slight difference between the
quantization conditions in the o-only and (a+ m)

cases implies a substantial difference in the be-
havior of the bound-state spectra as the parameter
a is varied. Figure 6 illustrates the solutions to
(4.23) in several cases. As (4.25) would suggest,
for n, -N/2, the situation is as in the a-only case:
That is, for each n~&N/2 independent of f'/N
there is only one solution (a stable shallow chiral
bag), whereas for g, =N/2, there are two solu-
tions (for n &1/m) corresponding to a(stable) shallow
chiral bag [P~„s(no=N/2) &w/2) and a deep chiralbag
[Pncs(no =N/2) = w/2]. Comparing (4.24) and (4.15)
we note that this DCB state appears to have exactly
the same energy as a single SLAC shell; however,
the remarks of Sec. III and the stability analysis
below establish that the DCB is not a stable state in the
quantum theory. As n -1/m, the two solutions to(4.23)
forno=N/2convergeatg=w/2, andforu &1/m, only
the (unstable) solution at P = m/2 remains.

For n &N/2 —and for sufficiently large f'/N-
Fig. 6(b) shows that there can be iwo solutions to
(4.20), pscs(n, ) & /Des(n, ), corresponding to pos-
sible SCB and DCB states, respectively. The by
now standard stability analysis establishes that,
for very large f'/N, the SCB states are stable
and the DCB states are unstable. As f'/N is de-
creased, the SCB and DCB states for n, &N/2 ap-
proach each other. For each n, in the range N/2
~ no ~ N, there exists a critical value of the pa-
rameter f2/N —call it f'/N(n, )—such that the two so-
lutions for n, are equal at f'/N= f'/N(n, ) and cease to
exist for f'/N& f'/N(no)P Thus, in contrast to the o-
only case, the spectrum of bound states here
changes substantially as f'/N varies.

For f'/N-O, the spectrum approaches thatfound
by Shei" in the chiral generalization of the Gross-

Neveu model. It is thus tempting to interpret the
(e+ m) a model as an effective field theory of the
chiral Gross-Neveu model, but there are difficul-
ties with this interpretation. First, neither Shei's
analysis" nor ours has found time-dependent solu-

m/4 vr/2

7r/2

! - (c)

m/4

FIG. 6. Graphical solutions to the quantization condi-
tion in the (o'+r) case. Solid lines represent the left-
hand side and dashed lines the right-hand side of the
quantization equation. The cases shown are as follows:
(a) The classical approximation [Eq. (3.24)]. For np/4f
&2—so np/2f & 1, dashed line A—there are no solutions.
For np/4f &2—so np/2f &1, dashed line B—there are
two solutions, corresponding to a stable "shallow bag"
[Q(np) &m/4] and an unstable "deep bag" [Q (np) & x/4].
(b) The semiclassical approximation [Eq. (4.23)] for
2f 2/N =1&1/m. Dashed line A shows that there are still
two solutions for np = N. Actually for all n p «N/2 there
are two solutions: a stable "shallow bag" and an unstable
"deep bag. " Dashed line B shows the unique solution for
np/Ã=0. 4&2. (c) The semiclassical approximation [Eq.
(4.23)] for 2f /N=0. 1 so that 4f /N&1/x. Dashed line
A shows the unique (unstable) solution at Q =n/2 for
n p

= N/2. Clearly all np & N/2 are also unique solutions,
and there are no solutions for np&N/2.
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tions; thus, a substantial segment of the bound-
state spectrum remains unknown. In particular,
we do not know if the chiral Gross-Neveu model
contains analogs of the elementary 0—it probably
does —and m —it probably does not~ —mesons of
our model. Second, our calculation stands in ap-
parent contradiction with Coleman's theorem, "
since we predict the spontaneous breakdown of a
continuous symmetry in two dimensions. This is
reflected by the pion's appearing in our semiclas-
sical analysis as a Goldstone boson, m, = 0. In the
chiral Gross-Neveu model, the analogous putative
Goldstone boson actually decouples from the the-
ory, " and hence the theory avoids the conclusion
of Coleman's theorem. In the next section, we
show that a similar decoupling seems unlikely in
the (c+w) model; thus, the relation of our semi-
classical results to the actual bound-state spec-
trum in the (o+ ~) case must be examined care-
fully.

V. SPONTANEOUS SYMMETRY BREAKING AND

QUANTUM FLUCTUATIONS

In this section, which raises more questions
than it answers, we confront two important issues
which have thus far been mentioned only briefly:
(1) the problems associated with "spontaneous
symmetry breaking" in two dimensions, and (2)
the detailed nature of the quantum fluctuation cor-
rections to our present results.

The existence of spontaneous symmetry break-
ing of the discrete chiral symmetry in the 0-only
case poses no problems. Thus we anticipate that
our semiclassical predictions for the bound-state
spectrum are accurate in either the f'»1 (see
Ref. 7) ox the N» 1 (see Ref. 3) limits. Given the
equivalence in our model between the semiclassi-
cal and self-consistent methods, ' it is also possi-
ble that our predictions remain qualitatively ac-
curate outside these regimes.

However, in the (v+))) case the semiclassical
analysis predicts the "spontaneous breakdown"
of a continuous chiral symmetry, and here we run
afoul of Coleman's theorem. ""Briefly stated,
the conclusion of this theorem is that, because the
strong infrared singularities associated with two
dimensions forbid the existence of a (coupled)
Goldstone boson, the spontaneous breakdown (or
"Goldstone realization" ) of a continuous symmetry
cannot (in general) occur in two dimensions. In our
calculation, this resultwould imply that (a') = ()))=0,
insteadof (c)=f, (m)=0. This suggeststhat the spec-
trum ofbound states (if any) could be (Iuite different
from that predicted semiclassically. To discuss this
point we first note that in the chiral Gross-Neveu
model'~' 3 and the chir'al-confinement solution—
both of which also appear to contradict Coleman's

theorem —the putative Goldstone bosons actually
decouple from the remainder of the theory. "
Hence the conclusion of Coleman's theorem is
evaded, and the semiclassical predictions for the
bound-state spectra should be valid.

Unfortunately, the arguments used to establish
decoupling in these models can be shown not to
apply to our case. Consider first the technique
of employing Bose operators in the study of the
fermion field, "which Shei" used to prove de-
coupling in the chiral Gross-Neveu model. It is
intuitively clear that this technique will not work
in our case since it involves transformations of
the fermion fields only, and our calculation would
predict spontaneous breakdown of the continuous
chiral symmetry in the meson sector even if there
were no fermion fields present in the theory. Ex-
plicit calculations verify that this intuition is cor-
rect and that the technique due to Halpern" does
not indicate decoupling in the 0 model.

The arguments used to establish decoupling in
the chiral-confinement case~ appear more prom-
ising but, as we shall see, also fail to establish
decoupling in our model. If we introduce meson
variables p and 8

pe'»f =~+ i.
and a rotated fermion field

e() e/2fq

then the Lagrangian (1.1) becomes4'

(5 1)

(5.2)

(5 3)

First, we observe that even if the fermions are
ignored, the Goldstone boson 8 is, in general,
coupled to the field p. Thus there is in general
no reason to anticipate that Coleman's theorem
can be circumvented by a decoupling. However,
in the special case that p=findependent -of x, the
meson part of the Lagrangian collapses to the
single term —,'(8„8)', corresponding to a free,
massless scalar field. Recalling that p=f is pre-
cisely the constraint imposed in the chiral-con-
finement solution, we can see immediately why-
at least in the absence of fermions —decoupling
occurs in this model. Further, we also see that
the decoupling cannot be expected in the o model.
Precisely the same situation occurs when fermions
are included. A close examination of the decou-
pling argument" in the chiral-confinement case
reveals that it depends crucially on the constraint
p=f and hence cannot be used to establish decou-
pling in the cr model.

It thus seems likely that Coleman's theorem
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cannot be evaded and hence that the semiclassical
analysis may not predict the actual bound-state
spectrum of the (o+ m) model. However, for a variety
of reasons this result is perhaps not as discon-
certing as it seems. First, if we view the two-
dimensional theories as models to exhibit possi-
ble features of higher-dimensional theories —as,
for example, the two-dimensional shell indicates
the essential features of the four-dimensional
SLAC "bag"—then we should remember that Cole-
man's theorem is in a sense a pathology of two
dimensions and that our semiclassical results
might well indicate features of the o model in
higher dimensions. Second, if we added a small
chiral-symmetry-breaking term —eo or egg, for
example —to the o model, there would be no prob-
lem with Coleman's theorem. Further, various
examples suggest"'" that the bound-state spec-
trum of this broken symmetry theory might be-
at least as far as the "leading tower" of "nucleons"
is concerned —very similar to the results found
ere ss

Finally, we note that understanding when and
how the semiclassical method can fail is interest-
ing in its own right. In the present case, it is
clear that the semiclassical results follow from a
mathematically consistent solution of an approxi-
mation to the quantum field theory. Thus the fail-
ure of these results should arise from effects be-
yond those treated in the approximation. It is

easy to see where such effects might arise. Our
present stationary-phase approximation includes
only the effects of the classical field configuration
and of the fermion loop. In particular, there are
no meson-loop effects; in our treatment these
would arise from the Gaussian integral around
the stationary-phase point. But since m, =0 in
our approximation, including meson loops would
introduce the infrared problems associated with
massless scalar bosons in two dimensions. Thus
we would expect the breakdown of the semiclas-
sical approximation to be signaled by uncontrol-
lable quantum fluctuations arising from infrared
divergences in the Gaussian integrals around the
stationar y-phase point.

We now see that the problem with spontaneous
breakdown of the continuous chiral symmetry,
the possible failure of the semiclassical approxi-
mation, and the question of quantum fluctuations
are all closely linked in our model. To close this
section let us discuss this final question —quantum
Quctuations —in more detail. Although we are un-
able to evaluate the Gaussian functional integral
corresponding to the quantum fluctuations, 59 none-
theless the discussion should clarify certain as-
pects of our approach. For simplicity and clarity,
we restrict our comments to the o-only case.

From the expression for S,« in (2.3), we see
that the Gaussian approximation to the quantum
fluctuations in (2.16) is"'

i "' " = — d x d yax -8' —3Ao 'x+A. 5x —y
gsy

—g' trS~(x, y; a„)S~(y, x; o„))(r(y) (5.4)

Here O', =—8' —9'„, the trace is over Dirac indices
only, and Sz(x, y; o„) is the full fermion propaga-
tor —including contributions from the occupied
states —in the presence of the field o„(x). To
evaluate the determinant resulting from this Gaus-
sian integral we must find the eigenvalues of the
integro-differential equation~

[-(o' —&„'+3xc„'(x)—g']o(x)

+g2tr S x, y;o„S y, x;o„cr y dy=0.

(5.5)

Given the complicated" forms of o„(x) and of the
eigenfunctions of the Dirac equation with cr„(x) as
a potential, it is perhaps not surprising that we
have been unable to solve (5.5) 5' Two further
comments are in order. First, simply ignoring
the term containing Sz(x, y; o'„) would yield the
boson-loop correction —illustrated in Fig. 7(a)—
to our semiclassical results. With the terms in

S~, the quantum corrections include higher loops,
as shown in Fig. 7(b).

Second, one might hope that replacing the fields
by scattering data would as before simplify the
calculation dramatically. Unf ortunately, this at-
tempt flounders on the difficulty that although at
the stationary-phase point the fields can be time
independent —and thus one can use standard trace
identities —the fluctuations around O„cannot be
assumed time independent. Thus one would need
trace identities for time-dependent potentials, and
these are presently unknown.
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{b) mission coefficient —which we shall call s„(k)—as
a function of momentum k to an expression involv-
ing the modulus of the reflection coefficient-
s»(k) —and the bound-state poles at k =iz, . Sec-
ond, one introduces an auxiliary function —call it
X(x)—constructed from a fundamental solution to
the Schrodinger equation in a manner such that

y(x)dx = lns„(k). (A1)

FIG. 7. (a) The boson-loop correction. The heavy
lines indicate that the meson propagator is evaluated in
the presence of an external field Osp(x) (b) A two-loop
correction generated by including the terms in Sz in
{5.5). The fermion propagators are evaluated in an ex-
ternal field 0'»(x), and the meson propagator is evalu-
ated in 0,2p {x).
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APPENDIX A: TRACE IDENTITIES FOR
THE DIRAC EQUATION

To motivate our derivation of the trace identities
for the Dirac equation let us recall the two essen-
tial ingredients used by Zakharov and Faddeev"
in the case of the Schrodinger equation. First, one
needs a dispersion relation relating the trans-

From the Schrodinger equation one deduces the
differential equation satisfied by X. Then com-
paring the asymptotic expansion (in 1/k) of the
solution to this equation with that of the dispersion
relation, one obtains the trace identities.

In the case of the Dirac equation, both steps
involve some additional technical complications.
First, the analytic structure of s»(k) as a func-
tion of k is two-sheeted, '""with a branch cut
running from k=+im to i ~ connecting the sheets.
On the first sheet, the energy satisfies E=+ (k'
+ m')'i', whereas on the second sheet, E= —(k'
+ m')'i'. However, since the branch point is of the
second order linear combinations of the function
on the first and second sheets can be chosen so as
to remove the integral along this cut from the dis-
persion relation. In particular, one can show that
the following representation holds:

1 "" in[1 —
I s,",'(k) I ']+ in[1 —

I s,', '(k) I'] "+ k+ iz&+& "- + iz&-&

zi Jm g —k k —2Kl -1 —2 Kl

(A2)

Here the superscripts (s) refer to quantities on the
first [E=+ (k'+m')' '& 0] and second [E= —(k'
+ m')'i'&0] Biemann sheets and the sums are over
the N'(N ) bound-state poles located at 0 ~ z, (m
on the first (second) Biemann sheet. To clarify
the form of (A2) we observe that for a function
analytic in the upper half plane (UHF) and suitably
behaved at (z)-~, there exists an integral rep-
resentation for the function in terms of its real
part on the real axis":

im ~k&i ~ enters with opposite signs for lnsyy'
and lnsyy' and thus cancels in the sum. Further,
the explicit form of the contribution from the
bound-state poles follows by observing that for
real k, unitarity requires their contributions to
the real part of (A2) to vanish, and hence the ex-
pressions in the logarithms must be unimodular
for real k, that is, of the form (&+i')/(k —iz).
For large k, the asymptotic expansion of (A2) in
powers of (1/k) is

f(z) = .I,—ucR, Imz &0.1 &"dnBef(u)
gZ ~ Q —8 (A3)

i~,",'(k)+ i~,', '(k) = g—'"„,
n=g

(A4)

Since the Reins»(k) = lnIs„(k) I, and since unitar-
ity implies" for real k that Isis(k)12=1 Is|2(k)
if we momentarily ignore the singularities of
s»(k) in the UHP, we see that using (AS) with

f(z) = lns„(k) yields the first term in (A2). To
include the effects of the singularities in s„(k)
for Imk&0, we note that because the function is
two-sheeted, the integral along the branch cut

where c,„=0,

tf'"dt's(in[1 —
I s,", (q) I

']

+ in[1 —
I
s', ,'(q)

I
'])

2 N

(g
z~'t))2tttl + (i z( l)2ttl'1

2S+ 1 =1

(A5)
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To obtain the second expression for Ins»(k), we
resort directly to the Dirac equation. We need
study only the equation in which both a and 7t are
present, since the results for cr-only can also be
obtained from this case. In Sec. III and Appendix
B we establish that (c,v) „„differs from
(o', v) ~„, that is, the solutions approach physi-
cally equivalent but distinct chiral vacua at
x-a~. In terms of P, this simply corresponds
to a finite rotation of the mass matrix; for both
x +~, we have a free Dirac particle of mass m,
but the rotation of the mass matrix introduces a
phase between the wave functions p~,„and

Since this phase does not correspond to
a "phase shift" arising from the interaction, it
complicates the extraction of the true phase shift.
To avoid this difficulty, we shall change meson
field variables from (o,v) to (p, 8), where

(A6)

and introduce

X(x)
-=—[lnf, (x, k)] —ik, (A11)

it follows that

J X(x)dx = Ins»(k).
aOO

(A12)

d'f, 1 da, df,
dx' a dx dx

(AI&)

Using (All) this can be written, after some alge-
bra, in terms of X as

—+ x'+ &(x)x+p (x) = 0,
dg

(A14)

where

Further, from the Dirac equation in the form (A9)
one can derive an equation for X. Differentiating
(A9b) with respect to x and substituting from (A9a)
we obtain

elrselgf r, (A7) dp ds
n (x) = 2ik —(~+ m+ gp+ s) ' g—+-

dr dx
For time-independent o and g the Dirac equation
for t'ai' defined by P'(x, t) = e '"'P'(x) then becomes

~y, +iy, m—g-p(x-)i y5y&e-(x) g (x) = 0~ (A8)

'+ a (x)P, (x) = 0 (A9a)

and

where m =gf, p(x) = p(x) f, and s(x)-—= (1/2f)deldx.
Since p(x) and s(x) must both approach zero as
x-+ for localized solutions, the phase difference
between the wave functions at x-+ yields direct-
ly the true phase shift.

Using our standard representation for the y ma-
trices, y, = o„y =io, y, =y y = —o„we can
write (A8) in terms of the two components of g' as

p(x) = 2&us+ s2 —2gfp -g'p~

dp 4s
ik g —+ —-(e+m+gp+s) '.

dx

Up to now we have not specified which Riemann
sheet we are considering. Indeed it is clear that
if we consider X"', defined by (All) in terms of

f,"', both satisfy (A14) with the only difference
being that for x", ~=+ (k'+ m')'~', whereas for
X' ', &u= —(k'+m')'~'. This change of sign leads to
important cancellations in the sum, X"+X
whose integral satisfies

[X"(x)+X' '(x)]dx = Ins,",'(k) + lns,', '(k).

'+ a, (x)|J,(x) = 0,
d 1 (A9b) (A15)

where tJ'=(~&) and

a, (x) =m+gp(x) + [~+s—(x)]. (A10)

where c(k) is a constant depending on the normal-
ization of f. Frolov's results" establishthat, for
Imk& 0,

Consider the specific solution f=(&t) to (A9) which
satisfies

lnf, (x,k) „=,„ikx+ c(k),

The remaining calculations are straightforward
but tedious. Expanding

(.)( ) p x. '( )
(2ik)"

x"+ x' '= 2g'(p' f')- (A16b)

and equating powers of (1/k) in (A14) leads even-
tually to the following expressions for the X„' + X„'"':

X( )+X( ) =0 (A16a)

lnf, (x,k) „„=„ikx—Ins»(k)+ c(k).

Thus if one introduces

X4'+X', '=4gd (Pe),

and

(A16c)
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2
X")+X' ) = -2g'(t)'-f')'-2g'—

8g2p2s2 (A16(i)

where in the last equation we have dropped certain
total derivative terms which vanish in (A15). Note

that X,"+X', ' is a total derivative and thus there
is no O(1}/k2) term in (A15). This is of course
necessary for consistency with (A4), since c,„=0.

Comparing the expressions in (A16) with those
in (A5), we arrive at the first two nontrivial trace
identities:

dx(c'+v f ') =—t dx(p f ')—
~2(O

E
dq&1&1 —

I
s1(2)(q)

I
'j+ 1&1 —

I
s112)(q)

I
2~& ——

2 /1I'+tg =I
(A17a)

de' g 1I dp g2+ — + —(s'+w' f'}' dx = -——+ 2p's' + —(p' -f'}'Idh2 Ch Ch 2 „„2,dh 2

q'dq ln 1 — s,", &
' +l 1 — s,'2' q

4 I

N N

(/t(+))3~ Q (g( ))3
g - eg3g r=r,

(Al.vb)

These are the forms used in Secs. III and IV to
express the action entirely in terms of the scat-
tering data.

APPENDIX B: RECONSTRUCTION OF THE
MESON FIELDS AND FERMION BOUND-STATE

%LAVE FUNCTIONS

To reconstruct the meson fields and Dirac wave
functions we use the techniques developed by Fro-
lov,"who has established that a matrix general-
ization of the Gelf and-Levitan"-Marchenko"
formalism is applicable to the inverse problem
for the Dirac equation. The procedure can be
simply summarized. From the scattering data
one forms a matrix kernel, F(x, y) = F2(x, y)
+Eee(x, y); for ref lectionless potentials-s»(k)
=0—the scattering contribution, E~, vanishes
and only the bound-state contribution, E», re-
mains. In our standard representation for the
Dirac y matrices

N~ N

E»(x, y) = c,e "1'~")I,
~1

m+ (m2 2 2)1/2

Icr

m+(m' K ')' ' m+ (m' v ')'/
m —(m' —((,2)'/2

(B2b)

K(x, y)+ E(x,y)+ K(x, t)E(t, y)dt = 0. (B3)

Then the "potential"

V(x) =—y, g(x+ ty,y,)1 =
—gO'

(B4)

is given by the commutator

V(x) = [—iy„K(x,x)].
Further, the Dirac wave functions are given by

for +r &0. The cr are normalization constants,
and the sum is over all positive- and negative-
energy bound states. From the kernel F one con-
structs the transformation operator K(x, y) by
solving the equation

when the matrices I, are given by ' f(x, k) = e(x, k)+ K(x, y)e(y, k)dy, (B6)

m~ (m2 /1 2)1/2 m+ (m2 g 2)1/2

m —(m' - ~, ')'" |I(,'r

m+ (m' —x ')' '
~r

(B2a) ik
e(x, k) = (k'+ ')'" — e "" (BVa)

where e(x, k) is a plane-wave solution to the free
Dirac equation

for r&0, and by for &0 and
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e(x, k) =
ik

(y2+ m2)1/2

e"'" ~ & 0. (87b)

To proceed we distinguish three cases: (1) o-
only, "baglike" structure ((()2(')=

~

(()( '~00), (2) o'-

only, "kinklike" structure ((d, = 0), and (3) 0+2.
For the first case, the requirement of charge
symmetry for the o -only potential is satisfied by
having one positive- and one negative-energy
bound state with (d,"=

~

~( '
~= (d, and with identical

normalizations. Thus, with &u,
—= (m' —«,2)'~2

Reconstructing the positive-energy bound-state
wave function from (86) we obtain

(pz((2/2 —1)+p /2)
4.(x) =

1+ 2(2z+z'((2 -p ) ( 1+z(&-p2/2)

(813)

After a substantial amount of algebra, we can
write this in the form

F(x, y) = c,e "o'""'
m —+0

2(m+ ~,)
K0

0

2(m+ (()2)

K0

(86)

/sech(«, (x+ x,)+ 5)+ sech(«, (x -x,)+ 5)
xl

((- sech(«', (x+x,)+ 5)+ sech(«2(x —x,)+ 5)

(814)

where we have normalized ()), in (814) to 1 and
where the parameters are all as previously de-
fined. Qf course, the full time-dependent bound-
state wave function is

e(he

The assumption K(x, y) =K(x)e "o' separates the
integral equation (83), leaving an algebraic matrix
equation whose explicit solution is

+~K'
Kx = 0

[1+2(2z+ z'((2' —p')]

4.(x, t)=e '""l.( )x.

In the case of the kink, there is only one bound
state, and it has 0=0. For M0= 0 the matrix E is
trivial,

ayz(a2 p')

~+ z(~' —p')

F(x, y) =c,e /y yN
(815)

where z =c,e '"()"/2«, . Thus using (85) we find that
where m= «, =gf. Solving (83) as before we find
that

V(x) =
go 0

0 -go. (810)
—c()(e

„(„.„) /1 1)
K(x, y)= ( )I, (816)

where
where z = c,e '""/2m. From (816) using (810) and
simplifying we find that

—4p «g
[1+(~+p)z][1+ (~ —p)z]

' o = c+f-"f tanh(gfx+ o'), (817)

where

&& sech(«, (x —x,)+ 5), (812)

Po= tanh '
0

«, (m —~,) —c,~,
tanh& =

«2(m (d2)+ C2(d()—

After some algebra, (811) ean be east into the
more familiar form quoted (for 5= 0) in the text:

2

go= ' sech(«, (x+x,)+5)
40

where tanhn = (gf —c,)/(g f+ c,).
The Dirac wave function, reconstructed from

(86) using K(x, y) as in (816) is

h, =(e ) sech()(fssc) ( ), (818)

where we have normalized ()), to 1. For X= 2g',
these forms of c and (), are exactly equal to those
in (3.5).

Finally consider the reconstruction problem
when both a and g are present. As noted in the
text, we need study only the case of a single posi-
tive-energy bound state, (d0. Thus
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m+ ~p m+ 0
o ~0

C e-Kq&K, y)
p SZ+ (d0

0IC

(B19)

—2p Ic+
1+ (-,'p'+ 1)z '

—(—,'p ' —1)2«g
1+ (-.'p'+ 1)z

(B21a)

(B21b)

Solving (B3) as before yields
gCx= ' [1 —tanh(«y+ y)], (B22a)

where

KO&K+5I) '

p
2

I

l 4

1+z(gp'+ l)i
2P

(B20) g~ = ' ' [1 —tanh(«~+y)],

where

«, '/m(m+ &u,) —c~tanby =
Ico /m(m+ (do)+ co

(B22b)

(B22)

2i&fpX

z=
2eo

Using (B6) we find that
«, (m —(u, ) '~'

Kp

Bl —(dp
sech(«~+ y) (B24)

Finally, using (B6) with (B20) and simplifying, we
find the normalized bound-state wave function to
be
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