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Chiral symmetry and pion condensation. I. Model-dependent results
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The successes of current algebra and partial conservation of axial-vector current can be
interpreted as indications that the strong interactions are approximately symmetric under
chiral SU(2) &SU(2) transformations. In the absence of matter, the explicit chiral-symmetry
breaking, which conserves isospin and gives the pion a small mass, defines a unique vacuum
state for the theory. The smallness of the chiral-symmetry breaking, however, implies the
existence of many other states, approximately degenerate in energy with, but orthogonal to,
the true vacuum. In these states, which can be obtained formally from the vacuum by a
chiral rotation, in general the expectation value of the ~ field in the ground state, (&), & 0;
thus they contain a "pion condensate. " At zero baryon density these states are unphysical,
but in a macroscopic system —such as a neutron star —at very high baryon density one of
these pion-condensed shttes might become the true ground state. In this first of a series of
papers on the implications of chiral symmetry for pion condensation, we study this phenom-
enon in the linear a model. As a consequence of the simplicity of this model (and of a series
of )ustifiable approximations) we are able to calculate analytically the "phase diagram" des-
cribing the ground state of infinite nuclear matter as a function of baryon density. We find
that above a critical baryon density p, ~ O(p„„„)a phase transition to a pion-condensed
ground state occurs. To correct the most obvious phenomenological deficiencies of this sim-
ple model we extend the chiral-symmetry approach to include the effects of the N*(1236) and
the ill-understood ~N s waves. Further, we indicate briefly additional affects which must be
included in any serious quantitative description of real pion condensation. In addition to anal-
yzing the ground state, we examine briefly the spectrum of excited states, an understanding of
which is vital to the explanation of the cooling mechanism of neutron stars. In the condensed
phase, the meson excitation spectrum contains a 'Goldstone boson" associated with the ground
state's not being an eigenstate of the conserved operator I 3. However, when electromagnetic
interactions are included, this mode disappears via the Higgs phenomenon indicating that the
ground state is a superconductor; thus only plasma excBations remain in the meson spectrum.
The presence of the pion condensate fosters the p decay of the fermion excitations, and the
emitted neutrinos provide the cooling mechanism for neutron stars.

I. INTRODUCTION

Considerable attention in the current literature
has focused on the possibility that the ground state
of extended regions of nuclear matter at high den-
sity (p & p„„„}is qualitatively different from the
"normal" nuclear ground state as inferred from
the structure of existing nuclei. In particular, the
existence of a "condensed pion phase" —that is, a
ground state in which pions, macroscopically
occupyinga single mode, form a significant con-
stituent —has been proposed and discussed by many
authors. ' ' Most of the impetus for investigations
of this new type of ground state has come from its
possibly striking astrophysical implications in
connection with the properties of neutron stars. ' '
However, recent studies" of conceptually sim-
ilar "abnormal" ground or low-lying excited states
of field theories of the strong interactions have

served to emphasize the wider interest such pos-
sible new phases possess.

To argue the plausibility of a condensed pion
phase for the nonspecialist, ' let us specifically
consider the case of neutron-star matter, which
is thought to consist primarily of neutrons at very
high densities (p& p„„„}in equilibrium with a smal-
ler number of protons and electrons. ' At such
densities the exclusion principle requires the ex-
istence of large Fermi seas and consequently of
large chemical potentials,

Indeed, in neutron-star matter at normal nuclear
density (p„„„=2.8X10' g/cm'}, p„- p~ =4 m„'
and thus the possibility arises that at slightly
higher densities, the reaction'
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which has, crudely speaking, a net energy change
E; —E&= p.„—p,~

—m,'", could, assuming m„'" = m„
reduce the energy of the system if ~&0. If such
transitions did occur, since the pions are bosons,
they could all occupy thai single mode which gave
the lowest total energy; the resulting state would

therefore be a "pion condensate. "
One crucial aspect of this possibility is that it is

the effective pion mass, m,'", which enters. Since
the pion interacts strongly with the nuclear medi-
um, this can be quite different from m„. Thus the
central issue in any discussion of pion condensa-
tion is the evaluation of the interactions of the
putative condensed pion mode with the surround-
ing nuclear matter; in the independent-particle
approximation, ' this reduces to analysis of (off-
shell) vN interactions.

That the repulsive s-wave w n interactions would

increase m',"" (see Ref. 10) and therefore inhibit

pion condensation has long been recognized. " More
recently, it was noted that if the pions condensed
in a mode with nonzero momentum, the attractive
P-wave m n interactions could overcome the s-
wave repulsion, thereby producing a lower total
m'„" and favoring pion condensation. On the basis
of this observation, many authors, ' ' using a wide
variety of techniques, have sought and found —in

simple models including s- and P-wave interac-
tions —a phase transition from the normal nuclear
matter ground state to a state with pions con-
densed in a mode of nonvanishing momentum for
densities in the range &p„„,&& p,„,&4p„„„. Attempts
to refine the calculations by including other, sup-
posedly less important effects —wn interactions,
more accurate treatment of the N~(1236), inclu-
sion of NN forces and correlations —have revealed
that this phase transition can be quite sensitive to
these additional effects. Hence despite its appear-
ance in simple models, the actual existence of pion
condensation in neutron stars remains an impor-
tant open question.

Although it seems clear that the ultimate resolu-
tion of this problem can only come from detailed
quantitative studies, both the central role of the
wN interaction and the possible importance of many

smaller hadronic effects suggest that a more uni-
fied view of the strong-interaction aspects of pion
condensation —a general qualitative framework in

which to interpret this phenomenon —would be very
valuable. In this paper we shall argue that the
approximate SU(2) xSU(2) chiral symmetry of the
strong interactions can provide a framework of
significant conceptual and modest calculational
utility in confronting the very real intricacies of
pion condensation.

To motivate our investigation let us outline
briefly the logic that supports it. The successes

of current algebra and partial conservation of
axial-vector current (PCAC) can be interpreted
as indications that the strong interactions are
approximately symmetric under chiral SU(2)
xSU(2) transformations and, further, that this
symmetry is realized in the "spontaneously
broken" or "Goldstone" mode: That is, rather
than exhibiting approximately massless or parity-
doubled nucleons, the world contains pions which,
were nature exactly chiral-symmetric, would be
massless Goldstone bosons. The smallness of the
pion mass relative to other hadronic parameters
is an indication of the degree to which chiral sym-
metry is respected.

The possible significance of those observations
for pion condensation is most easily seen in the
context of an explicit realization of chiral sym-
metry: the 0 model of ~N interactions. " In this
model the pion is joined by an isosinglet meson,
o, in a (-,', ~) representation of SU(2) x SU(2), and
this meson multiplet is coupled in a chirally-in-
variant manner to the nucleons. In addition, there
is an explicit symmetry-breaking term, eHsB (o, v),
which conserves isospin and gives the pion a mass
m, =O(e). As a consequence of this symmetry
breaking, the ground state of the theory in the
vacuum is uniquely given by (cr) =A, ( v;) =0; in

our present parlance, the normal ground state
of the model contains a "0 condensate. " Now if
e=0, the state (o) =A, (v;) =0 would be degen-
erate with all states of the form (o'+ s v) =A',
in other words, states with a "pion condensate, "
( v, ) 40, would be degenerate with the "normal"
states. Thus a consequence of approximate chiral
invariance (m, «m„) is the existence of possible
condensed pion phases which are nearly degenerate
in energy with the normal nuclear ground state.
When one imposes the constraints appropriate to
neutron-star matter —high hadronic density and

charge neutrality so that y.„—p~ = 0(m, ) =order
of chiral-symmetry breaking —one of these con-
densed pion phases may indeed become the ground
state.

But beyond simply suggesting the possibility of
pion condensation, chiral invariance has general
consequences for the existence and nature of this
new phase. Several such consequences —the limit-
ing effect of 3-m interactions at large condensate
amplitude, the role of the N*(1236), and the extent
to which nuclear correlations and forces can be
similar in the pion-condensed and normal phases—
will be treated in the course of our discussion.

To present our arguments in detail we begin in
Secs. II and III by examining the problem of pion
condensation in the 0' model, first for simplicity
in a version with only the (&, v} mesons and then
in the physically interesting case including nu-
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cleons. In both cases we establish the existence
and discuss briefly the properties of the pion con-
densed phase. One important result of the dis-
cussion of this model is the observation that the
phase transition indeed corresponds to a chiral
rotation of the ground state [in this case, a spe-
cific rotation in the (&, ~) space]. This interpreta-
tion of the phase transition is in fact a general fea-
ture of chiral invariance; the proof of this asser-
tion is, because of its highly technical nature, re-
served for a separate article. In Sec. IV we ex-
ploit the "chiral rotation" approach to pion con-
densation to include the effects of the N*(1236) on
the phase transition and to establish a rough "upper
bound" in hadronic density below which we can
realistically expect pion condensation to occur.
In Sec. V we discuss, in a qualitative fashion, the
manner in which nuclear correlation effects" '
can be incorporated into our chiral-symmetry
approach. Section VI investigates the nature of
the pion excitations in the condensed phase, first
in the absence and then in the presence of nucleons.
The naive expectation that there exists a massless
excitation —the Goldstone boson arising from the
spontaneous breakdown of isospin invariance in the
condensed phase —is shown to be incorrect when

electromagnetic interactions are included. The
photon and Goldstone boson combine through the
Higgs mechanism to produce a plasmon. At finite
temperature, the fermions are unstable against
P decay. The pion condensate is shown to enhance
dramatically the P-decay rate in the manner orig-
inally suggested by Bahcall and Wolf. ' We con-
clude the main text with a general discussion of
our results and some comments on the phenome-
nology necessary to improve the calculations of
the critical density.

Two appendixes provide supplementary and tech-
nical material. Appendix A presents the calcula-
tional details relevant to the inclusion of the
N*(1236} in our treatment of pion condensation.
Appendix B establishes an important conceptual
link between pion condensation and other abnormal
states recently found in the v model. '

II. THE 0 MODEL WITHOUT NUCLEONS

expressed in terms of the isosinglet field a and
isovector field n', is invariant under the chiral
SU(2) XSU(2) transformations generated by linear
combinations of the infinitesimal isospin trans-
formations

7l j PTER 6j Q 2C ' Wp

(2.2)

and chiral transformations

77) 5; +5; 0'

a-0 —v r. (2.3)

The full Lagrangian density includes a term which,
while breaking the invariance under the chiral
transformation of (2.3}, respects the isospin sym-
metry generated by the transformations of (2.2).
Since the form of the chiral-symmetry breaking
will prove important for certain aspects of the
possible condensed pion phase, we shall consider
two different types of symmetry breaking: The
"standard" term"

z'" =+c v
SB (2.4)

where c, is a positive constant whose value we shall
shortly determine, and, for comparative purposes,

d"=-c m w.SB (2.5)

Z~'~(x; e) —= Z, (x) +ed~'~~(x), i =1, 2 . (2 6)

By choosing e and i appropriately we can discuss
the symmetric limit (e=0) and either of the two
broken-symmetry cases (e=1, i =1 or 2).

We shall treat the Lagrangians 2 ' in the re-
normalized tree approximation" in which the pa-
rameters in ~' are directly identified with phys-
ical observables. For the standard symmetry
breaking, using the result that the divergence of
the axial-vector current is given by

We shall refer to the symmetry breaking in (2.4)
as "cos8" symmetry breaking and to that in (2.5}
as "sin'8" symmetry breaking; the reason for this
nomenclature, which derives from the transforma-
tion properties of these terms under chiral rota-
tions, will become apparent later. For brevity
and conciseness of notation we define

A. The Lagrangian density"

To introduce our ideas in the simplest possible
context we begin by considering the standard
SU(2) XSU(2) o model without nucleons. " The sym-
metric part of the Lagrangian density

nl2
Z,(x) =-,'(s„os"o+s„s e"~)+ ' (o'+m'}

~ pA~ —Cg W~

leads to the identifications"

m '=~'f '-m'

f, =c,/m, ',
and

2 3y2f 2 ~2

(2.7)

(2.6a}

{2.8b)

{2.8c)
A.

(g2 ~ ~2)2 (2.1) Here m„and f„are the physical pion mass and
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2cpm (2.9)

so that in the renormalized tree approximation we
must choose

m„= 2co,

f.=m, /),
mg 2mp a

(2.10a)

(2.10b)

(2.10c)

Again taking the illustrative case m, = 1 QeV, we
find ~' and m, roughly equal to their previous val-
ues. " Henceforth, in this section, whenever we
write m, and & we shall mean the appropriate val-
ues determined by Eqs. (2.8) or (2.10).

B. The Hamiltonian density

To study the ground-state energy, it is most
convenient to treat the Hamiltonian

H"t }=fK~"(*; }d'*, (2.11)

where the Hamiltonian density is given by

, (;) } P}};P}}(+PaPa V» Vv; + V(x VG

decay constant. If we assume a value of m, then

m„)(, and c, are determined by Eqs. (2.8); choos-
ing m =1 GeV, for example, gives very roughly
~'= 50, m, = 5m„. Thus these parameters are
"large" in the sense m, » m, and X» 1.

In the ca.se of Z~'~ in lieu of (2.7) one has

In the actual physically relevant limit, e =1, the
ground states for i = 1, 2 are the nondegenerate
states in which, for both Zs'„and d~'}}, (o) =f,
and (w;) =0. Hence in our current terminology,
the normal ground state of the o model already
contains a "condensate" of o' mesons. For e =0,
this state is degenerate with many "pion-con-
densed" states, ((o') =0, ( v; ) &0), indeed, with
all the states in (2.13). All the possible ground
states are simply related by SU(2}xSU(2) rota-
tions. Since the chiral-symmetry breaking is
small compared to other parameters —m, «M„—
even for a=1 we expect that the o-condensed
state —that is, the true ground state of H ' (e)
and the possible pion-condensed states are nearly
degenerate and remain approximately related by a
simple chiral rotation. From this point of view,
the possibility is clearly indicated that, by a small
shift in the physical environment of the (o, ~} sys-
tem, the pion-condensed state could become en-
ergetically favored and thus become the ground
state in this new environment. In actual neutron-
star matter, the constraint imposed by requiring
specified hadronic charge and baryon number den-
sities provide precisely the appropriate physical
circumstances for this "chiral rotation" of the
ground state to occur.

To study this possibility in the present simple
model we can consider the problem of minimizing
the Hamiltonian in (2.12) subject to the constraint
that the charge density

m2
(o' + v ~) + (o' + n'—~P

2 4 po =(P., ((~ -P.,») = I';, (2.14)

—e 2(,'J(x) . (2.12)

(o'+fr ~) = m, '/)' . (2.13)

Thus the ground state of H('(0} is infinitely degen-
erate.

Here p„. and p denote the canonical momenta
S

corresponding to the m; and o fields, respectively.
Working in the tree approximation, which cor-
responds to considering o' and m; as classical
fields, "one ean obtain the familiar form" of the
ground state by minimizing the expectation value
of the Hamiltonian with respect to the fields and
momenta. Let us recall very briefly the results
of this procedure. First, note that the positivity
of the (V» Vv;) and (Vo Vo') terms in H guarantees,
in the absence of derivative-dependent interactions,
that (w;) and (o), the expectation values of the
fields in the ground state, should be spatial con-
stants. Second, observe that our deliberate choice
of the "wrong" sign mass term implies that these
expectation values are indeed nonzero in the ground
state. For e =0, the minimum occurs on the
hypersphere

a,",,'=- X" x;e +p,p~x) d'x

with

s(H(&)) sE(')
(2.15)

where V is the volume of the system. With p@ as
given by (2.14), we see that functionally minimiz-
ing with respect to the momenta implies"

p =P, =0, P, = —)(v„P, =+ px} . (2.16)

Substituting these results into (2.15) we are left
with the problem of minimizing an effective po-
tential energy,

which is the time component of the I, = 0 isospin
curr ent, assumes some def inite nonzero value,
(po). We have chosen this constraint by analogy
to the similar restrictions which one obtains in
more realistic models of pion condensation. In-
troducing a Lagrange multiplier (the charge chem-
ical potential), we consider minimizing
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where

1l&'&= —(a''+w ~p — » ((9+w w)
4 2

2

——(wi + w. ) —&sw .(~) (2.17)

——(w'+w')+ '
(w w)

2 j. 2 (2.18)

C. sin'0 symmetry breaking

To proceed we must distinguish between the
two explicit forms of symmetry breaking. For
simplicity, we begin with s'~. In this case the
effective potential density is

2
u&'„'= —(o'+w ~}' — ' (o'+w w}4 2

We see that P(p, } is as illustrated in Fig. 2(a).
sudden rotation of the ground state at p. =m„ trans-
lates into discontinuity in dP/dy(» . „; hence there
is a first-order phase transition at p. =I .'

Two further remarks should be made concern-
ing this phase transition and the nature of the
ground state for p, &m„. First, from (2.18) it is
apparent that the effective potential —indeed, the
full effective Hamiltonian —is a function of (w,

'
+ w, ') only and is therefore invariant under I,
rotations. The ground state G', however, with
& w, ) =P(p, }, (w, ) =0, is not invariant, and thus
the I, symmetry of H, « is spontaneously broken.
In this situation one naively expects a "Goldstone
boson" '—or "soft phonon mode" —to be one of
the excitations of the new ground state. Since,
however, the boson corresponds to a charged
pion, one must consider what effect the inclusion

For p & m„ it is clear that a state with & w;) &0,
for some i, & o& =0 has higher energy than the nor-
mal state, (o) =f, =m, /X, (w;) =0. Thus the
ground state remains normal for this range of the
chemical potential. For p, & m„however, explicit
minimization establishes that the true ground state
of the theory is one of the (infinitely degenerate)
states with

2+ 2 2 l/2.*) =( z.
" F(g), (2.1-9)

&w, &=0,

&o&=0.

Choosing by convention the ground state to have"

/
/

/
/

I
l

A-)(-

\

l

B

/
/

~t

(w, ) =F(p), (w, ) =0, (2.20)
{a)

PI r=o = —E.w/1',

where

(2.21)

E„«= d'x 3C,«x

we see that in the o-m, plane the nature of the
ground state as a function of p, is as shown in Fig.
1(a). At the point p = m, the ground state is sud-
denly rotated from &cr& =f„&w, ) =0 to (v& =0,
(w, ) =f„. Recalling that at' T =0 the pressure is
given simply by

r
/

/
I
I
I

A- )l--

I

I

I

/

d'x g„,(x)

we find for p. & m,

whereas for p + m„

m'
f~ +

(2.22}

(2.23}

FIG. 1. m-o diagram. (a) The (m„2/2)I2 symmetry
breaking. Point A indicates the ground state for p, &m~.
Point B shows the 1ocation of the ground state for p &m~.

(7ft) f 2 + f (~2 ~ 2)~ji/2 (a) =p. ( b) The
f~m~ o symmetry breaking. Point A indicates the
ground state for p &m~. Point B shows the ground state
for p, = po&m: r' =[f„+(F02-m )/g2] ' and cosg
—(m /p )[1+ (p m )/A. 'f ]-'
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of electromagnetic interactions will have. In Sec.
VI we show in detail that the "Higgs mechanism"—
in which the degree of freedom corresponding to
the Goldstone boson combines with those of the

photon to form a plasma oscillation —will indeed
occur. Second, at the point of the phase transition
(p, =m„), the two "ground" states, G and G', are
exactly related by a chiral rotation. For p. &m„
the relation between G and G' is not simply a rota-
tion, but involves a change of "radius" in the
(v, -o) plane: That is,

f.'=( v,
' +o' &ox(v, '+o'&e.

(a) 2 2—m
g2 (2.24)

I

0.5
I

).5

except at p, =m„. However, since ~'»1, for
p, = O(m„), this change in radius is very small.
To emphasize the interpretation of this phase
transition as a chiral rotation we could have pa-
rameterized (o& =A cos8 and ( v, & =A sin8 and min-
imized the effective potential with respect to A
and 0. It is clear that this approach yields the
correct result: namely, 8=0, A =f„ for p. &m,
and 8=v/2, A=[f,'+(p, '-m ,')/A'']'~', for p, &m, .
But further, had we treated the phase transition
as purely a chiral rotation —that is, kept A fixed
at A =f,—we would have made no error at the
point of transition and only a slight numerical
error" for p. &m„. These observations will prove
useful in the more complicated calculations of
Sec. III.

(b) D. cos8 symmetry breaking

The structure of the ground state in the case of
the "standard" symmetry breaking, , ~', is some-
what more complicated than that produced by Zs'B.
Let us therefore treat this case in more detail.
Again observing that the effective potential de-
pends on ~, and m, only through p' = n,

' + n, ', and
that, by inspection ( v, & =0 at any minimum, we
can reduce the operative part of the effective po-
tential density to

m'
g (2) (p2 +g2)2 0 (p2 ~o2)eff 4 2

(2.25)

I

0.5

The conditions 6'U', t'„'/5o =6'U ~«'/5p = 0 admit two

types of solutions:

and

&p&=0, &o&=f. , (2.26)

FIG. 2. The pressure vs the chemical potential. (a)
In the (m„2/2)7t symmetry breaking. For AB, P(p)
= (&2/4) f„4; the pressure is independent of p. For BC,
P(p) =(~ /4) [f„+(p -m „)4 ). Notice the discontinuity
in dP/dp. at p =m~. (b) In the f~m, 20 symmetry break-
ing. For AB P(p) ~@2/4)f 4+(m 2f 2/2) ~ For BC
P(p) (g2/4) [ f 2 + (p2 m 2)/g2]2 g(f 2m 4/2 p2)

p =m„P{p,) and dP/dp are continuous but d P/de is
not.

( ) f„m,'

2 2 g 2 4

(g&
+'o P f w ~m =r2( )~4

(2.27)

It is easy to show that for p & m„, the actual min-
imum of V~„',~ is given by the solution in (2.26), and
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the ground-state energy density is

m2 2

(2.28)

independent of p. . As p, passes through m„, the
ground state shifts from the solution in (2.26) to
that in (2.2 f). Following the convention of choosing
this new ground state to have ( w, ) =r(p, ), ( v, ) =0,
we see that the expectation value of n, increases
smoothly from zero, corresponding to a p-depen-
dent chiral rotation on the (()'-v, ) plane through an

angle given by

2 2 m 2 1/2
cos8= ', 1+ (2.29)

At p, =m, one has both 8„(=8„., and dg„, /dp.
I=dS.~(/dp; hence the phase transition in this case

is second order, as indicated in Fig. 2(b). Once
again we note that in the phase above p, =m„ the I,
symmetry of the effective Hamiltonian is spon-
taneously broken and a "Goldstone boson" is pres-
ent.

For both forms of symmetry breaking, then,
increasing the charge chemical potential above
p, =m, leads to a new ground state in which the
pion field has a nonvanishing expectation value.
Beyond illustrating the possibility of pion conden-
sation, these two simple models indicate several
general features of this phenomenon. First, they
demonstrate the relation of pion condensation to
the existence, implied by approximate chiral in-
variance, of states with (w;) &0 which are aimost
degenerate in energy with the normal ground state.
Second, they show that the phase transition to the
pion-condensed state can be regarded simply as a
chiral rotation of the normal ground state. Finally,
they establish that the nature of the phase transi-
tion depends on the form of chiral-symmetry
breaking and thus on the nature of the n-w inter-
action. In the ensuing sections we shall verify
these features in more realistic models of pion
condensation.

III. THE a MODEL WTH NUCLEONS

A. The Lagrangian and Hamiltonian densities

Having clarified the basic concepts of our ap-
proach in the simplest conceivable context, we
shall next undertake a more quantitative study in
the full o model, which, in addition to permitting
us to discuss the realistic case of nuclear matter,
has at least some pretensions to being a first
approximation to low-energy m-N interactions.

In this new ground state the energy density is

A.
2 2 2 2 g 2 4

gG f 2 ) 1f J w 'F
(2 30)

4 (3.2}

where P and n are 4-component Dirac spinors.
Thus under the infinitesimal isospin and chiral
transformations shown in Eqs. (2.2) and (2.3),

~ 7illi 7j UjN-N'=%+i ' ' N-i ' ' y A. (3.3)

The full Lagrangian is

7 ' (x) =2 (x}+g~'~(x}, i =1, 2 (3.4)

where the symmetry-breaking terms are given by
Eqs. (2.4) and (2.5). The Hamiltonian associated
with Eq. (3.4) is

a"'= d'xX "x), (3.5}

with the Hamiltonian density

K ' (x}= —i Ny VN+ gN((I+i T )(y, ) N

(3.6)

where 3C„', i =1, 2 is given by Eq. (2.12) with e = 1,
and the y; are the standard Dirac matrices.

Assuming that the strong interactions are de-
scribed by Eq. (3.6), to study the ground state of
neutron-star matter we must add two constraints.
First, the baryon density must have a prescribed
value. Second, when electrons in equilibrium
under the reaction n -P + e + v are included, the
total charge density must be zero. These con-
straints are most readily implemented by adding
to 3C

' (x} the Lagrange-multiplier terms, cor-
responding to the charge and baryon-number chem-
ical potentials, and thus studying the effective
Hamiltonian

~( )(x) —30( )(x) ~~electrons+ pp vp

(see Ref. 22) as a function of p and v. Here

(3.'l)

We should, however, repeat our basic caveat:
Since we are at present interested more in illus-
trating a new qualitative approach to pion conden-
sation than in presenting detailed quantitative pre-
dictions, we shall feel free to make technical as
well as physical approximations when these can
produce a substantial simplification in our ex-
position.

The inclusion of nucleons in the v model leads
to a total Lagrangian density whose symmetric
part is

Z, (x) =N[iy~s„go+i r &y, )]N+ g', (x),
where Zo(x), the meson part of the Lagrangian
density, is given in Eq. (2.1). Here N represents
the nucleon isodoublet
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H electrons 36electrons(x) d 3x
0 0

is the energy in the Fermi sea of electrons,

p~=N N.

(3.8)

(3.9)

precludes application of the simple minimization
techniques of Sec. II. However, we can apply a
variational technique based on a parametrization
of the ground-state expectation values of (ff, ~)
similar to that previously used. Anticipating that
the pions will condense in a single mode with non-
vanishing momentum, we can parametrize the
mesonic part of the pion-condensed ground state,
G', by'

For notational simplicity we shall henceforth
suppress the superscript (i) unless we wish to dis-
tinguish between the two forms of symmetry break-
ing.

The expectation value of H, ff in the ground state
is the free energy of this state. Calling (H.lf) =E.ff,
we see that

(3.10)

&ff& A cose,

(tf, & A since" '", (3.15)

By minimizing the total free energy with respect
to A,"k, and I9, we can determine the nature of
Q/

the total number of baryons, and

, "'=(p, & v=q=o. (3.1 1) B. The chiral rotation "connecting" normal
and condensed pion states

In actual calculations we shall find it somewhat
simpler to study To calculate the free energy we must evaluate

Reft (l r PB) X eff + VPB (3.12)
ff & G'IH. ff I

G'& (3.16)
since then when Eq. (3.11) is satisfied, say for
some p, = P,„E,'« = (H', «& is jus-t the true ground-
state energy at ba, ryon density ( pB &:

E'„(p, , ( p &) =(H) =E((p ) =0, (p )) . (3.13)

Since H,«contains no explicit electron-hadron
interactions, it can immediately be split into two

parts, and the term involving electrons can readily
be evaluated. The contribution from H, "'"'"'is
simply the energy contained in a Fermi sea of
free, relativistic electrons at T =0. Thus

@electrons Eelectronsy V0 0

But observing that the state
I
G') is just a chiral

rotation on the "normal" ground state, " I
G'), in

which (a& A, («;& =0, we see that we can also
evaluate E,ff by considering

E.«=& G'IH.«IG'& =&G'I fd3«.fflG'&, (3»)
where

(3.18)

and the rotated Hamiltonian density, X,«, is given
by

1 4
4~' ~ ff U 3Ceff U (3.19)

In terms of the generators of I, and A1 rotations,

( PPQ electrons OPe l 3 2'

Thus
gelectrons~ 4/1 2 (3.14)

For the hadronic component of H,« the existence
of the many-body effects of the nuclear rnatter

where the final equality follows via &„=p., = p, the
chemical potential for (negative) charge. The con-
tribution from the +

gpss

term is

U = exp(- 3 k f d3xx V,') e"ot = U, U, . (3.20)

Although treating the problem in terms of the
rotated Hamiltonian is completely equivalent to
using the original Hamiltonian in the rotated
states, we shall adopt the former approach be-
cause it will better clarify our subsequent general
discussion.

After minimizing H,« functionally with respect
to the meson momentum, we find that the full ha-
dronic part of the effective Hamiltonian density
becomes
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3C eff —i Ny ~ VN+gN(a+i 'r ~ ffy, ) N

Vo ~ Vcr+ Vff; Vw;

2
——(ff,'+ ff,') —e ZsB+ pNy' ~ N- v'NyoN,

(3.21)

explicitly, we find

k'k
jeff 3Cnff + (wf +ff2 )

—N y k ~ N- k [(Vlf, ) ff, —( Vff, ) ff, ] . (3.22}

where v'= v- &p, . Since all the terms in B„,", are
invariant under global I, rotations, under the
local transformation generated by

U, =exp(-ik f d'xxVO)

only terms involving derivatives will be altered.
Evaluating

+e«U1 jeff 1

The global chiral transformation generated by

U e+ 't @18
2

changes many of the terms in X,«. Restricting
our considerations to the ground state, ~GO), how-
ever, and replacing the quantum fields (ff, ff) by
the expectation values appropriate to this state,
we can write

X,« —U2 X,.«U2

2 2
= —iNy V N+ g NN (ff) + —(&f) — (o} —v'NyoN

4 2

T k~k~+k„Ny" ~Ncos8 +Ny" y, ~Nsin8 — " (ff)' sin'8+63C, ff, (3.23)

where k =(g, k} is the four-momentum of the con-
densed pion mode, ' and the two forms of symmetry
breaking are

6X~,f«' = —ef, m, '(ff) cos8

and

6X ' = —em '(ff}'sin'8 .eff

%e have introduced the four-vector notation for
k„ in Eq. (3.23} to highlight the appearance of the
(nonmesonic parts of) vector and axial-vector
currents, given in the a model by

t/' =Ny ~ N (3.24a)

and

(3.24b)

which arise through the local isospin transforma-
tion and subsequent global chiral rotation. From
our derivation it is clear that the appearance of
these currents in no way depends on specific fea-
tures of the v model and indeed stems solely from
the relation between G' and O'. To be more ex-
plicit —although at the risk of being somewhat
imprecise —we can recall the manner in which
Gell-Mann and Levy" calculated the current cor-
responding to a particular first-kind (global) gauge
transformation. By allowing the parameters, A;,
of the transformation to be functions of space-time,
one can show that J',"=52/5(&„A;). Thus since the
parameter in the transformation U„defined in

(3.20), is k x, the appearance of terms of the
form k j is hardly surprising. This heuristic
but essentially correct argument will be made
more precise in the following article. Further in
Sec. IV, we shall use this observation to include
the effects of the N*(1236) on pion condenstion.

C. Choice of parameters in Ã,«

In keeping with our intention of ignoring all rela-
tivistic closed-loop effects, we must replace the
constants in Eq. (3.23) by the appropriate physical
values. This leads to three changes. First, we
must take g(ff) =M, the physical nucleon mass. "
Second, in principle we know that to determine
(ff) ~A we should minimize E,«with respect to
this parameter. However, since the quantities
(&H(, jk~=O(m, ) are small compared to m, and &,

to high accuracy we can replace A by its value in
the normal phase; thus, we take (ff) =A =f„."
Third, since the relative normalization of the vec-
tor and axial-vector currents between nucleon
states is experimentally not 1 but ( G„/Gv

~

=1.24
=g&, we must multiply the axial-vector current
term by this factor. Since the value of g~ will
prove critical in later discussions, let us extend
our comments on this point. " Although it might
at first sight appear that g~ must equal 1 in a
theory with a ehiral-invariant Lagrangian, this is
not the ease. In particular, in the "Goldstone
mode" —or "spontaneously broken" realization-
of the symmetry, g& is not necessarily 1. Indeed,
the only remnant of the chiral invariance of the
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underlying Lagrangian is the Goldberger- Treiman
relation"

CA~ f yfk~yfNN (3.25)

7 7+k'„Ny" ~Ncos8+g&Ny" y, ~Nsin6}

f sin 8+63Ces,
k„k"

2

where

—3C &ff + AR cff (3.26)

6Xet.I=nfss mn sin 8.
(3.27a)

(3.27b)

To study the possibility of a phase transition
from the normal to a pion-condensed state, we
must compare the free energies in the two phases,
which are given, respectively, by

and

E', i's'
' =~a =(G'IH. tf I

G'&

ECondensed =E ( Gs IH I
Gs

&eff Q' eff

=(G'IH„,
I
G')

(3.28}

=«'IH.«+».«IG'& . (3.»)
Here we should emphasize two points. First,

when (9 = k = 0, hH = 0, and hence, as in the case
of the pure meson problem, the normal state is
contained as a limiting case of the condensed-
state parameters. This means that we need only
consider explicitly the Hamiltonian H„;; as long
as we are below the threshold for condensation,
minimization of the free energy with respect
to 8 and k will give the normal state, 8=k = 0.
The first value of v at which the minimum shifts
from (9=0 to 8=6I, &0—if such a value of v

exists —determines the baryon density at which
the phase transition occurs. Second, since we
expect g -k -O(m ), » is a relatively small
perturbation —roughly O(m, /m„}—on H, ff.

Before explicitly solving for E,ff(p, , v, k, 8) and

(which is exact in the limit e =0)." Further, if we
calculated loop corrections from the 0 model Ham-
iltonian Eq. (3.6), we would see g„move from 1 to
some renormalized value; thus it is completely
consistent with the assumed near chiral invariance
of the full Hamiltonian to take the experimentally
observed value, g„= 1.24, in Eq. (3.23).

Making these three changes in X,ff, we can get
the effective Hamiltonian in the form

K,ff ———I, N y V' N+I N N —v'N y N

minimizing with respect to k and 8, let us digress
briefly on the nature of the "normal" ground state.
The form of H.«shows that this state corresponds
simply to independent neutrons, protons, and
electrons in equilibrium under n-P+e+ v and with
n~ = n, . This is clearly only a crude first approxi-
mation to actual nuclear matter, particularly at
high densities. If one wished to improve this ap-
proximation by including the effects of realistic
nucleon-nucleon forces —apart from those induced
by the condensed pion mode —additional terms
could be added to H,«. To the extent that such
forces —for example, the heavy-meson (u&) ex-
changes which give rise to the nuclear hard core-
are approximately chiral-invariant, their con-
tributions to 4H, ff will be small, and thus AH, ff
will remain a small perturbation of H,«." %e
discuss this point in more detail in Sec. V.

D. Evaluation of the effective energy density

k'—
Se«= fn sin 8+6K (3.30)

and of the electrons
hselectsons (3.31)

we obtain the full energy density 8,«{p, , v, k, 8) for
minimization.

The Dirac-type equation which follows from X,,ff

in Eq. (3.26) becomes, in momentum space, an
eigenvalue equation for single-particle energy
levels E(P)

To calculate S.ft. (p, v, k, 8) we first observe that
the final two terms in 3C,« in Eq. (3.26} have no
effect on the nucleon sector. Thus, as in the case
of the electrons, we can treat this contribution
separately. Turning to the nucleon sector we note
that since the nucleons in neutron-star matter are
nonrelativistic —(vds/c)' ~ —,',—we could reduce X,«
to its nonrelativistic limit and solve the resulting
many-body problem. ' Equivalently, we can de-
rive from X„f the nucleon field equation which,
reinterpreted as a single-particle equation, as-
sumes the form of a Dirac equation in an external
field. Since relativistic effects are small, we can
explicitly ignore the sea of antinucleons in the
vacuum and, further, we can reduce the Dirac
equation to its appropriate nonrelativistic limit.
The state of lowest energy is then obtained by
filling all the single-nucleon levels which have
energy &0 because of the presence of the external
field. Combining this nucleon energy with the
separate contributions of the pion-condensed mode

KDN(pi= a p+ pM+(p —a ~ k) ~ cos8+gd ~2 y, sin8 —v' N(p) =[E(p)+M]N(p) . (3.32)
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(3.33)

We are seeking all E(p) &0. Using the standard approximate Foldy-Wouthuysen transformation approach
to remove "odd" operators, which couple large and small components, we find

p-k(r, /2) cos8 '
~r - . T2X — —v + + u ~ cos8-g o"ksin8 —' +smaller terms

In Eq. (3.33}we observe that the nonrelativistic
limit of the isospin current term —p(r, /2} cos8-
gives rise to an s-wave n-N interaction whereas
the axial-vector current term —g„k cr sin8 r, /2—
produces a P-wave term.

Without loss of generality we choose k =k~. Then
in a basis in which the nucleon states are written

n(p, i}= 1

in our previous notation so that (0) denotes the
direction of the spin and the angle q is defined by

c
b y (b& p c2)& &2 (3.35c)

and when the irrelevant antinucleon states are
ignored, BD assumes the simple matrix form

Thus in the limit y-0, that is, as 6}-0, u -n
and u, —P. To evaluate the ground- state energy
we must fill all states which have energy less than
zero. Thus the energy density in the interacting
nucleons is just

a+b sc 0 d'p[E. (P) 8(- E.)
nucle n

HD—

—ic a —b 0

0 a+A —ic (3.34)

0 0 SC g —6

where

p', k' cos'8
2M SM

p k
& = —cos8 —— cos8,

and

k sin&
C =@A

2

and

u„(p, i) =cosy p(p, 0) —i sing n(p, i) (3.35a)

u (p, 0) = —i sing p(p, 0) +cosrp n(p, i), (3.35b)

where

The decoupling of spin states leads to just two
distinct energy eigenvalues

E,(p) =+a+(b'+c')'~' .

The eigenfunctions associated with the two eigen-
values E, correspond, in solid-state terminology,
to the quasiparticle states which diagonalize the
quadratic form equivalent to H~. We see that we
can write

+E (p) 8(-E )] . (3.36)

From Eq. (3.37) one could proceed by numerical
integration to calculate the exact 8,ff for various
values of p, , v, (9, k. We choose instead to make
two simplifications which, although not without
physical justification, are made primarily to en-
able us to complete the calculation analytically.
First, we drop the k p and k'/2M terms in H~

[as given by Eq. (3.33)] and subsequent quantities.
This approximation is not totally without validity,
since we expect, and shall indeed find, that at the
point of the phase transition P=0((2M p.„)' ')
=O((2Mm, }'~')whereas k=0(m, } so that P'/2M
&k p/M. Without the k p terms, the quasiparticle
Fermi seas become spherically symmetrical and
the integrations in Eq. (3.36} can be done trivially.
Notice that for 8= v/2, the k p term in any case
vanishes; this fact will prove particularly relevant
for the case of Hs~ treated below.

Second, insteaa of retaining both the E, and E
Fermi seas, we shall retain only the larger —that
is, the E —sea.'' This approximation is clearly
not exact for k= 6}=0, since we know that the nor-
mal ground state contains Fermi seas of both
neutrons and protons and from Eq. (3.35) we see
that

LC ~tl, EC+ ~P .
o e o

This same observation, however, establishes that
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g/o ) -. ~(o ) —S{o + 0,} (3.3'()

to rea onable accuracy. Further, the self-con-
sistency of this approximation at a given (9 is
readily checked, simply by verifying that E, (P)
is greater than zero at that 0.

A more serious consequence of this approxima-
tion follows from its lack of validity for 8=0.
This implies that we cannot at this level study

the energy ca&. culatf. .d by this av~roximation differs
only slightly from the correct result; indeed,
since p„» p~ in the normal state, one has

the detailed nature of the threshold for pion con-
densation except in the case of a first-order phase
transition. We stress, however, that for finite (9

the one-Fermi-sea approximation is valid: that is,
near the point of the phase transition the param-
eters p and v are such that for 8& 8„small but
finite, E,&0 for all P and thus only the E sea is
filled. This we shall later demonstrate. Since,
as we have argued, the chiral approach to pion
condensation is most useful at finite 6), this sim-
plification is quite fortunate.

With these approximations Eq. (3.36}becomes

1
P'dPE (p)

0

P'dP
2

—v'- —,'(p, ' cos'8+gz'k' sin'8)'/'

15m' (2M)' '[v'+ —'(p.'cos'8+g 'k'sin'8)' ']' '
2 A (3.38)

Hence the total free energy as a function of p, , v, k, and 0 becomes

~ nucleons ~pjons ~ electrons
eff jeff + jeff + jeff

, (2M)' ' [v' + —,'-( p' cos'8+g„'k' sin'8}'/'] '/' + f,' sin'8+ & 3C,ff— (3.39}

where the two forms of &X.«are given in Eq.
(3.27}.

We are to minimize $,«at fixed p, and v over
k and 6} with

~ effe

v

treat the simpler case first. Minimizing 8 ff

with respect to k and 6) yields, respectively,
2

O=k ' '8
2(p' cos'8+g„'k' sin'8)'/'

(3.42a)

and

a@„f
~V

= —pg

As we remarked above —see Eq. (3.12)—it is
somewhat simpler to minimize

0 = sin(9cos6
2(g k sin 8+ p cos 8}

+ (k' —p' + m, ')f,' (3.42b)

jeffSe«Scft'+ vpB Sq«v(ps) (3.40) which must be satisfied together with the charge
neutrality condition 8 S,'«/8 p =0, which becomes

at fixed p and ps. Using Eq. (3.40} and recalling
that v'= v--, p. , we obtain

3 (3«2)2 /3p 5 /3

5 2M

(p' cos'8+g„'k' sin'8)' ',
3

—pf' sin'8—.
332 ' (3.42c)

+ ps [-,
'

p —~ ( p' cos' 8 +g„'k' sin' 8)' /']

2 2 4

E. sin2 0 symmetry breaking

To proceed we must distinguish between the two

forms of symmetry breaking. As in Sec. II, we

From our discussion of the one-Fermi-sea ap-
proximation, it is clear that the charge neutrality
condition in (3.42c) can be valid only for 8 greater
than some small H„since for 0& 60 we must, for
consistency, include both Fermi seas. But for
finite 9, the small coefficient of the electron term
means that —provided that p is roughly O(m, )—
it plays little role in either the charge neutrality
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condition or the effective energy. Thus it is con-
sistent both with our intention to study chiefly
finite 8 and with our one-Fermi-sea approximation
to ignore the contributions of electrons in (3.42).
This is then our third approximation.

It is obvious that this approximation, like those
of ignoring k ~ p cos8 terms and of keeping only
one Fermi sea, could readily be relaxed at the
expense of treating the problem numerically rather
than analytically. ' In addition, after the value of p
is determined in the absence of the electron term,
it is a simple matter to determine the angle 00

beyond which p. '/3s' is negligible compared to the
other terms in (3.42c).

To clarify further the physical significance of
our approximations and their relation to a more
exact treatment, two comments can be made.
First, since as 6)-0, u, - t) and u - n, if we fill
only the Fermi sea corresponding to u, at 6)=0
this amounts to treating pure neutron matter.
Thus, assuming our approximations are valid,
we see that for 8& 60 the behavior of a pion con-
densate in actual neutron-star matter is essen-
tially the same as in pure neutron matter. Sec-
ond, we can view our approach to studying the
threshold for pion condensation in the way suggest-

ed schematically by Fig. 3: That is, we are study-
ing the approximate threshold density —labeled by

p
" in the figure —determined by simple extrapola-

tion from the region (9& 6,. Notice that this den-
sity must be greater than the actual (or true)
critical density —p~ —and thus, to the limited ex-
tent that the present model accurately reflects
mv, mN, and NN interactions, p,„,, provides an
"upper bound" beyond which pion condensation
should occur.

To study Eqs. (3.42) in the absence of electrons,
we can divide the solutions into three classes.
The first class, with 6=0, corresponds to the
normal ground state, which consists purely of
neutrons in our approximation. The effective
energy density is then clearly seen to be

p
5/3

8'"=-h . (6=0)=—'(3m')"' =—h(p ) (3 43)

In the second class of solutions, which exists for
8= e, t 0 or w/2, the minimization conditions lead
to nontrivial relations determining 8, p. , and k
in terms of ps. Comparing (3.42a. ) and (3.42b)
sho~s that p, is in fact independent of p~ in this
phase,

5-

2

p& f p I @CHIR

Pe/m

FIG. 3. The chiral angle vs the baryonic density. The angle 0 determines the amount of pion condensate. At p, 0

might start deviating from zero through many-body effects. At p"'"", 0 is large enough and the chiral-rotation results
are reliable. p~ & is the extrapolation to 0=0 of the chiral-rotation results.
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(3.44a}

Further, we find

si '8= — " " —1) ic 44c)g„' —1 2f, ' m,

and
2 2

k'= B [g (g ' —1)' jm +
2f 2 A A 1I' 2 (3.44c)

2f 'm, g„2f,'m,
g (g 2 I )&/2 PB (g 2 1)&/2 ' (3.44d)

Using these results to eliminate p. , k, and 8 from
the expression for 8,«, we find that in this second
phase

g', „/o' =-g„, (8= 8,e0 or w/2)

pg gg 1 m g~
2 2

8f 2 2PB( 2 ]}&/2

For later reference we note that (3.44b} shows that
this second phase can exist only for baryon den-
sities satisfying

beyond which density the phase described by S,ffo'

must again become unphysical. A further phase
transition, again second order, occurs at p",„, .
Beyond p~,'„~, , 8 remains at w/2 and the ground
state becomes that described by 8„'f . The vari-
ation in the nature of the ground state as a function
of baryon density is summarized in Fig. 4.

Before we discuss the features of the condensed
pion phases, we should verify the self-consistency
of the approximations made in our calculations.
First, we note that treating the Fermi seas as
spherical by dropping the k p cos 8 term is perhaps
the weakest approximation; at 8= 0, we see that

pal=3m„, whereas k=2m, . Of course, as 6I in-
creases toward w/2, the neglect of this term be-
comes more justified. Second, the self-consisten-
cy of keeping only one Fermi sea is easily veri-
fied. From

E,-E =—(p, 'cos 8+gA'it'sin 8)' ', (3.50)

it is easy to verify that the Fermi energy 5„
= pB'/2M is always smaller than ~ for all 8 in

the relevant region of baryon density. Third, the

(3.45)

Finally the third solution has 8= w/2 and from
(3.42a) and (3.42b)

pag~
2 2 (3.46a)

and 0.8-

pa (3.48b) 0.7-

Thus in this phase the effective energy density is

g', „;SI-=h, „„(8=w/2)

2 2 2

=It(ps} ——,(g„' —1)+ ' ' . (3.47)

0.6-

0.5-

(2) 2fvf™~
PB critP( 2 I)1/2 gA t

gw
(3.49)

The expressions (3.43}, (3.45), and (3.47) allow
us to determine analytically the ground state as a
function of baryon density. Recalling our remark
that the second phase cannot exist for

(s) 2fcc mv (3.48)
gx —1

we see that in the region of 0& p~ & p'„',-, , the nor-
mal phase, with an energy density given by 8 ff

is the true ground state. At p",„, a second-order
phase transition occurs, "and the pion-condensate
amplitude develops smoothly with 6) determined
by (3.44b). In this region the ground-state energy
density is given by h~s//oi. ~hen 8 reaches w/2,

0.2-

0.)-
P' P" P'

&2 &8 i 4 i 5 i 6 I 7 i 8

Ps/mw'

FIG. 4. The actual ground-state energy as a function
of baryon densit . Below p~;, , the ground state is
"normal. " At p„ti, , a pion condensate begins to develop
and increases in amplitude until 0 =7t/2 at p~;, . Between
p;, and p~;, the ground-state energy density is given by
h s& and beyond pa, , by 6 ~ . The dashed lines show
the analytic extensions of b 0 and h~" into their re-
spective unphysi, cal regions. p* is the point beyond which
@&mfa) & g&t))



12 CHIRAL SYMMETRY AND PION CONDENSATION. I. 993

value of 8, can be estimated by expanding (3.42c}
for small 6). We find tha, t

pa gg& +p (3.51)

Our solution amounts to setting the quantity in
large parentheses equal to 0; this will be a rea-
sonable approximation for

3

8o Pf. &3,2 (3.52)

with p as given by (3.44) we find that~

(2g ')
0g2 13~2 (3.53)

Recalling that 8',«(8} is a function of 8P only,
we see that higher terms in the expansion of S,ff
will be small and thus the extrapolation from
6 + 80 to 6 0 is a reasonable one .

Despite its simplicity, this model reveals a
number of general features of pion condensation
in general and of our approach in particular. In
the latter category the most important insight
comes from considering the condensed phase
with 8=«/2, which is the actual ground state for
p~& p",„', . In this model the existence of a true
ground state with 8= «/2 is a happy consequence
of the simple angular condition (3.42b}. But it
serves to point out that the chiral approach allows
one to calculate at 8= «/2, —where, as one can see
immediately from (3.33), considerable simplifica-
tion obtains —indePendent of u/hether this angle
corresPonds to a minimum of g',«, if 8',«(8=«/2}
& h,'«(8= 0), then h,'«(8= 0) cannot be a minimum
and there will exist a pion-condensed (840)
pha, se 33

To illustrate these remarks in the present con-
text, we note that from (3.43) and (3.4V) the point
at which

g~ =—f.g.zs (3.25)

Since (3.25) is only approximately valid and since
the critical densities are sensitive functions of
g„, it is clear that in the simple model whether
one chooses g„=g„'"p=—1.24 or g„=f, (g',*g„)/M
=—1.4 makes a substantial numerical difference in
the predicted threshold densities. Thus, for
example, with g„=1.24, we find the threshold
density to be

(x)
Peri t ' P nucl (3.58a}

with the pion-condensate energy and momentum
at this point given by

prove useful in estimating the point of the phase
transition in more complicated models of pion
condensation.

Another feature of our results which transcends
the simple model is the nature of the condensed
phase. As in the purely mesonic models of Sec.
II, this state is one in which the I3 invariance of
X ff is spontaneously broken. The resulting
"Goldstone boson" excitation and its fate when
electromagnetic interactions are included will be
discussed in Sec. VI.

A third feature of this simple model is intriguing
more for the questions it raises than those it re-
solves. From (3.44a) and (3.44b) we observe that
the effective mass of the pions in the nuclear
medium is, at p=p",„', ,

(m,"'
) ~ p(i) = (p,

' —h') (g) = -m, ' . (3.57)
cr1t

Thus we are confronted with the important ques-
tion of how best to choose the parameters of the
pion-nucleon coupling when the wN amplitude is
off-shell. In this simple model the parameter de-
termining the strength of the (p-wave) pion-nucleon
interaction is just g„, since by the Goldberger-
Treiman relation

gs(tr/2) —gt (8 «/2)( gl (8 0} gl(0) (3 54)
g„m„

pl p~~~ =
~ a x/2

= 4™m(g„—].)
(3.58b)

can be shown to be

m 3
'F

PB P
(

2 1)1/2 ' (3.55)
m, (2g„' —1)'~

h
I p ~~~~I

(
2 1)1/2 2m lI (3.58c)

Referring to Fig. 4, we see that beyond this den-
sity, the inequality in (3.54) holds strictly; of
course, since by comparing 8(«/2) with h(0) we
have not explicitly minimized with respect to
6), at p* the true ground state is not described by
g~;,/'i; rather, from (3.44b), we see it has, using
2 2=m 2

sin 8[ p

1

g~+1
(3.56)

Nonetheless, the simplicity of this comparison will

With g„=1.4, these values become34

(z)
P crit P nucl

P~ p(x) = ~2
crit

(3.59a)

(3.59b)

(3.59c)

It is, however, equally clear that in view of
the striking limitations of both the o model —e.g.
lack of hard-core repulsion —and the approxima-
tion in which we have treated this model, it is
singularly inappropriate to worry about such small
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(3.60)

variations in the value of gA. In the following pa-
per, which presents insofar as is possible a
model-independent treatment of the implications
of chiral invariance for pion condensation, we
shall discuss the parametrization of nN inter-
actions in considerably more detail.

Finally we remark that certain aspects of this
model are complete artifacts. The most striking
example is the instability of the pion condensate.
It is easy to show that since the compressibility

2@(eo)
eff

~Pa

is negative for all gA &1, the condensed phase
seems unstable. This instability results purely
from the lack of realistic nucleon-nucleon forces
in the model; inclusion of the correct hard-core
repulsion, which contributes a term proportional
to pg to '8 ff w ill stabilize the system for any
reasonable g„.'

F. coso symmetry breaking

To study pion condensation in the presence of
the "standard" symmetry-breaking term, aX = -co,
we consider the effective energy density

Ig f, (pB, p, , k, 8) =
6 2M-p, '"+

2
f„' sine +-,'p, [p —(p' cos'8+g„'k' sin' 8)'"]—m, 'f, ' cose

(3.61)

where we have, as discussed above, dropped the
electron term in obtaining (3.61) from (3.41).

Since this expression is identical to the previous
g'„tt in its dependence on k and i1, Eqs. (3.42a) and

(3.42b) remain unchanged. Minimization with re-
spect to 9 now requires

= PBg~(2g~ —I} f2f (3.66b)

2
catt f w

PB g (g 2 1)1/2 t (3.66a)

Substituting these values into (3.64) then deter-
mines the critical density to be

1 (i1'-g„2k') cose
2 (p,

' cos'8+g„'k'sin 8)t/'

+ (k' —p.'}cose+ f„'m „' (3.62}

and thus

and

gAm ~

( g 2 1)1/2 (3.66b)

To solve the above equations, consider an ex-
pansion of 8'„ff around 8=0:

g2$ g2
(8) = g'//(0) + 2

—+ ~ ~ ~, (3.63)

where we know there is no linear term from
(3.62). When the second-derivative term becomes
negative, the minimum can no longer be at 6) =0
and the phase transition will occur. Since this
approach not only simplifies our present calcula-
tion but also illustrates an important connection
between our techniques and others appearing in

the literature, ' we shall adopt it here.
The explicit form of (3.63) for the g'„.

t given in

(3.61) becomes

(
Cl {p) $ {O) 2 )P 2+ I B{gAc«eff % 2 f 2

"2(f 8)' (3.64}

and

= PBg/1 f2ftt (3.6Sa}

Applying the k minimization and charge-neutrality
conditions —either directly to (3.64) or by taking
the 8-0 limit of (3.42a) and (3.42c)—leads to

kcdt m (2g
2 I)1/2/(g 2 1)1/2 (3.66c)

Before we discuss more detailed aspects of this
phase transition, we should indicate the signifi-
cance of the expansion in (3.64). It is relatively
easy to see that the term in brackets is nothing
more than the inverse propagator for pions of
four-momentum k = (p. , k} moving in the pure
neutron medium. The free propagator term is
obvious, and the appearance of the approximate
mN scattering amplitude in the proper self-energy
term,

(3.67)

can be understood by studying Fig. 5. Further,
the explicit form the approximate scattering am-
plitude in (3.64) follows from analyzing the two
diagrams in Fig. 6 in a manner consistent with
our approximations.

This result —that the coefficient of the second-
order term in the expansion of 8',« in terms of the
pion field amplitude is minus the inverse propaga-
tor —is completely general (see Baym and
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m 2 2

cos8= „—1
(3.68)

for p)m, g„/(g„' —1)'I'. Thus 8 never quite rea-
ches w/2. An interesting consequence of this be-
havior is that this model then provides a nontrivial
test of the suggestion made in the previous sub-
section, that even if 8=«/2 is not a minimum one
can nevertheless use the density at which

(3.69)

Flowers') and clarifies at once the connection be-
tween calculations which study pion phase transi-
tions in terms of the pion propagator and those
which calculate the full effective energy. Further,
the higher-order terms in this expansion are the
4-, 6-, 8-, . . . point pion amplitudes in the med-
ium. Those readers familiar with the effective
action functional, I'(4), will recognize this result
immediately, since S,'« is in essence I'(4) evalu-
ated at 4 =e'~~&. Those unfamiliar with this con-
cept are referred to the sequel, in which these
points are treated in some detail.

In most respects —the smooth transition from
8=0, the off-shell character of the condensed
pions, the "spontaneously broken" nature of the
ground state —this pion condensate is similar to
that found with sin'6) symmetry. In one important
respect, however, this phase transition differs
from the previous one. From the modified angular
condition (3.62) we see that 8 varies according to

pp

pp

P,

FIG. 5. A schematic illustration of the approximation
to the pion self-energy in the nuclear medium.

G. Bm NN symmetry breaking

In the previous discussions we have treated
only that symmetry breaking which arises in the
meson sector of the o model. This can only be
viewed as a first approximation for at least two
reasons. First, the mesonic symmetry breaking
will in general induce in higher orders of pertur-
bation theory explicit symmetry-breaking terms
in the baryonic sector. Second, and we empha-
size this point, such baryonic symmetry breaking
is important in the phenomenological descriptions
of the «N s waves. (We are thinking of the so-
called Z term. )

Perhaps the simplest way to break chiral sym-
metry in the baryon sector is to endow the nucleon
withasmall, butnonvanishing, baremass. Thuslet
us consider, in conjunction with the standard sym-
metry breaking in the meson sector, a term in
the original Hamiltonian of the form

as an estimate of the critical density. In this
instance, we see directly from (3.61) that SC~ ——5mNN,

with

(3.74)

(3.70)

Demanding charge neutrality and minimizing over k

leads to p, *=pa/2f, ' and k~ =g„pa/2f, '. Thus
5m(NNcos 8-i sin8Nysr, N ). (3.75)

Observing that, in the normal state
~
G ), the

6m =O(m. ).
Under the chiral rotations earlier described, this
term transforms to

2

8,',,-(8=«/2)= P' (1-g„'). (3.71)

The inequality in (3.69) then becomes

PB (gA } )m 2~ 2 (3.72)

7l ~ 7T

or, using f = m, /v 2,
v 2m.

PB
(

2 1}&/2
' (3.73}

Comparing this with the actual critical densitv
calculated in (3.66), we find p~a = Wg„ps ' and
hence the estimate obtained by this simple pre-
scription is quite reasonable.

tb)

FIG. 6. The 7) n scattering amplitude in the o model.
(a) Contributes to the s wave and (b) to both s and p
waves.
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nucleon pseudoscalar density in the nonrelativistic
limit is very small, we see that only the first
term in (3.75} contributes. Proceeding as before
to calculate 8',«(p, , pB), we find

~ off (PlP'B}

3 (3ff } 2f2
pa

+ pB —+ 5m cos 8- —,'(p, ' cos'8+g„2k' sin' g)'"B

(k2 2

+ f,' sin'8 -m, 'f, 'cos 8 .ll (3.76)

2 2
'll fff

and thus, with f„=m /W,

v 2m, ' 2(5m)'
(

2 ])ff2 2( 2 1}

(3.77}

(3.78}
Notice that for 5m =0, this reduces to (3.73}. For
5m = O(m„), however, this effect results in a con-
siderable reduction in the critical density.

Thus the s-wave wN interactions, although con-
siderably weaker than the p waves, can make sub-
stantial changes in the pion condensation. In the

following paper and in another future publication,
we will discuss the phenomenological consequences
of the s waves.

From this equation we see that the density at
which the energy at 8=ff/2 becomes less than that
at 8=0 is determined by

2

8'.«(«/2) —g.'ff (0) = —
6 .(g~ —1) —5m pB

plitude and the v-model Born approximation can be
ascribed entirely to the tail of the N*(1236}reso-
nance. Thus it is clear that one very important
step toward constructing a realistic model for
analyzing pion condensation is the inclusion of the
N* in our calculation. " Our approach will illus-
trate how this can be accomplished through chiral-
invariance arguments.

In Sec. III we established that, solely because
of the (x-dependent} chiral rotation relating the
pion-condensed state to the normal ground state,
the baryonic parts of the vector and axial-vector
currents appear in the effective Hamiltonian in
the form

H» „=k[V —' cos 8+2 ' sing], (4.1)

which, in the nonrelativistic limit appropriate
for nucleons at approximately nuclear densities,
is simply

H» „=p, V22' cosg —k ~ X "sing. (4.2)

H4

Since nothing in this derivation referred to specific
fermion fields in the Lagrangian, to incorporate
the N* into our calculation we need only evaluate
the matrix elements of these currents between
states consisting of both nucleons and N*." Since
there are 4x 4= 16 individual spin and isospin
states of the N*, when these are combined with
the 2 x 2 = 4 nucleon states, the full effective
Hamiltonian which generalizes (3.34) becomes a
20' 20 matrix. Fortunately, this matrix can be
block diagonalized according to spin. Choosing
without loss of generality k=kz, we find

IV. INCLUSION OF THE 1Y*(1236)

A. General remarks

H6

H4

(4 3)

In the last section we exhibited the variations
in the value of p~"' produced by some of the mod-
ifications required to make the naive 0 model
reflect more accurately low-energy mN interac-
tions. In this section we shall discuss an impor-
tant additional modification designed to correct
two further phenomenological failings of the o

model: first, the underestimation of the p-wave
mN interaction near threshold, and second the
lack —certainly in our approximation and quite pos-
sibly even in a hypothetical all-order calculation-
of the N*(1236) resonance. (We note that other
resonances have much higher masses and can be
ignored. )

Not surprisingly these two failings are intimately
connected. Indeed it seems empirically true that
the difference between the actual wN p-wave am-

where H4 and H4 are 4X4 matrices consisting
respectively of N*, s, = —', and s, =-& states. H,
and H,' are 6X6 matrices consisting of N* and

nucleon s, = —,
' and s, = --,' states. The eigenvalues

of H4 and H4 are the same, as are those of H,
and H,'. Consequently at arbitrary 8, there are 10
distinct eigenvalues, each occurring twice. To
determine the baryon contribution to the ground
state we must, as before, fill all states which,
at a given p. and v, have E&0.

The complexity of this system —10 possible dis-
tinct Fermi seas —renders a fully analytic treat-
ment (as opposed to numerical analysis) impos-
sible. But an approximate calculation in which
only one Fermi sea is filled is tractable. %'e

remind readers that, in the uncondensed state,
this one-Fermi-sea approximation amounts to
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working in pure neutron matter.
To find the appropriate Fermi seas to fill at

arbitrary p, , 0, and 6), we must find the lowest
eigenvalue of the 20x20 matrix. Since the mass
splitting between the N and ¹,denoted by b
(d, -=M„~ -M„) is about iwo pion masses (d, ™2)n„),
we expect that the lowest-energy eigenvalue will
come from the submatrices Il, and Hs.

In Appendix A we discuss the explicit forms of
the submatrices of H„„and establish that, for
the relevant range of the parameters, the lowest
eigenvalue does indeed occur in the 6@6 submatri-
ces. Further, since the diagonalization of these
matrices at arbitrary p,, k, and 8 is extremely
complicated, it is both more illustrative and more
in keeping with the qualitative nature of our con-
siderations to use the approximate techniques in-
troduced in Sec. III to study the threshold behavior
for 8 near zero (to order 8, as before} and the
simple limiting behavior at 8 = w/2.

B. The effective energy at O=wj2

The simplicity of the limit 8 = v/2 suggests that
it be discussed first. In this limit, the full effec-
tive nonrelativistic Hamiltonian becomes

(4.4)

-2 ~2M'»/

again introducing Se'ft- = Setf+ vp, to make the bary-
on density the independent variable, we obtain

2
g (((/2)( k g) 3(3P}2)3' ( -P + Wn ~ ) ~

eff 0'v Pgy y 5 2M 2 J m

3g„'A
+Pg 2P. —

2
+

3

The minimization over k and the condition of
charge neutrality imply

(4 9)

~ g I(yf/2)
= 0 = kf Pash-'~ (4.10a)

and

~ g I(&/2)
=0= —&f~ +~aPs

Bp.
(4.10b)

8""(p ) =k(p ) -=~ 9E" 1+ '-+o~ 'f '

(4.11)
The density beyond which this energy density is
lower than that of the normal state is

Solving these equations for k and p, and substituting
into (4.9), we find

where ~, the mass-difference operator, is zero
for nucleons and equal to b, for N*, and where

PB(N E ) 9+f2 1 3 ~2
8A r 9

g(~(2) (k —P, +QtPl~)
2 fl (4.5) For g„=1.24, g„=—,'g„=0.75, 6=2m

(4.12)

with n = 1 for sin'8 symmetry breaking and e =2
for cos(9 symmetry breaking.

In Appendix A we show that the lowest-lying
eigenstate in the baryonic part of (4.4} is given
by"

A (p, v, p, k, n) =——v+ ~p —35+—+ ~ ~ ~,

(4.6)

3g„'a
gy = V —&P. + 2 3'

The total effective energy is then

(4. f)

where f) =g„'k/2, and as explained in Appendix A,
g„'=5'&. The eigenstate corresponding to this
eigenvalue is a mixture of nucleons and N*'s.

Filling all states with A & 0 amounts to filling a
spherical Fermi sea up to a Fermi energy of

pBpf, g*) 1 1~~ 2 2pnucl (4.13a)

C. The effective energy at 0 = 0

To estimate the threshold density for the first
appearance of pion condensation, we can expand
the effective energy in powers of 8. Using results
from Appendix A, where we performed a pertur-
bation calculation in the parameter 6)', we find
that the effective energy at small 6) is given by

for a =1, i.e., sin'8 symmetry breaking and

(4.13b)

for e =2, i.e. , cos6) symmetry breaking.
In both cases we observe that these densities

are substantially less than those found in the ab-
sence of¹.We regard these numbers as rea-
sonable indications of the density beyond which
pion condensation will occur.

@, (@ ), ( )
(f„8} I(, ~ 2) ~p p 4g„'k 25' k' 4g„'k''

2 ) " f,' 2 9(p+a) 18 p. 3(a-p, ) I

(4.14a)
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This quantity could also be written as

(4.14b)

Again the interpretation of the form of the inverse
propagator is clear. The proper self-energy term
and forward mN scattering amplitude are related
through

(4.15)

In this approximation, the mN amplitude contains
in addition to the remnants of the crossed proton
Born term and 0 exchange, a direct "Born" term
from the N* pole —the term with 1/(n-p, ) in
(4.14a}—and a crossed Born term from the N*'

pole —the term with 1/(n+ p) in (4.14a}. Both these
terms are shown in Fig. 7. Notice that if, 8 is
approximated by -„ the proton pole and the ¹

pole combine to give the Chew-Low" result. Fur-
ther, observe that in the limit b, -~, we recover
the earlier results involving only neutrons and

protons.
The minimization condition on k and the charge-

neutrality constraint require, respectively,

condition S ' =0, we find no solutions for the phys-
ical values of the parameters g„(=1.24) and n

(
-=2m, ). A more thorough numerical analysis

reveals the reason for this situation; for these
values of the parameters, there is no minimum
with respect to k. Thus when the phase transition
occurs —as it does in this model at a density
p«lt = 0.31m„=0.62p„„,~ —the lowest energy is ob-
tained by letting k2-~. It is obvious that for very
large k —indeed, for any k»3m„—both the physics
in this simple model and the approximations in
which we have solved it break down entirely: The

P waves cannot continue to grow like k', higher
partial waves must enter T„~, the Lindhard func-
tions cannot be approximated by their static lim-
its, and the extrapolation of T„~ to the off-mass-
shell point p, —k ——~ is untenable.

To resolve this apparent difficulty we need only
recall that for k&3m„our description of the mN

amplitude —including the effects of the N*—is be-
lievable. Thus by restricting k ( kcutoft- = 3m „we
can obtain an upper bound on the critical density
in the present case. With this cutoff the param-
eters of the phase transition become

and

g''k 4 25 4
Ps f ' 9(P+n) 18' 3(a-P)J

p~, , 2 2 4 25 4
f' " 9( AI 18 ' 3(k- )')

and

k = kcu/of't —3m &

Ps(N. &*) '33m „'=-0 66P„„,.i,

p, = 0.93m,

(4.17a)

(4.17b)

(4.1~c)

(4.16b)
Studying these equations in conjunction with the

7T / 7T/

a/////////&

(a)

for g„=1.24 and b = 2m, . One cannot yet, of
course, regard this as an accurate estimate of the
threshold for pion condensation, for our present
calculation explicitly excludes the important in-
hibiting effects of nuclear correlations"; these we
shall discuss qualitatively in the next section.
Despite this limitation, comparing the critical
density in (4.17b) with that in (3.58a) establishes
clearly the importance of including correctly the
effects of the N*.

V. CHIRAL SYMMETRY AND NUCLEAR FORCES

7T 7T
~II

Qf ///'////////////&

(b)

FIG. 7. The additional contribution to the x n scattering
amplitude from N*. {a) is the direct N* contribution
and {b) is the crossed N*' contribution.

In the preceding sections we have treated the
condensed nuclear matter as if it consisted of oth-
erwise uncorrelated nucleons —or nucleons and
N~'s —moving under the influence of the external
condensed pion field. Obviously, any realistic
calculation of pion condensation must include the

significant role that nuclear forces and correla-
tions —for example, the short-range repu). sion as
realized by ~ exchange —play in determining the
equation of state. In this section we shall discuss,
in a qualitative way, the manner in which these
nuclear correlations can be incorporated into the
chiral-symmetry approach to pion conde nsation.

To render the discussion as precise as possible,
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let us begin by recalling our exact assumptions
about the way chiral symmetry enters into the

problem of pion condensation. First, we have
assumed that the full strong-interaction Hamil-
tonian has the form

Hnttc) =Ho+ 5H& (5.1)

where H, is a chiral-invariant Hamiltonian density
with an energy scale =16eV =O(m«) =O(m ) and

5H is an explicit chiral-symmetry-breaking inter-
action of order m, . Since nucleons are neither
massless nor parity-doubled, we have also as-
sumed that the chiral symmetry in IIO is realized
in the Goldstone manner, so that if 5H were zero,
m, would be zero. If these assumptions are not
accepted, it becomes difficult to explain the experi-
mental successes of chiral-symmetry predictions.

Second, an assumption akin to but not as specific
as the smoothness assumption of PCAC has been
implicit in our previous discussion: Namely, that
the limit 58-0 is "smooth" in the sense that the
particles that exist in the theory for OHx 0 are
still present when OH=0 and, further that the
shift of their masses as 5H-0 is sO(m, ), the or-
der of the shift of the pion's mass. A specific
example of this occurs in the 0 model, with stand-
ard symmetry breaking as discussed in Secs. II and
III. There, in the tree approximation, the nucleon
mass —given by M =@(c)—shifts, as 5H-O, by
(5M„)/(M„) =

2%%uo for the parameters given in Sec. If.
Third, we have assumed that the condensed pion

ground state is related to the normal ground state
by a chiral rotation. Since the motivation for this
assumption has already been given, we reiterate
here only the most obvious caveat; for any abnor-
mal state in which —in the language of the v model
of Secs. II and III—both the radius 4 and the angle
8 changed by large amounts, one could not hope to
learn anything model-independent from chiral
symmetry alone.

Using these three assumptions we have shown
that to compare the ground-state energies of the
normal and condensed phases we need to study the
effective Hamiltonian

H.(( =H, —v'ps + k" [V„"'cos8+A„"sine] + 5H,

(5.2)
where A2 is the abstract axial-vector current
operator and thus has appropriately renormalized
matrix elements, and where 50 is the rotated
symmetry-breaking term. In what follows we will
assume cos8 symmetry breaking, and thus 50
will effectively be 5Hcos8. For any given 6), we
can reduce the calculation of the ground-state en-
ergy of H, « to a many-body problem as follows.
We pull out the c-number terms coming from the
condensed mesons and define an approximate non-

relativistic many-body Hamiltonian according to
2 2

H„; -HM(((8)+
2 f sin 8+f„m,'(1 —cose).

(5.3)
The 8-dependent many-body Hamiltonian is then
taken to be

HM(((8) =+K((8)+Q Vs(8), (5.4)

V(e) —V(0} 5m'(e) m,'
V(0) m' m' (5.6)

For co, p, and o exchange as well as for V" ', this
is a few percent. The 6-dependent pieces of V,
V~, V, and V".L will then contribute to the ground-
state energy density a term of order p((V5m (8)/m'
-psvm, '/m', where Vis some typical potential
energy per nucleon. Taking V-m this is negligi-

OPE

1

I

I

I

I

7T
I

I

I

I
I

FIG. 8. The one-pion-exchange potential.

where the single-particle Hamiltonian

P I PT
K(8) =——v'+~ cos8 -g„k o ~ sine+5M cose

2M 2 2

(5.5)
includes a possible 5M symmetry breaking and the
V& are two-particle potentials. These potentials
are supposed to come from meson exchange. Our
chirally rotated H.If is assumed to produce the
same set of mesons as does the usual Hamiltonian
at 8=0. The propagators of these mesons and
their couplings to nucleons will be somewhat mod-
ified by the 8-dependent terms in (5.2). This will
lead to a 8 dependence in the nucleon-nucleon po-
tential.

To illustrate the nature of V(8) we adopt a simple
model where the nucleon-nucleon interaction is
generated by n, o', p, and cu exchange, as shown in
Figs. 8-9(c). We also include a "Lorentz-Lo-
rentz" term, ' Fig. S(d), V~~, which is supposed
to take account of the effect of the repulsive hard
core on the attractive one-pion exchange. This
effect acts to reduce the net attraction in the chan-
nel with pion quantum numbers. When & is non-
zero the mesons interact with the condensed pion
field. This changes their propagators, as shown
in Fig. 10. For heavy-meson exchange we can
model this interaction by imagining that the meson
mass squared is a 8-dependent quantity m'+5m'(8),
where 5m'(8}-m, '. We then estimate the 8 depen-
dence of a heavy-meson exchange potential to be
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ble compared to the 8-dependent energy density
of order p~m, coming from the single-particle
terms in 0MB. Therefore, we can safely set

and

V (8)= V~(0)=v,

VP(e}= VP(o) =- VP,

V~(8)= V'(0)=—V~,

VL-L(8} VL-L(p) VL-L

(5.'1)
(b)

Vo E(8) —VQPE(p)

VOPE (P)
(5.8)

For one-pion exchange, on the other hand, it is
easy to see that

g

I,

(c)

VL-L

(4)

and that we cannot neglect the 8 dependence of
yopa

With this model and the approximation in Eq.
(5.'7}, the many-body Hamiltonian is

HME =QE((8)+Q [V)~ + V(~P+ V(~" + V(~ + VP~PE(8)].

(5.9)
We can simplify H„B by making a spin-isospin
transformation which diagonalizes K(8). Let

U '(8)(pr, cose-g„k or, sine)U(8)

= r, (p'cos'8. +g 'k'sin'8)'~' (5.10)

then HMB can be transformed to

U '(8)HMEU(8)

+MB

-~P~'=Z —~'+-a (iL'cos'8+g 'k'sin'8)'~'
2hf 2 A

+6m'cose+ (V,&+ V~)
(f

+/U '(8)[V + V" + VoPE(e)] U(8),

(5.11)
where we have taken a nonrelativistic limit so that
V~ and V are independent of spin as well as iso-
spin. In HMB the 8 dependence of the potential en-
ergy comes both from the chiral-symmetry break-
ing in V PE (8) and from the fact that VP and V"-L

do not commute with U. In this connection, it
should be understood that Vis not a chiral trans-
formation. It is a spin-isospin transformation as
opposed to a chiral rotation which is a y, -isospin
transformation. The way in which the potential
transforms under U has nothing to do with chiral
symmetry.

From the form of HMB one sees that the repulsive
hard-core V" and medium-range attraction V' are
the same in the condensed and normal states. They
can therefore be ignored. The other potentials Vp,

FIG. 9. The "heavy-meson" exchange potentials: (a)
the +, spin- and isospin-independent; (b) the p, a spin-
and isospin-dependent force; (c) the o, an intermediate-
range attraction; (d) the effect of short-range repulsions
on one-pion exchange.

( (
+ ---- X

X

+ ~ ~ ~

X

I

Ir
+

I

~x
I

FIG. 10. (a) The modification to the u-exchange
potential —the nonrelativistic limit of the ~ propagator-
in the presence of the condensed field. (b) The modifica-
tion to the one-pion-exchange potential —the nonrelativis-
tic limit of the pion propagator —in the presence of the
condensed field.
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V"", and V"- E cannot be disregarded and their
omission is a major defect of our model. Actually,
chiral symmetry has little to say about Vj' or V" ".
Within the context of this paper they would be
viewed as phenomenological additions to the o

model as was the N*. On the other hand, P' '(8)
is determined by chiral symmetry and will be cor-
rectly given by the v model. In lowest order the
contribution of V " to the ground-state energy is
given by the diagram in Fig. 11. The 8 dependence
&f this diagram, which we have not computed, is
complicated by the fact that the pion as well as
nucleon propagators depend strongly on 8.

We hope to return to some of these nuclear form
effects in a future publication. " With regard to
these effects, the one advantage that our formal-
ism has is that they can be estimated by computing
at 8=w/2, where considerable simplification oc-
curs.

VI. EXCITATIONS AND P DECAY

In this section we study the low-lying excitations
in the condensed state. For a neutron star low

lying means of order kT or a few keV." This is
an extremely small energy on a nuclear or pionic
scale.

Our model clearly suggests afermionic spectrum
of excitations composed of particles above and
holes beneath the Fermi energy. It also suggests
a spectrum of excitations associated with the me-
son fields. However, it will be argued below and
shown in more detail in the following paper that
when the electromagnetic field is taken into ac-
count the only low-lying meson mode becomes a
plasmon. There might be bosonic modes asso-
c iated with collective osc illations of the Fer mi
surface. Low-lying modes of this type are usually
associated with a broken symmetry. In the fol-
lowing paper it is pointed out that there is no rea-
son to expect such modes in the present context.
Thus, we expect to end up with only a fermion ex-

FIG. 11. The contribution to the energy shift caused
on the modification of the one-pion-exchange potential;
actually, all propagators and couplings should be evalu-
ated in the presence of the external condensed field.

citation spectrum and a plasmon.
At finite temperatures neutron stars can cool by

neutrino emission. This may be viewed as the P
decay of quasiparticles. At the end of this section
we will see how to treat this process. We hope to
give more detailed calculations in a later publica-
tion.

cos8 =—,=mr
p.

(6.1)

As in Sec. III it is convenient to make a chiral
rotation and work with fields whose expectations
values are 0 = 8 and m=0. The rotated Lagrangian
is

A. Meson excitations

Here we will treat only the problem of mesons
alone, as was done in Sec. II. We will see that
there are no low-lying excitations. When nucleons
are present the situation is considerably more
complicated. This will be touched on in the follow-
ing paper.

We choose the standard symmetry breaking cp
=m„'Qv, but our results are actually independent
of the type of symmetry breaking. From Sec. II
we know that for p, &m„, the expectation values of
the field are

o =Qcos]9,

m, = Q, sin6),

2 = —,
' [(B„o+k w, sin8)' + (S„w, + k w, cos 8)'+ (s„w, —k„w, c os 8 —k„cr sin 8)' + (s„w,)']

—X(o + w -A')'+ c, (cos8 o —sin8 w, },

where we have introduced the four-vector notation

ku —
(p 0 0 0) (6.3)

To find the excitations we set o'=8+@' and expand in powers of the fields cr' and m, keeping only the
quadratic terms. There are no linear terms since the fields in (5.1) minimize the energy. The result is

2 = —,
' [(So'+k„w,s in 8)'+ (aw, + k„w,cos 8)' + (8 w, )'+ (B„w, —k, w, cos 8 —k„o sin 8)' —k'(w, ' + w,

' + w,
' }—m 'o "],

(6.4)
where terms of order A.

' have been dropped, and m' is large.
From {6.4) we see immediately that w, decouples from the other fields and propagates like a particle

with mass (k')' ' = p. This is far too heavy to be a low-lying object on the scale described above. The
large mass —(m'+p'sin'8) —of the o' effectively removes it from low-lying excitation. For this reason, we
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drop o'' from Z. We are then left with the simpler Lagrangian involving only n, and m„

Z= —,'[(s„v,)'+(s„m, )'+2k" cos8(v, s„m, —m, a„v,) —k sin'8v, ']. (6.5)

If one looks for solutions to Lagrange's equations of the form w, = c, exp(-isn't+ iq x), f = 1, 2, one finds that
there is one branch with the property that &o(q)-0 as

I qI-0. This mode is the Goldstone boson which
arises from the fact that the ground state is not an eigenstate of the conserved operator I,. It is a possible
low-lying excitation. We shall demonstrate that it disappears when the photon field is included. The other
branch to the spectrum of (6.5) has an energy of order k' as

I qI - 0 and like the s, mode is not of interest.
The electromagnetic field A" enters the Lagrangian through its kinetic energy —,(F""—)'and through its

coupling to charged mesons. The easiest way to see how A~ couples to the chirally rotated mesons in
(6.3}is to note that k" and A" can only appear in the combination k"+eA". Thus we add - ,'(F"")'-and re-
place k" by k"+eA" in (6.3). Again we expand in powers of A", o', and v keeping only quadratic terms.
As before, m, decouples and can be dropped. Taking also the formal limit m - ~ and dropping cr' yields,
after some algebra,

,'(F""-)-'+ -,'[(8 „v, —e8 sin 8A„)' —4w, k" cos8(s„m, —e8 sin 8A„) + (8 v, )' —k' sin'8v, '], (6.6)

where a total. divergence proportional to k"B„(m,w2)

has been dropped. Let us now def ine a new field
C. P decay

The Hamiltonian responsible for P decay" is
1

eQ sing (6.7) K„- (Vu+iV~v+Aiv i+Au)2v(yu(l +&~)) e
G

which is just a. gauge transformation on A". SinceI"' is gauge-invariant, Z then becomes
+(H.c.), (6.12)

2 = (F""}'+ —— (Bq }'+2e8 sin & cos 8v,k" B„

+ —,'(8 „v,)' —~k' sin' 8 m,',
where I""' is now defined as

(6.6)

and

@au gp gu9 9

X ~X~
(6.9)

m& =easing (6.10)

B. Fermi excitations

In our models there is only one Fermi sea avail-
able for the creation of low-lying excitations.
With our approximations the (effective) energies
of the fermion states are just

(6.11)

In a more realistic calculation M would be re-
placed by some effective mass and (6.11) would be
expected to hold only near the Fermi surface.

appears as a photon mass. One can easily convince
oneself that (6.6) has no modes for which w(q)-0
as I qI - 0. There are no longer any low-lying
exc itations.

The fact that the Goldstone boson disappeared
at the expense of the photon's getting a mass is no
surprise. This is a consequence of the obvious
fact that condensed charged pions make a super-
conductor. In the language of superconductivity,
we recognize a magnetic penetration depth (or
London depth~) 1=m~ ' of a few fermis. '

(6.13)

The candidate process for neutrino emission is
fermion of momentum p- fermion of momentum
p'+electron+neutrino. Let us consider the ener-
getics of this decay. Because of the factor e'"'"
in (6.13), the momentum balance will be

P P +P4t+Pij &
(6.14)

where p, and p, are the electron and neutrino en-
ergies. To get energy conservation straight we
have to remember that the hadronic weak current
changes I, for the hadrons by one unit. Therefore,
if we use effective energies for the hadronic
component but not the leptons, the energy balance
1s

{6.15)
Referring to Eq. (6.11)we see that this reduces
to

/2
—v + (p.'+ m.'}'I'+

I p. I (6.16)

where V and A are the vector and axial-vector
currents defined above. To discuss P decay in
the condensed pion phase, it is convenient to apply
our chiral rotation to X . We will then be working
with the ground state where (e)=0. The result
of applying the rotation to X~ is to make the re-
placement

V", +iV2" +A", +&A

- e'~ ' "(V," +A," + i[cos 8(V," +A,")—sin 8(V," +A,")]).
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quark -model wave functions available in the lit-
e rature. 4' Actually, since that model predicts
for nulceons

gv
(A 2)

FIG. 12. The induced P decay in the presence of the
pion condensate.

Equations (6.14) and (6.16) can be interpreted as
a fermion picking up four-momentum (i, k) from
a condensed pion and then decaying into another
fermion and the lepton pair (see Fig. 12). This
is just the process suggested years ago by Bahc all
and Wolf ."One can easily convince oneself that
for pea k/2 it is kinematically allowed.

The fer mion exc i tat ions are non re 1ativi s tie
linear combinations of n and P or more generally
nucleons and N*'s. In either case it is easy to
evaluate the required matrix elements of the ro-
tated weak current in (6.12). For a given 8 one
should therefore be able to do rather well in cal-
culating the cooling rate due to neutrino emission.
As mentioned above, we hope to return to this in
a future publication.
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APPENDIX A: THE MATRIX ELEMENTS X
WHEN X~( 1236 ) IS INCLUDED

In the text, w e established that to include the
N* in the o model calculation of pion condensation
we needed to evaluate the matrix el ement of the
operator

H = p, V,' cos 6-g„k,A,"' sin 8 + 6 (A 1}
between nucleon and N*(1236) states. Here V,'
and A,' are the usual vector and axial -ve ctor
currents and 6, the mass-difference operator is
diagonal with elements equal to zero for the nu-
cleons and M„~ -M„=2m, for the N*.

The full (20x 20) matrix representing H in the
N@ Ã* subspace can be block diagonalized, each
block having the same value for the spin proj ec-
tion. The blocks II, and H4 have s, =

& and -»
and the blocks H, and &,' have respectively s, =

&

and -
& ~ To calculate the explicit matrix elements

of the submatrices H4 and H, w e will use the

(SU(2 }),,„S(SU(2)),„,.„CSU(4)

while experimentally
~ g„~ = 1.24

~ gv~, w«ak«he
numerical predictions only for the ratios of the
couplings for nucleons to those for N*." Thus we
modify the axial-vector term in (Al) to

(2) (2)=-, ~~a,()v(), (A 4)

where the sum over e is over the distinct quarks
in the baryon, we see that the nonvanishing axial-
vector matrix elements in H4 are

(++]A, J+)= ——i,(, ) W3.
(A5a)

and

(+
~
~,"'~ 0) = -f, (A5b)

(OiA ',
i
-)= ——i, (A5c)

where
~ q) denotes an N~ state of charge q. Hence

the full submatrix H4 assumes the form

3a+ a v 3ib 0

-u 3ib a+ b, 2ib 0
H~ =

-2ib -a + 6 v 3ib
(A6a}

0 -~~3ib -3a + a

where we have used the basis

N*'
(A 6b)

N*-

and where we have introduced

g„ka= —cos8 and b= " sin&.
2 2

(A6c)

The four ei genvalues at arbit rary (9 are clearly
given by

and

X," =6 k 3(ca+ b')'" (A 7a)

x(') =a+ (a +b ) r (A7 b)

The lowest eigenvalue is clearly ) ' ". For 8 = 0,

-=g„'A,"' sin8. (AS}

Recalling that in the SU(4) quark model
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and for 6=w/2,
3=—4 -pg~k.

(A8a)

(A8b}

(++ I
2',"I+)=-

2m 3' (A9a}

In the (6x 6) submatrix with s, = -,', the nonvanish-
ing matrix elements of the axial-vector current
are

with a = p, cos 6/2 and b = g„'b sing/2. We will re-
strict ourselves to the form of the eigenvalues for
8 = 0 and e= w/2, since we do not know the general
analytic expression for any &.

1'a) 8=0. We will solve the eigenvalue problem
here through a perturbation-theory expansion in 6}.

The lowest eigenvalue in the region p, =m„
where we expect a phase transition, is to zeroth
order the neutron state, i.e.,

&++I&!"If»= ~,W6' (A9b)
I-I e=o=- 2.

To second order in perturbation theory

(A12)

&pl~,'"lo&=

&+I~("Is&= '
~18 '

&+la,"'I 0&=

(A9c)

(A9d}

(A9e)

(A9f)

~' u 4g~b' 24'~b' 4g~b'
2 2 9(p. + b, ) 18' 3(A —g)

(A13}

The contribution of this state to 8',« is therefore

(A14)

&ol ~", &I -& =

& IA,"'I-&= ~&6

Thus in the basis

(A9g)

(A9h}

(b) e=w/2. At e=w/2, the eigenvalues of H8 can
be calculated by brute force. It is simpler, how-
ever, to note that they will be the same as those
of the operator -g„kA", +b, which in the basis
(A10) has the block-diagonal form

0 0 0 0

b -8——+A b 0
18

0 0

(A10) -8
b

v18

5——b 0
3

0 0

N*'

N~

H, is given by

3a+ b,
i b -4ib
W3 ~6

-ib a+6 0
W3

4ib
W8

0 0

-i4b 2ib

@18

5. 4ib

v18

0 —+b 0
b -8b

v18

0 b0--8b 5

18

0 0 0 b+4

(A15}

with b =g&k/2. Again we expect b ™m,so that the
lowest eigenvalue in (A15) is given by

4ib 5. -a
~18

4ib

W6

g2 1/2
X"'&=-b+ —-2b 1+—+

2 6b 16b
(A16)

0
-2ib -4ib

v18

0 0 0

ib
0 -a+6,

W3

-4ib -i b -3a+ b
~6 W3

(A11)

This eigenvalue can be approximated by

g ~ ~ 'I = -3b+ —— + smaller terms (A17)
Q2

18b

in the region of b-m„and ~-2m, .
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APPENDIX B: OTHER ABNORMAL STATES

IN THE o MODEL

In the Introduction we alluded to the investigation
of abnormal states in finite nuclei recently con-
ducted by Lee and Wick. Since a part of their
study included a discussion of the o model, it
seems appropriate to clarify the relation of their
work to ours. This is perhaps most directly ac-
complished by reproducing, in our notation and
with our approach, their specific results in the o
model.

The abnormal state considered by Lee and Wick
is one in which the normal 0 expectation value,
(o)=—A =f, is significantly reduced, A =0, so that
the nucleon mass, which in the tree approxima-
tion to the cr model is given by

X,fit, (p) -=(n p+pgA —v)tV, (p) =E,N, (p) . (B4)

Hence the energies of the "particle" states are

E,= [p~+ (gA}']t~ —v. (B5)

Since all states with E,&0 are filled in the ground
state, we find the simple relation between v and
the baryon density

1 nF

pa = —
„2 P'dP

p

In this respect, our calculation is simpler than
that in Ref. 6.

Writing the Hamiltonian in {82) in momentum
space and considering it as a Dirac Hamiltonian,
we obtain in essence the free Dirac equation for a
particle of mass gA. in a constant external potential

M =gA. , =
3 o [~- (gA}']'" (B8)

approaches zero. We shall term this an "abnor-
mal-o" state. Although the pion degrees of free-
dom are not involved in this phase transition, both
our parametrization [Eq. (3.15)] of the meson fields
and our variational approach ean be applied direct-
ly; we need simply take k= 8=0 in (3.15) and vary
the expression for 8,'ff with respect to A.

One aspect of the previous calculations which
can not be immediately utilized is the explicit form
of g',«. It is clear from both (3.41) and (3.45) that
if we replace the nucleon mass by g(o) =gA, we
can never find a phase transition with A ~ 0, - since
the nonrelativistie nucleon kinetic energy term,

$,«(v, A) = —, p'dpE, (p)
7l p

=,2 2 [~- (gA)'J'"[ v'+ 2-'(gA-}']

(gA)' v+ [v' —(gA)']'" [
8w' gA

(B7)

where pr = [v' —(gA)'] "'. The total energy in the
Fermi sea is then

3 (3w')'"
(jeff }I kinetic 5 2M Pa (B1)

As in the text we find it simpler to work with

h.'tt (pa)A) -=he«(v, A)+ vpa = hi)(pa, A}. (B8)

becomes infinite as A-0. Thus we must calculate
the correct relativistic energy for the nucleons if
we wish to study the region A =0.

We start from the effective Hamiltonian appro-
priate to infinite neutron matter and ignore the
charge chemical potential since the cr's are also
neutral. Thus

In terms of pa
——(3w'pa)'~', bo(pa} takes on the

familiar form~s

go(pa A} I F '
~

=
8

2Pr[Pa'+(gA)']'"[2Pr +(gA)']

iee)'t„e, + i),* ~ tee)*P'l

Xeff zgy .VN +gAXN —very N + (B2) (B9)

where the meson field energy density is given by

(B3}

Hence the total "energy" density is given by

So(pa t A) = So(pat A)l Fermi eee +

2' A.' -f„m, 'A,
ff ff (B10)

Note that for the purposes of comparison we have
chosen the standard symmetry-breaking term in
(B3). Further, recall that since we are working
in infinite matter the gradient and momentum
terms corresponding to the neutral e will vanish.

and the actual ground state —at a given p~ —is
determined by minimizing (B10) with respect to
A. Clearly at pa=0 (B10) reduces to the normal
equation determining A in the tree approximation,
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(Bl1}

with the solution

In inverse fermis, A0=0.5 F '.
Since the form of (B9) renders a completely

analytic treatment difficult, we have calculated
$,(ps, A) numerically and plotted the results versus
A at different baryon densities in Fig. 13. For
purposes of computing these figures we have

taken the parameters to be exactly those specified
in the text: That is, X =50, mo=4m„ f, =m„/W&,
g= M jA, = 10.

By comparing Fig. 13(c) and 13(d) we observe
that a sharp transition from the '*normal" nuclear
phase (A =Ao} to the "abnormal-o" state (A = 0}
occurs at a density, p~"', bounded by 1.59p~""

p
crit & 1 84p nucl

This density is substantially less than the criti-
cal densities for the pion phase transitions found
in pure neutron matter for the simple o model.
Why, then, have we ignored this abnormal phase

3.0-

2.0-

g(A}
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g(A) (c)
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FIG. 13. The ground-state energy-density function bp(p~, A) plotted vs A. (a) p~=0, p~ =0, (b) p~=1, p~ =0.2pg",
(c) Pg =2, p~ =1.59p~"', (d) P~=2.1, p~ =1.84'", (e) pp =2.5, p~ —-3.10p~"".
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in our discussions and assumed that A =A, for
densities beyond 1.8p~""? Should we not have
allowed all the parameters —A, 0, and 6I—to vary
in our search for the abnormal ground state?

Since the responses to these questions provide
yet another illustration of the central theme of
our study, let us present them in some detail. As
we have consistently emphasized, it is the approx-
imate chiral symmetry of the hadronic interactions
which in our view motivates the study of the pion
condensation. The existence of "pion-condensed"
states very nearly degenerate with the "normal"
vacuum is a consequence of chiral invariance.
So, too, is the appearance of the vector and
axial-vector currents in the rotated Hamiltonian
(3.23).

To the extent that the o model is a realization
of chiral invarianee —and to the extent that we
study only quantities that depend solely or pri-
marily on chiral invariance —its predictions reflect

the greater generality of that model-independent
symmetry. For this reason, we felt it justified
to use the o model as a means of introducing our
approach to pion condensation. Furthermore,
since the "abnormal-o" state is not related to the
normal state by an approximate chiral transforma-
tion —indeed, the invariant (o'+P} differs dra-
matically in the two states —it is difficult to know
how generally the specific results of the 0 model
for this state can be believed. Thus, for example,
how will the short-range nuclear forces —which
presumably differ substantially in the two phases—
affect the "abnormal-0" phase transition? And
how should one interpret the sensitivity of this
transition to the basically arbitrary parameter,
m . ' Finally it is worth noting that the critical
density associated with the inclusion of N* and
obtained from chiral considerations is appreciably
lower than the "abnormal-o" critical density.
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(1972);J. T. Manassah, ibid. 45A, 375 (1973).

~G. Baym, Phys. Rev. Lett. 30, 1340 (1973);G. Baym
and E. Flowers, Nucl. Phys. A222, 29 (1974); C. K.
Au and G. Baym, Nucl. Phys. A236, 500 (1974).

T.-D. Lee and G. C. Wick, Phys. Rev. D 9, 2291 {1974).
7R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev.

D 10, 4114 (1974); 10, 4130 (1974); 10, 4138 (1974).
We shall consistently ignore muons, which are also
present in very small quantities. The extent to which

one can think of matter at these high densities in terms
of an independent-particle model is discussed in Ref. 1.
[See also R. G. Palmer and P. W. Anderson, Phys. Rev.
D 9, 3281 (1974).] Further, we shall consider explicitly
only the case of infinite, approximately uniform,
nuclear matter; complications arising from the actual
structure of neutron stars as determined by gravitation-
al forces will be ignored.

SFor definiteness we shall concentrate on the possibility
of x condensation. The possibility of & condensation
is treated in several of the articles listed in Refs. 2,
3, and 5.

~OIn this heuristic discussion we are being somewhat
cavalier about the "net energy change" and "effective
pion mass. " In particUlar, we are using m'„as an
abbreviation for the total effect of pion interactions with
the medium on the pion's energy.
W. D. Langer, L. C. Rosen, J. M. Cohen, and A. G. W.
Cameron, Astrophys. Space Sci. 5, 259 (1969).
For a detailed pedagogical discussion of the 0 model
and references to the original papers on this subject,
we refer readers to B. W. Lee, Chira/ Dynamics
(Gordon and Breach, New York, 1972).
Many of the results in this section were earlier re-
ported in R. F. Dashen and J. T. Manassah, Phys.
Lett. 47A, 453 (1974); 50B, 460 (1974). These articles
also contain a general model-independent discussion of
pion condensation in the absence of nucleons.

~4This form of symmetry breaking leads to canonical
PCAC, B&A ". fx:~; and to the Weinberg scattering-length
predictions for 7t~ scattering.

5Although A. and mo must differ slightly in the two
cases —one has, for example, f~ =[(mo +m, )Q~]
for i=1, and f~= mo/A for i =2—the important point
for future reference is that both A and m& are "large",
i.e. , »&1, mo»
D. G. Boulware and L. S. Brown, Phys. Rev. 172, 1628
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(1968); see also S. Coleman, in Secret Symmetry, pro-
ceediags of the 1973 International Summer School of
Physics "Ettore Majorana" (to be published) .

~TG. Baym (Ref. 5) has shown in general that if there
exists a nonzero pion-condensed amplitude, it must
vary in time according to the appropriate charge chem-
ical potential: Thus (m, (x, t)) =e'» &'(x,(~)). This result
follows directly from Hamilton's equation 6H/6p „.=~»
and the minimization condition [Eq. (2.16)] of H, ff
with reeyect to p„~

88ince rq is a pseu/oscalar (2.16) implies that normal
parity is spontaneously broken in this new ground state.
We shaQ treat this point in more detail in a later paper.

~~To determine the structure of the energy levels it is of
course sufficient to use the zero-temperature limit.
But in addition, neutron-star matter is indeed very
"cold, "sixee on the scales of the masses, energies,
and chemical potentials involved (E &10-100 MeV), the
thermal energy scale is very small (kTO~ 75 keV) even
though T p

~ 10 K is, by normal standards, very large.
2oOf course the form of A as a function of p, can be im-

portant for determining certain properties of the con-
densed phase, But we see that the nature of the phase
transitim —whether, for example, it is first or second
order~an be seen from the behavior of h in 8.

~ J. Goldstone, Nuovo Cimento 19, 155 (1961);J. Gold-
stone, A. Salam, and S. Weinberg, Phys. Rev. 127,
985 (1882); P. W. Higgs, Phys. Lett. 12, 132 (1964);
Phys. Ssv. Lett. 13, 508 (1964); Phys. Rev. 145, 1156
(1986).

~~The choice of signs for the chemical potential is pure
convention and is made solely for later convenience.

~38trictly speaking, U is not a unitary operator acting
in a Hilbert space: That is, in the infinite-volume
limit we are considering, U acting on ~60) produces
a state which is orthogonal to all states in the Hilbert
space containing ~Qo). This is the reason that H,p
can have a diÃerent ground-state energy from H,ff,
although it would appear that they are related by a
unitary transformation. Fox any local operator, O(x),
however, O(x) =—U 0(x)U is well defined. In practice,
we shall transform only local operators, not states,
and thus no "infinite-volume" problems will arise.
The references in the text to the transformation proper-
ties of states should be regarded as picturesque rather
than precise.

24M. Gell-Mann and M. Levy, Nuovo Cimento 16, 53
(1960).
This nucleon mass is the actual observed value to the
extent that all nuclear forces are included in the Ham-
iltonian.

2 Here we discuss only the theoretical aspects of the
value of gz. Later we treat the phenomenological side
of this problem.

2~M. L. Goldberger and S. B. Treiman, Phys. Rev. 110,
1178 (1958). For a modern exposition, see S. L. Adler
alld R. F. Dashen, Current Algebras and Applications to
Purticle Physics (Benjamin, New York, 1968).

~SThat there must exist such a relation in the limit & =0
can be seen by observing that three parameters in the
Lagrangian —~, A, , and g—determine, when PCAC
is used, four physical parameters —Mz, gz, f, and

g„zz (recall m„=0 when e =0 in the Goldstone mode).
Hence there must exist one relation among these physi-
cal parameters which expresses the underlying chiral

invariance of the Lagrangian; this is Eq. (3.25).
This remark does not imply that the inclusion of addi-
tional nuclear forces will not alter certain aspects of
the phase transition but rather only that the same
approach and interpretation apply in more realistic
cases. It is, for example, physically clear that the
critical density can be changed by including strong
NN forces. More formally, one can see this in pertur-
bation theory, where the states and energy levels of
H,«clearly influence the effect of the perturbation
AHe«on E,'ff See Sec. V, R. Rajaraman, Phys. Lett.
48B, 179 (1974); W. Weise and G. Brown, ibid. 48B,
297 (1974).

3 This is basically the approach used in Refs. 2-5. Thus
we choose the equivalent alternative approach.

3~Thus there is a discontinuity in the second derivative of

ff as a function of p~ at the critical density .
This numerical result assumes g~= gz"~ =1.24.
This assumes no pathology at 8 =~.

34We have deliberately avoided expressing p, p, and k

more accurately in order to emphasize the unreliability
of estimates based on such a crude model.

3~Many authors have emphasized this result and calcu-
lated, in a variety of models, the effects of this reso-
nance.

3 The arguments in favor of treating the N* resonance
as an independent particle under neutron-sNr conditions
appear in R. F. Dashen and R. Rajaraman, Phys. Rev.
D 10, 694 (1974); 10, 708 (1974); and earlier references
quoted there.

3~The higher-order correction terms to this approximate
result —the first of which is shown in (A17)—can easily
be seen to be small in the region of the phase transition.

3 G. Chew, Phys. Rev. Lett. 9, 233 (1963); F. Low, ibid.
9, 279 (1963).
Recent detailed investigations of the effects of nucleon-
nucleon correlations are reported in G. Bertsch and
M. Johnson, Phys. Rev. D (to be published), and S. O.
Backmann and W. Weise, Phys. Lett. 55B, 1 (1975).
An analytic calculation of these effects in the simple
models discussed here is presented in G. Baym,
D. Campbell, R. Dashen, and J.Manassah (unpub-
lished) .
M. O. Ericson and T. E. O. Ericson, Ann. Phys. (N.Y.)
36, 323 (1966). See also the discussions of Refs. 2, 3,
5, 29, and 39 and G. Baym and G. E. Brown (unpub-
lished).

4 Actually, we should probably also separate off the
long-range tail of two-pion exchange as well. For
simplicity, we ignore this refinement.

42See, for example, A. L. Fetter and J. D. Walecka,
Quantum Theory of Many Particle Systems (McGraw-
Hill, New York, 1971).

43M. Gell-Mann and R. Feynman, Phys. Rev. 109, 193
{1958);E. C. G. Sudarshan and R. E. Marshak, ibid.
109, 1860 (1958).

44W. Thirring, in Quantum Electrodynamics, proceedings
of the IV Schlsdming conference on nuclear physics,
edited by P. Urban (Springer, Berlin, 1965) [Acta
Phys. Austriaca, Suppl. 2 (1965)), pp. 205-211. This
paper is perhaps more easily accessible in the form
reprinted in J. J. Kokkedde, The Quark Model (Ben-
jamin, New York, 1969), pp. 183-189. Readers un-
familiar with the manipulations that follow are strongly
urged to consult this reference.
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This is the prescription given by the Melosh transfor-
mation between "current quarks and constituent quarks"
tH. J. Melosh, Phys. Rev. D 9, 1095 (1974)i. This
scheme has been very successful phenomenologically
and it would be surprising if its prediction for the
N*N* matrix element of the axial-vector current were
seriously in error.

4 This expression is consistent with that in Ref. 6 when

one recalls that whereas we are considering pure neu-
tron matter —for purposes of comparison with our
earlier results —Lee and Wick treat symmetric nuclear
matter. The difference is a factor of 2 in the statistical
weight of a given momentum state.

7In Ref. 6, Lee and Wick argue that for m~=M, pP,
"

~ p&"«(m~/M) . With m~ =2 GeV, our calculations show
that +crit 8 5pnu«


