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The role of chiral symmetry in pion condensation was explored through model calculations in the preceding
paper. Here we present model-independent results which justify and sometimes go beyond the previous work.
Our methods are based on functional techniques used in field theory. The paper is not self-contained and is
meant to be read in conjunction with the preceding one. In the course of this work we were led to look at low-
energy - N interactions. In a brief survey, it is pointed out that they are more complicated than is commonly

assumed.

I. INTRODUCTION

In paper I,! we discussed pion condensation®
using a chiral-symmetry approach inspired by the
o model. The ¢ model cannot be taken seriously
as a realistic model of 7-N and N-N interactions.
If one were able to compute the binding energy of
nuclear matter or 7-N phase shifts in this model
it would no doubt fail miserably.

Fortunately, many of the qualifative results of
paper I do not depend on the details of the model.
They are consequences of the fact that the 0 model
contains pions and nucleons, and that it has an
approximate chiral SU(2) ® SU(2) symmetry.®

The strong interactions are believed to respect
an abstract SU(2) ® SU(2) symmetry just as they
respect isospin or SU(3). Those features of pion
condensation which can be understood from chiral-
symmetry considerations alone should therefore
be present in any realistic calculation. Since they
are consequences only of symmetry they can be
abstracted from any model which respects the
symmetry.

On the other hand, there are many features of
pion condensation in general and of our model cal-
culations in particular that are not just conse-
quences of chiral symmetry. As was pointed out
in the preceding paper, the inclusion of the
N*(1236) as well as nuclear forces is necessary
in order to get realistic results. Such strong-
interaction phenomena are compatible with and
indeed respect chiral symmetry. However, only
a few of their properties are predicted by the
symmetry. A realistic calculation requires con-
siderable further input. In particular, there are
questions about the low-energy 7n-N interaction
which is only partially determined by chiral sym-
metry.

12

In any quantitative theory of pion condensation
one is faced with a difficult many-body problem.
Chiral-symmetry ideas are helpful in that they
allow one to set up this problem in a systematic
way, but they do not help much in solving it.

These caveats aside, we feel that the idea of
chiral symmetry is basic to a fundamental under-
standing of pion condensation. In a previous letter*
we have shown how to apply the ideas of chiral
symmetry to pion condensation in the absence of
fermions in a model-independent way. In this
paper we carry out the same program for the
physically interesting case where fermions are
present. In doing so, we will justify many of the
calculations of paper I. We will also see the limits
of what can be learned from chiral-symmetry
considerations alone.

In Sec. II we define some properties of the gen-
erating functionals of field theory and we argue
that the energy functional E (¢“) can be conven-
iently written as

Eerf=Ev+EH+Ec’ (1.1)

where v, H, ¢ refer, respectively, to appropriately
defined vacuum, Hartree, and correlation ener-
gies.

In Sec. I we compute the vacuum and Hartree
energies in a model-independent way. In the
k, ., 6 notation of the preceding paper, we show
that

L < (1M3 @ - w)sin®6 + m?(1 - cos6)]

+0(Lg2 K, ut), (1.2)

where the “standard” (3, 3) symmetry breaking

has been assumed, and that
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E#=EH + NB{AM(GZ) f2 =2 s"‘ 20 ((d, + d ) - dﬁ]}

+0(L4% u4 kY, (1.3)

where E¥ refers to the Hartree energy of the ¢
model, AM is related to the o term in 7-N scatter-
ing, and d, and d, are the Taylor expansion coef-
ficients for an on-shell 7-N scattering amplitude.

The correlation energy E® is a many-body term
about which chiral symmetry has little to say. It
depends on nuclear forces, nucleon-nucleon cor-
relations, and so on. The meaning of chiral sym-
metry with respect to nuclear forces was dis-
cussed in Sec. V of the preceding paper. Except
for the possibility of estimating E° by computing
at 6=n/2, where some simplification occurs, our
formalism yields little new information about E°.

In Sec. IV we examine in a general way the
spontaneous breakdown of certain continuous sym-
metries in the presence of pion condensation.

In Sec. V we review some salient points about
the experimental 7-N interactions. It is pointed
out there that this interaction is more complicated
than is commonly thought and that simple models
can be quite misleading.

In Appendix A we review the evaluation of Feyn-
man integrals for p#0 and T=0.

In Appendix B we examine the spontaneous
breakdown of discrete symmetries (P, CP, and
T).

We would like at this point to stress that this
paper is meant to be read along with or following
the preceding one. Furthermore, owing to the
variety of subject matter covered—chiral sym-
metry, functional techniques, current algebras—
it is not possible to make this paper self-con-
tained. In particular, derivations which are
available inthe literature have not been included.
We hope to have remedied this defect by having
included enough references.

II. FUNCTIONAL METHODS

In this section we define and state some proper-
ties of generating functionals commonly used in
field theory and statistical mechanics. Several
excellent reviews of these functional methods
exist in the literature, to which we refer the
reader who is not familiar with this subject.®

A. The functionals I" and E

We will assume that we are working with an
effective Hamiltonian®

Heff=H+Z by @y, (2.1)
i

where the @, are conserved “charges” and the ;
are the corresponding chemical potentials.® We
assume that the fields are chosen such that [Q;, ¢,
=¢;0¥P« and associate a chemical potential u,

=21 dio by With each field. The effective Lagran-
gian is then given by

it {a‘pa}y {(pa} ) =£({(ao + e )Pus -54’01}; {(Poz}) .

(2.2)

The generating functional W for the connected
Green’s functions® is then defined by the functional
integral

= [laplessfi [2-1 [ Sinw],
[
(2.3)

where the integration is over all fields which ap-
proach the ground-state (vacuum in field theory)
expectation value (¢,) at infinity. The functional
W generates all the connected Green’s functions.
For example, the ground-state expectation value
is

(@g (x) = oJ (x) (2.4)
and the propagator is
n_ O 5
Cas(%, ¥')= 5515 57,60 e (2.5)

Finally, the ground-state energy per unit volume
is W(0)/Q, where 2 =V T is the volume of space-
time.

Using W we now define a c-number classical
field by

oW
6J,(x)

P5(x)= (2.8)
which may be interpreted as the expectation value
(@4 (x)); in the presence of the sources J. Next

a new functional® I is defined as the Legendre
transformation

ffﬂ x)Jo(x)dx =W, (2.7

where it is assumed that I" has been expressed as
a functional of ¢ by using (2.6) to eliminate the
J’s. Since T is a Legendre transformation, we
immediately deduce that

or

maﬂﬂx); (2.8)

similarly it follows that

or

6—_(/)2():) =0, (2.9)

98x) = <gg(x)>
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and that -I'((¢))/Q =W(0)/8 is the ground-state
energy per unit volume.

It can be shown that I is the generating func-
tional for the one-particle irreducible Green’s
functions.® In particular, the inverse propagator
is given by

Gl p(x, x') = (2.10)

6 8 5

60 (x) 808 (x") " lpaizco>

The three-point and higher vertices are obtained

by taking higher derivatives of I" around ¢=(¢).
The rules for computing I in perturbation theory

are the following.® Define

LQog}, o) =L (B(@+ @)}, {@+ @]

- 2. Qag°}, {o°D (2.11)
and make the decomposition

£=L,+ &, +terms linear in ¢, (2.12)

where £, contains all terms bilinear in ¢ and £;
contains the terms trilinear and higher. Any
terms in £ linear in ¢ can be ignored. This de-
composition defines a set of Feynman rules,
whose combinatorial and topological properties
are the usual ones which can be read off from the
functional integral in (2.3). The “free propagator”
for the Feynman rules is

o 6 —
Gous ™%, 25401 = 52 S5 fi’»od"x,

(2.13)

which depends on ¢ through the dependence of

£, on ¢, and the interaction vertices which also
depend on ¢ are contained in £,. In terms of the
thus defined Feynman rules I is equal to the action
of the classical field ¢ plus the sum of all one-
particle irreducible diagrams with no external
lines. The diagrammatic expansion of I' is con-
veniently organized into an expansion in the num-
ber of closed loops.> Through one closed loop I’

is

r= f dx8 . {00d b, 108 ) - 12—” trinG,(¢®)

+ two and more closed loops, (2.14)

0= % 1 for a boson loop
- ’

-2 for a fermion loop

where G, is given by (2.13) and the operation
“trIn” operates on the indices a, B as well as x
and x’. The higher-order terms are straight-
forward Feynman diagrams built out of the propa-
gator G, and the vertices £;.

The expansion for I is assumed to be fully re-
normalized.” Thus, £, in (2.14) contains only

finite parameters. This implies, of course, that
trInG, is to be regulated and appropriate sub-
tractions are to be made.

In all cases of interest to us, ¢ will be a func-
tion of the spatial coordinates x only. It is then
useful to introduce a Fourier-transformed propa-
gator G by

, = > 1 - - >
Goas(xo = X0y X, xl; (pd) =§—1;.f dw Goaﬁ(w, X, xl; (pCI)
xe~twkomx0)  (2.15)

The Feynman diagrams can then be computed in
w space. The variable w is conserved at the
vertices generated by £; and can be thought of as
the effective energy (i.e., the true energy plus a
chemical potential) associated with an internal
line. The contour of the w integrations in the dia-
grams is the same as in usual Feynman diagrams.
It goes from — = to 0 just below the real axis,
crosses the real axis at w =0, and proceeds to
+  just above the real axis.

When ¢¢ is independent of time it is convenient
to define the functional E (¢<)=-T'(¢<)/T and
the classical potential energy

84 &) =-2 Mira0d®), Bod®)}, {od (x)})-
(2.16)
Equation (2.14) then takes the form

- 1 = ;
Ey (@)= fgcl &)dx + '4% fd‘*’ trinG,(w; )

+(two and more closed loops), (2.17)

where the symbol “trIn” now acts on the indices
@, B and X, x’. Clearly E,;, like I', has an
extremum at ¢°=(¢) and E . ((¢)) is the ground-
state (effective) energy. Finally, it is important
to note that although ¢ ¢ is independent of x° the
time derivatives in £ do contribute to §, because
of the presence of the chemical potentials in the
definition (2.2) of £ 4.

B. Boson and fermion propagators

For bosons, the exact propagator G(w;{¢))
evaluated at ¢ =(¢) is known® to have its singu-
larities along the real axis with the operator

Aw)=i[G(w +i€, () G(w -i€, (9))]

being positive-definite for Re w >0 and negative-
definite for Re w< 0. If we take the volume to be
finite so that the singularities are poles, this
says that G has poles of positive residue on the
positive real axis and poles of negative residue
on the negative real axis. Evidently, the contour
of the w integration is such that it goes above the
positive-residue poles and below the negative-
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residue poles. This is a consequence of the bound-
ary conditions on the functional integral. It is
always assumed that the approximate propagator
Go(w, ¢9) has the analytic properties of G(w, (¢)).
If it does not, ordinary perturbation theory for I
will be meaningless. For a random choice of the
arbitrary function ¢¢, G, may well fail to have
the correct properties. What this would mean is
that ¢ ' is quite different from the true expecta-
tion value (¢). At a phase transition the expecta-
tion values () change character. Thus the class
of ¢’s which will give a propagator G,(w, ¢') with
the correct analytic properties also changes at a
phase transition.®

As an example of this consider a free boson field
carrying chemical potential u. The inverse propa-
gator in momentum space is then (w + p)?
- (m? +k&2), so that the propagator has positive-
residue poles at w = |m?+ k?|Y2 - . and negative-
residue poles at w=—|m?+ k?|2- u. These poles
are on the right sides of w =0 only if |u|<m.
This is the well-known fact that for a free boson
the chemical potential cannot be greater than the
mass. If one tries to make it bigger Bose-Einstein
condensation occurs and | k| remains at m.

For fermions, the analytic properties of the
exact propagator G(w, (¢)) are similar (in that
all the singularities lie on the real axis) but dif-
ferent in an important way. Because of the anti-
commutativity of Fermi fields A(w) is positive-
definite for both positive and negative Re w; i.e.,
all poles have positive residues. Because the
residues do not have to change sign at Re w =0,
we never have the sort of trouble that leads to
Bose-Einstein condensation. In fact, one can
easily show that if ¢ is real so that £ is
Hermitian, then G (w, ¢*') will always have the
correct analytic properties.

C. Occupied fermion states

In cases of interest to us, ¢ will be sufficiently
close to the vacuum expectation value ¢),,. such
that the singularities of fermion propagators will
retain something of their free-space structure.
In particular, there will be a gap in the spectrum
corresponding to the original vacuum gap between
the fermion poles at positive energy and the anti-
fermion poles at negative energy. The gap may,
however, be shifted above or below w =0 by a
chemical potential which is somewhat larger than
the fermion mass. How this will look is shown in
Fig. 1.

When this remnant of the free-space gap exists,
we can talk in a useful way about occupied fer-
mion states. They are the poles of G(w) which lie
between the gap and the point Re w =0 and cor-

Imw

X XN NN
; Re w

Gap

FIG. 1. The singularity structure of a fermion propa-
gator assuming that ¢ - (¢),,. is not too large. The
gap is the remnant of the usual gap between fermion and
antifermion states.

respond to those fermion levels which are oc-
cupied in the many-body ground state but would
be empty in the vacuum. As an example of what
this means, consider the one-loop term in (2.14).
We write

_1f __l_f 7
3 cdwtrlnGo(w)-zﬂ coolwtrlnGo(w)

Lf
wm cxdwtrlnéo(w),

(2.18)

where C is the original contour shown in Fig. 2(a),
C, is a contour that crosses the real w axis in the
gap, and C, is a loop around the occupied states.
The integral along C, is divergent and must be
renormalized. This may be accomplished by the
standard methods” for renormalizing I'. Turning
to the integral along C,, we integrate by parts to

Im w
j Re w
c/
(a)
Im w
e
' N C] Re w
c Occupied
(] States
(b)

FIG. 2. The contour C shown in (a) is that which one
is instructed to use in the perturbation expansion. In
(b) it has been deformed into a contour C,, which passes
through the gap and a loop around the occupied states.
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obtain

_1_f e __l_f oG
o CldwtrlnGo(w)—zﬂ w dwtr[y°G (w)]

G

=D e,

occupied
states

(2.19)

where €, is the effective energy of the nth state.
Note that these effective energies, which include
the chemical potentials, are always negative.

The above separation of an w integration into
contours C, and C, has a simple meaning in terms
of Dirac hole theory. In hole theory the energy
of a many-fermion system is the sum of the en-
ergies of all the fermion states which are filled
in the many-body system minus the sum of the
energies of the states which are filled in the vacu-
um. The occupied states inside the contour C,
have no counterpart in the vacuum so we just add
up their energies. The integral along C, contains
the negative energy sea which we have to re-
normalize by subtracting the energy of the negative
energy sea in the vacuum. After renormalization,
this integral will be finite. It will also be nonzero
unless @ =(¢@),,. .

For the general diagram in the expansion of T'
or E it is similarly useful to split integrations
containing fermion propagators into pieces coming
from the two contours C, and C,. How this works
is best explained by giving an example. Consider
the typical two-loop diagram in Fig. 3, where the
directed line in a fermion and the wiggly line is a
meson. We break the diagram into three pieces:
(a) where the w integral is along C, for both fer-
mion propagators, (b) where one integral is along
C, and the other is along C,, and (c) where both
integrals are along C,. The first piece (a) is highly
divergent and ought to be lumped together with
other such “vacuum” graphs and handled by re-
normalization methods.!® Part (b) contains a
divergent fermion self-energy which is removed
by renormalization. After renormalization (b) is
a finite self-energy summed over occupied states
and represents a correction to the sum over

FIG. 3. A two-loop diagram. The directed line is the
propagator of a fermion in the external field ¢, . The
wiggly line is a meson propagating in the same classical
field. See the text for an explanation of the meaning of
this diagram.

lowest-order energies in (2.19). The third piece
(c) can be recognized as a familiar termin the
ground-state energy of a many-fermion system.
Specifically, it is the (fermion) exchange part of
the lowest-order energy coming from the meson
exchange potential.!’! The same sortof decompo-
sition can be made for any diagram in the ex-
pansion of I'" or E.

D. “Vacuum,” “Hartree” and ‘‘correlation” energies

The essence of the previous subsection is that
the functional E ;(¢*) defined in the previous
section can be conveniently separated into three
pieces,

E, =E°+E"+E° (2.20)

where the superscripts v, H, and ¢ are chosen to
suggest “vacuum,” “Hartree,” and “correlation”
energies. They are defined as follows.!?

The “vacuum” energy® is the sum of all dia-
grams in the perturbation expansion (2.17) for
E ., with the integration contour taken along C,,
(Fig. 2) for all fermion propagators. The ex-
pansion for E” starts in the tree approximation with

E¥(p)= fé’c,(;c)d§ +(closed loops) . (2.21)

The closed loops are divergent, but in a renormal-
izable theory there is an adjustable counterterm
in & , corresponding to each possible divergence.
The computation and renormalization of E* is a
problem in relativistic field theory.

The “Hartree” energy E¥ is the sum of all dia-
grams shown in Fig. 4, where the directed line
is the fermion propagator in the presence of the
classical field ¢  and the w integration is avound
C,. The blobs in Fig. 4 are one-particle irreduc-
ible and if there are any internal fermion loops the
integration is over C,. The “Hartree” energy is
explicitly given by

E”((pcl)= Z Erlr((PcI)’

occupied
states

(2.22)

where the €] are the positions of the poles of the

Q+®+©+@+...

FIG. 4. The series of diagrams which sums to an ener-
gy shift for the occupied states. The blobs are one-
particle irreducible and contain no sums over occupied
states. The single directed lines are the propagator of a
fermion in an external field; see the text.
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dressed fermion propagator!* obtained by summing
the self-energy blobs shown in Fig. 4. When we
minimize over ¢ to get the ground-state energy
the €, are energies in a self-consistent field ¢;
hence the name Hartree. When there is more than
one species of fermions present, the propagator
is a (possibly diagonal) matrix and the €, are the
positions of the poles in the matrix or equivalently
the zeros of the determinant of the inverse propa-
gator. In lowest order E¥ is

EH(¢CI)= Z €, ((PCI)
occupied
states

+ (two and more closed loops), (2.23)

where the unprimed €, are the poles of the free
fermion propagator in the presence of the ciassical
field ¢ .

The remaining diagrams which constitute E°
have at least two distinct loops, each of which
contains a fermion propagator integrated around
C,. Part (c) of the diagram discussed at the end
of Sec. (II) is an example of one contribution to E°.
It is evident that E° is a many-body energy'® with
a self-consistent field piece taken out; hence the
name “correlation.”

III. PION CONDENSATION

In this section we discuss pion condensation in
terms of the formal framework developed in Sec.
II. Computational details which were amply illus-
trated in the preceding paper on the 0 model will
be omitted here.

A. The o model

In the 0 model we consider E; as a function of
classical fields 7¢ and o', The chiral-invariant

[oa)? + 79 R))2=A% (3.1)

is assumed to remain essentially equal to its
vacuum value A=(0),,.. The justification for im-
posing this constraint is that E” will become very
large if A differs significantly from (0),,.. On
the other hand, the chiral rotation of the vacuum
fields

0% =cosb(0)

vac ?

7 =sin6 cos(k*x)(0),,. , (3.2)

7 =sin6sin(k+X)(o),,. ,
sl =0

costs relatively little energy.’® The particular

form of the chiral rotation in (3.2) is that which

is believed to correspond to charged pion conden-

sation in a translationally invariant system.!'?

In the preceding paper we computed E” for the
fields in (3.2) using the simplest approximation of
keeping only the term shown explicitly in (2.21).
We found

1

EVv = 0yae A 3 (&% - p2)sin®6 + m,2(1 - cosb)] ,
(3.3)

where u is the chemical potential for the third
component of isospin and the symmetry breaking
C 0 has been assumed. Although (3.3) was obtained
from the “tree approximation,” it can be shown
that as a consequence of the chiral symmetry in
the model Eq. (3.3) is actually exact up to small
terms of order m !, K, and |. This will be
discussed in more detail below. We are justified
in considering k* and p* as small since we expect
condensation to occur for values of # and p of
order m,. Note that EY as given by (3.3) remains
of order ({0),,)¥m,? for all values of the rotation
angle 6. In contrast, a fractional change in A of
order unity would lead to a large E” of order
(0,000 2> (0,,) m,2.

In our model calculations we approximated the
“Hartree” energy of the nucleons by the first
term in Eq. (2.23). This approximation gives the
terms of order |k| and || in E¥ correctly but
misses terms of order k%, p2, and m,%. The latter
terms, which are likely to be important in actual
neutron-star calculations, will be discussed be-
low.

The “correlation” energy E° was completely
ignored in the model calculations. It cannot be
ignored in a quantitative calculation and its omis-
sion is a major fault of the models."

Our final remark about the 0 model is that ac-
cording to the formalism of Sec. II one should use
renormalized parameters in E® and E#. Thus g,
is not constrained to its bare value g, =1. After
renormalization, the only constraint is that the
Goldberger-Treiman relation be respected.

B. A model-independent approach

The 0 model is not to be taken literally as a
correct model of 7-N and N-N interactions. Its
virtue is as an example of the consequences of
chiral symmetry. Here we will look at pion con-
densation in a model-independent way.

We will assume that the strong interactions can
be described by a Lagrangian of the form

L=Lyn+8g , (3.4)

where the symmetrical Lagrangian £, is in-
variant under chiral® SU(2) ®SU(2) and the sym-
metry-breaking piece £ is a small perturbation.
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The perturbation £; conserves isospin and will
be assumed to contain no derivatives of the fields.
Forgetting the many-body problem for the mo-
ment, we can imagine taking this Lagrangian with
all chemical potentials equal to zero and minimiz-
ing T to find the vacuum values {¢,),, of various

fields ¢;. Chiral symmetry is supposed to be
spontaneously broken, which means that some
fields which are not chiral singlets have vacuum
values which remain finite as £55 -~ 0. A simple
example of such a field is the o field in the o
model.

In the 0 model we argued that pion condensation
is quite well described by fields 7 and o which
are a chiral rotation of the vacuum fields. We
now assert that the situation will be similar in
the general case. The reason is the same as be-
fore. When 6 is not small, our rotation leads to
order one changes in the fields. However, since
the theory is nearly chirally symmetric this does
not lead to a large E”. Any other kind of order
unity shift away from the vacuum such as a change
in a “radius” like (0 + 72)!/2 would make E® very
large. Of course, to get quantitative answers we
should allow for small changes in chiral invar-
iants. Also, we have to remember that some
fields which cannot have vacuum expectation values
will acquire expectation values in a many-body
system. An example of such a field would be the
time component of a four-vector. Our assertion
is basically that any changes in chiral invariants
and the additional many-body expectation values
are qualitatively unimportant compared to the
rotation of the vacuum fields.

The basic hypothesis as described above makes
sense only if 6 is not too small. For small 6 the
rotation is small and is not easily distinguishable
from many other small effects. Assuming the
phase transition to be second order, 6 begins to
move away from zero at some critical density and
presumably increases as the density increases
beyond the critical point. The number of con-
densed pions is roughly proportional to sin%6,
which starts at zero and increases as 6 heads to
some angle of reasonable magnitude where one
could say that the condensation is more or less
fully developed. It is in this fully developed con-
densation that chival symmetry plays a particularly
important vole. Of course, it is also interesting
to look at small 6, in particular to find the critical
density at which the phase transition occurs. For
small 6, there is nothing wrong with our general
formalism or use of chiral symmetry. The point
is that for small 6 there is no good reason to ex-
pect that our methods are better than any other
schemes.

We assume, therefore, that for a fully developed

condensation, the appropriate fields to insert in
E _, are not too different from chirally rotated
vacuum fields. The particular rotation which we
choose is the abstract chiral rotation correspond-
ing to rotation of the o and = fields shown in Eq.
(3.2). Actually, rather than work with the ro-
tated fields it is easier to apply the counterrota-
tion to the Lagrangian and work around the ordin-
ary vacuum fields at the expense of having to deal
with a modified Lagrangian. I the rotation in (3.2)
did not depend on )’(, the symmetric piece of the
Lagrangian, £,,,, would not be changed by the
counterrotation. It does depend on §, but the way
in which a symmetric Lagrangian transforms
under a local rotation is well known. Since by
assumption the symmetry-breaking term £ con-
serves isospin and contains no derivatives of the
fields, the inverse of the rotation in (3.2) applied
to £ will have the same effect as the global ro-
tation obtained by setting k=0and replacing 6 by
—-6in (3.2). To say much more about the result
of rotating £, requires a model of the sort to be
discussed below.

We now quote the result of applying the inverse
of the rotation in (3.2). In doing so, it is conven-
ient to define a four-vector

Y= (1, k,, kyy ky) (3.5)

built out of the chemical potential p for the third
component of isospin and the three-vector k. we
also introduce the vector (isospin) currents V},
i=1, 2,3 and the axial-vector currents A}, i

=1, 2, 3, whose charges generate SU(2) ® SU(2).
The rotation changes the effective Lagrangian,
containing chemical potentials, according to

L= Lym= oSOk, VY —sinb k,AY+ K’ S¥(6)

+ £¢;(6), (3.6)

where £ (6) is the rotated symmetry-breaking
term and S"(6) comes from the terms in the La-
grangian which are bilinear in derivatives of the
fields. We do not have to worry about the detailed
structure of S”*. In diagrammatic language S™*
is responsible for the “seagull” diagrams which
will appear in matrix elements involving two or
more of the currents £,V or k,AY. The structure
of these seagulls is known to be completely de-
termined by the Ward identities of the theory.!'®
In practice the best thing to do is to compute the
physical quantities using the covariant Feynman
rules specified by the functional integral. The
seagull diagrams will then take care of themselves
and the Ward identities will be satisfied.

To get a feeling for what £, (6) looks like let us
consider the popular model where £, belongs to
the (3, 3) representation of SU(2) ®SU(2). The
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(3, 3) representation contains fields u and v, v,, v,

with exactly the same quantum numbers and trans-

formation properties as the fields o and =, ,, 7,
in the 0 model. The symmetry-breaking Lagran-
gian is taken to be the parity-even isospin-zero
field  and £,(6) is then

£45(6)=cosbu-sinbv, . (3.7)

At present there is little experimental support for
this particular £¢;. A good determination of the
7-7 scattering lengths would be decisive.!®

There is some model-independent information
available about the operator

2

d
Z= pg Lu®] (3.8)

which is just minus « in the (3, 3) model. The
vacuum expectation value is known to be?°
0[z[0)==-fp*m* + O((Ls ) , (3.9)

where we have indicated that (3.9) is correct up
to second order in £g; and introduced the constant
fr defined by?!

(1, (9)|AB(0)|0) = —iq¥by5 /o (3.10)

with a pion state normalized to (q|q’)=2¢°6*(q-q’).

The matrix element of Z between nucleons can be
determined from an analysis of on-shell 7-N
scattering. It appears that??:23

(N|Z|N)=50-T5 MeV + O((£4;)?) , (3.11)

where the sign is definite but the magnitude is
somewhat uncertain. The normalization in (3.11)
is such that in the (3, 3) model where = =-£;,
the symmetry breaking increases the nucleon
mass by the amount on the right-hand side of the
equation.

The only other new terms appearing in (3.6) are
the vector and axial-vector currents V; and A},
whose properties are well known.

Our task is now to compute E  for the Lagran-
gian (3.6) under the assumption that the fields do
not differ very much from the vacuum fields.
Assuming that the vacuum fields are known, this
is equivalent to computing the corrections to the
(effective) ground-state energy E (6) due to the
extra terms in the Lagrangian (3.6). Breaking
this energy into pieces E®, E¥, and E° we treat
each piece separately.

C. The “vacuum” energy

It can be shown that up to order (£45)?, k*, and
u* the “vacuum” energy is exactly equal to

L f 3@ - w9sin®6) + (01245 (0) - £, (6)]0)

+0(82, K4, 1. (3.12)

Using (3.9), it is easily seen that in the (3, 3)
symmetry-breaking model (3.12) reduces to

E{; =f,2[4 (k% - u2)sin®6 + m,*(1 - cosé))
+O(£saz;r<4, u). (3.13)

For any type of symmetry breaking, it follows
from (3.9) that for small 6
9 2

EY -
7 =f,r2(k2—ll-2 + mﬂz) ?

+0(6%) + 0(£% k4, pt) . (3.14)

Equation (3.12) can be derived in various ways.
It was obtained by a straightforward operator ap-
proach in Ref. 4. A more elegant approach is to
realize that the way in which the vacuum functional
T transforms under local chiral rotations has been
exhaustively studied using the nonlinear repre-
sentation method.? This method also yields the
formula in (3.12) and contains an error of the in-
dicated order.

Our formula for E® illustrates some of the power
of the chiral approach to pion condensation. In
physical terms, E® contains all the effects of 7-7
scattering, the energy associated with irreducible
six-pion vertices and so on. Up to the indicated
order in E, i, and £45, it also includes the dif-
ference in energy between the negative-energy sea
of antinucleons in the presence of a pion conden-
sate and the negative-energy sea in the vacuum.
All such effects are lumped into one simple formu-
la. The physical pion mass and (3.9) set the scale
of (0|£4,(0). There are no divergences in (3.12);
only physical renormalized parameters appear.

D. The “Hartree” energy

The candidates for fermions in a neutron star
are nucleons, hyperons, and the (3, 3) resonance
A. We will treat only nucleons here. The exten-
sion to hyperons is straightforward and the in-
clusion of A’s was discussed in the preceding
paper.

To obtain the energies of the occupied states
we need poles of the nucleon propagator. In gen-
eral it is impossible to define the nucleon propa-
gator in a model-independent way. However, in
a neutron star we expect that off-mass-shell ef-
fects will be small. The nucleon propagator will
then be the free propagator (i —M)~! modified
by the extra terms which appear in the rotated
Lagrangian. The simplest approximation is to
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keep only the vector and axial-vector currents
in (3.6) which yields for the inverse propagator

S™1=4y ~M- cosb -;—3 ¥ - g,sinb -%1 Yk + v°Up

+0(R, £,), (3.15)

where up is the chemical potential for baryon
number and the indicated error of order £, ~m,’
~k? comes from neglecting £¢5, B k™S, ), and
the second-order contribution of 2,A% . The ap-
proximation in (3.15) was used in our model cal-
culations.

One can do better. Consider first the term
£ (6). It is convenient to break it into even and
odd pieces,

£ SB (0) = %[SSB (6) + £SB (-9)]
+ %[«ssg (9) _"BSB (-9)]
=£2.(6) + £2,(6), (3.16)

which have, respectively, even and odd parity.
The odd-parity piece will have small matrix ele-

ments between nonrelativistic nucleon states.
Since nucleons are expected to be reasonably non-
relativistic in neutron stars and £¢; is already a
small operator we ignore this piece. For the even
part, we define

AM(8)=-(N|L&(6) - £5(0)|N), (3.17)

where the normalization is the same as in (3.11)
and we need not worry about isospin since £&;(0)
contains only even isospin and only its /=0 com-
ponent survives in (3.17). The first-order effect
of £ on S™! will be to replace Min (3.15) by

M+ AM(6). From (3.11) we see that AM decreases
for small 6. This means that the nucleon mass

is going down, which will encourage condensation.
For finite 6 one cannot make a general statement,
but in the (3, 3) model AM(6) is easily seen to be

a positive number (of order 50 to 75 MeV) times
(cos6 - 1), which is negative for all 6#0.

Next we need the second-order contribution of
k,A?. This must be computed along with the first-
order term in k,k, S**. Together they will add a
term to the inverse propagator

—% fd4x<N| T'(k,AL (x)k\A}0))| N) sin?6 — ( N|k,ky S"(6)| N)

=-% fd“x(NlT’*(k,,A;’(x)k)‘Az)‘(O))lN)sinZGE%sinzbk,,kxa")‘, (3.18)

where the last line defines o**. In (3.18) we have
introduced the covariant time-ordered product

T* and the prime on T and T* means that, since
we are computing the inverse propagator, the
single-nucleon intermediate state should be omit-
ted. That the ordinary time-ordered product T
combines with S”¥ to give a single covariant time-
ordered product T* is a consequence of the rela-
tion between seagull diagrams and Ward identities
discussed above.!?

The quantity k,%k,a”* can be related to an on-
shell 7-N scattering amplitude as follows. In the
scattering amplitude for w,(k)+ N(p)—~m, (' )+N(p'),
where k2 =k'?2=m,? and p? =p’'%=M?, we take as
independent variables k*k’=m,%> -~ 3¢ and v
=(p+p')(k+Ek')/4M=(s —u)/4M. In terms of
the usual isospin-even amplitudes?3:2s A®) and
B™ we define D=(A™ + vB™ minus the pseudo-
vector Born term). Explicitly, D is given in the
standard notation by

G (v v kR’

=A) w_Z (8, _“B = e —
b=A""+vB 2M(u3+u+u,-u>’ Y8 2M
(3.19)

where G is the 7-N coupling constant (G*/4r=~14).

—

It is a standard result of partial conservation of
axial-vector current (PCAC) and current algebra
that??2¢

fo2D(v, ke k') =a* ¢ k' + (N|Z|N)
+O((£p ), (Re R, 17) . (3.20)
If we define the expansion
D(v, k*k')=D(0, 0) + d,v? + dy(k- k') ++++, (3.21)

where we have used the fact that D is an even func-
tion of v, then

AP EF RN =2 (d v + d k%) + O((£45)) . (3.22)

The numbers d, and d, can be determined experi-
mentally from the on-shell 7-N dispersion re-
lations.?®*?" [In using experimental data the reader
is reminded that the momentum transfer ¢ is
(2m,% - 2k- k'), so that setting k=&’ as in (3.22)
does not correspond to an on-shell forward scat-
tering unless k?=m,?2.]

To use (3.22) in the nucleon propagator, itis
convenient to assume nonrelativistic nucleons so
that v=k°=p.

Putting together (3.17), (3.18), and (3.22) yields
an inverse propagator



S™1=49 -M~ AM(8) - cos?b —;—3 ¥ - g,sind L YK +

2

where we remind the reader that u is the chem-
ical potential for the third component of isospin,
K p is the chemical potential for baryon number,
and in addition to the indicated error we have
made the nonrelativistic approximations of setting
v=u and dropping £4,%(6).

With this propagator one can evaluate E” to the
same order of approximation as was attained for
E’. Since the new terms in (3.23) do not contain
derivatives or y or T matrices they simply make
an additive correction to the energies of the oc-
cupied states €,. Consequently, one finds, setting
ExkM=p?-k2,

f.2sin%6

E#=E# + Ny {AM(OZ) - —"—2—— [(d, + d,)u? - dzﬁz]}

+0((£ )% L4EY , (3.24)

where Nj is the number of baryons and E¥ is the
“Hartree” energy computed with the simpler
propagator (3.15). In the preceding paper EY was
evaluated for nonrelativistic nucleons.

Again we see that chiral symmetry gives a sim-
ple general result that depends only on experi-
mentally determined parameters. To the indicated
order of approximation, (3.24) for E¥ takes ac-
count of the fact that the condensed pions are off
the mass shell. It also takes into account direct
interactions of a nucleon with two and more pions;
i.e., processes which in nuclear physics language
would be called true multibody forces. [Note that
since AM(6) is not in general proportional to sin®,
the quantity multiplying Np in (3.24) is not sin®6
times a 7-N scattering amplitude.] However, the
formula for E# may not be as useful as the cor-
responding expression for E*. The reason is that
for values of k and p of interest in neutron stars
the expansion in Eq. (3.21) may not be useful.
This will be discussed in Sec. V.

E. The “correlation’ energy

It is not clear that our chiral rotation approach
to pion condensation has much that is useful to
say about E°. The reason is that in E® and E# (as
we have defined them) the basic scale of energy
is set by high-energy physics and is, say, a
nucleon mass. For E® and E¥, therefore, it is
useful to think of u?, k2, and m,? as small pa-
rameters. For the correlation energy E°, the
basic scale is set by a nuclear many-body prob-
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fp*sin®6

5 (d,u? + dzkxk)‘) +9%p +O((L 5 E‘, v,
k= (u, By, Ry k), (3.23)

r

lem. On this scale u2, k?, and m,? are large.

We can remark that one is only interested in the
way that E, depends on the 6-dependent terms in
the rotated Lagrangian in (3.6). It depends on 6
for two reasons: First because the energies and
wave functions of the occupied states depend on
6 and second through an explicit modification of
the nucleon-nucleon potential. Since the nuclear
force is supposed to be basically chirally sym-
metric, one expects that the latter effect is very
small except for the special case of the pion ex-
change potential. The pion propagator will be
substantially modified by the rotation and any at-
tempt to compute E° should take this into account.

To our usual approximation the pion propagator
is completely determined by chiral-symmetry
considerations. Like EY, it is correctly given by
the tree diagrams in the o0 model, provided that
one chooses the correct symmetry-breaking term
and uses physical values for m,% and f,.

IV. BROKEN SYMMETRY

We started with a Lagrangian that is transla-
tionally invariant and is invariant under rotations
around the third axis in isospin space. The fields
in (3.2) violate both of these symmetries. We
note, however, that a translation X—~X+a com-
bined with an /; rotation through an angle k-a
does not affect the field. In any case, we have a
spontaneously broken symmetry. If there are no
long-range forces the Goldstone theorem tells us
to expect a boson mode whose energy vanishes as
its wavelength goes to infinity. In the real world
electromagnetism provides a long-range force,
and since the Goldstone mode is charged in this
case, one expects that it will turn into a plasma
oscillation. In the preceding paper we showed
that in the absence of nucleons this is precisely
what happens. Infact, the result is general as
we shall show below.

The fields in (3.2) also break rotational invar-
iance. One might worry that there is another
Goldstone boson associated with the breakdown
of this symmetry. It could not be found in a model
with mesons alone since in that case condensation
occurs in a k=0 state. We will show below that
there is not in fact a second Goldstone boson.

All the broken symmetries are taken care of by
a single boson which becomes a plasmon upon
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interaction with the photon. As asserted in the
preceding paper, there is then no reason to ex-
pect additional low-lying boson modes.

A. Electromagnetism and the breakdown of /,

For definiteness we will discuss the question in
terms of the 0 model. The conclusions, however,
will be perfectly general. In the condensed phase,
we expect that E; w~ill be minimized for classical
fields

0% =g cosb,

78 =g sinb cos(k*X), 4.1)

-
75! =a sinf sin(k*x),
n' =0,

where a=(0),,.. To find the excitations, we then
need to evaluate the functional I" for classical
fields which are infinitesimally close to the
ground-state fields in (4.1). The methods of Sec.
II will then tell us how to compute propagators,
vertices, and so on. We know that the Goldstone
particle comes from 7, and 7, so let us concentrate
on them. A possible parametrization of these
fields is

11':'();, t)=[1 + p(;(, t)]a sin6 COS(E'; + (P(;(, t)) ’
(4.2)
79 &, 1) =[1+pG, )] asinbsin(E-X + 9 &, 1)) .

This decomposition of 7, and 7, into a “radius”
and an angle ¢ is nonsingular for the small values
of ¢ and p of interest.

Consider now I as a functional of ¢ (%, t) with p
=0 and all other fields set equal to their ground-
state expectation values. As long as ¢ has non-
trivial space-time dependence I'(¢) will be greater
than I'(0). However, in the limit that the space-
time dependence of ¢ vanishes, I'(¢) must ap-
proach I'(0). This must be so because for con-
stant ¢ and p=0, (4.2) is just a rotation expG¢l,)
on the ground state. This cannot change the en-
ergy because H.; commutes with I;. This is the
origin of the Goldstone boson. Its “field” is
<p(§, t) and it takes no energy to create it in the
limit of infinite wavelength. To make contact with
the model calculation of the preceding paper, we
expand around the ground-state fields and find to
lowest order

asinfg (X, t) =1 x, x)cos(k*X)- 18 %, t )sin(k*X)
oo, (4.3)

For mesons alone condensation occurs for k=0
and a sinf ¢ becomes the Goldstone boson field
7, of the model calculation.

When the electromagnetic field is included ¢
can be eliminated from I'" by the gauge transfor-
mation?®

At~ AF + -i— kg . (4.4)

All the low-lying modes are then basically elec-
tromagnetic. To compute these modes would thus
require a detailed consideration of the effects of
electrons, etc.

B. Rotational invariance

We now turn to rotational invariance. Because
we already understand its effect, electromagnetism
will be ignored.

We will work in the chirally rotated frame where
the expectation values are normal but the Lagran-
gian is that given in (3.6). In going to this frame
the conserved current V4 rotates by

VE~J¥=cos6VE + sinbAL . (4.5)

The current J* is of course conserved when we
use the rotated Lagrangian (3.6). The ground
state is, however, not an eigenstate of the con-
served charge [d®xJ°. This is another way to
see that we need the Goldstone boson. The Gold-
stone particle is produced by the current acting
on the ground state.

To see what happens with rotational invariance,
we want to chirally rotate the momentum density
T%. To do this we need the equal-time commuta-
tor

[T9&, 1), K°G, t)] =i ;y-r(os(ﬁ-ax"(’, 0,

(4.6)

where K °is the time component of any one of the
vector or axial-vector currents. One then easily
calculates that under the rotation

T~ T% 4+ BiJ°, 4.7)
To check the conservation law we use the fact that

H = H o~k f Jd3x+ “Schwinger terms” ,

(4.8)

where the Schwinger terms can be ignored in the
following calculation. Then using the commutator

[T9, t),Ji@, t)] =i %r &-7)JGF, t)

—i 57 (CER-DIG 1),

(4.9)



one finds

i[um-x’(-fﬁdsx, W&,t)+k‘.f°(§,t)]

= % (THR, t)+ B I, t) + RJE L)),
(4.10)

where the right-hand side is the divergence of a
symmetric tensor, as it should be.

Equation (4.10) is the local version of momen-
tum and angular momentum conservation in our
chirally rotated frame. The ground state is not
an eigenstate of the charges associated with T
+ k' J°, Therefore, there must be a Goldstone
boson. But this boson is again made by acting with
J° on the ground state and is therefore the same
one as before. In both the /; current and the mo-
mentum current, the same Goldstone particle
arises from the same operator J*. We note that
the breaking of rotational invariance here is of
a very special type. For this special type of
symmetry breaking, there is not an extra Gold-
stone boson.

V. REALISTIC 7-N INTERACTIONS

In Sec. III we saw that chiral symmetry instructs
us to compute the (in general) off-shell 7-N
scattering amplitude by setting it equal to the
measurable on-shell amplitude at the same values
of v and k*k’. For the pion-condensation problem
at least, the error incurred in this extrapolation
is of second order in the amount by which the
pions are off-shell.

This section is devoted to some remarks about
the observed 7-N amplitudes as extrapolated in
this way. We will assume nonrelativistic nucle-
ons, so that the approximation

RO=R'%°zv=p (5.1)

is valid. For pion condensation, we need only
the combinations A® + vB®, where A and B are
the standard amplitudes®® and the index x can
stand for a definite isospin I=3 or £ or a definite
crossing + or — .

A. Chiral-symmetry predictions

Chiral symmetry says that
[A®+vB™ — (pseudovector Born term)]|,=¢; s-n’=0
=D|y=gpen=0= (fD)2ANIZIN) , (5.2)

which was already used in the previous section.
It also predicts that

12 CHIRAL SYMMETRY AND PION CONDENSATION. II. ... 1021

2 2
G, C s GV
A"+ VB M - oM +

+ 0@, vk k'), (5.3)

H

where the (=) Born term is given in the same no-
tation as in Eq. (3.19). The result for the sym-
metric amplitude in Eq. (5.2) tells us how to mea-
sure {(N|Z|N). For the antisymmetric (-) ampli-
tude one has a prediction which has been well
confirmed experimentally. The term (f,)”%v ap-
pears as part of [ cos(67,/2)¥] in our expression
for the nucleon propagator.

B. The symmetric amplitude below threshold

The coefficients in the expansion in Eq. (3.22)
have been extensively studied through dispersion
relations.?®*'?” The various numbers have not yet
been completely fixed in a quantitative way but a
clear qualitative picture is available. The ampli-
tude at threshold

D(threshold) = D(0, 0) + m,%(d, + d,) (5.4)

is very small. Numerically, it is something like
a factor of 10 smaller than D(0, 0). This comes
about because of a presumably accidental cancel-
lation between the two terms on the right-hand
side of (5.4) and is responsible for the well-known
fact that the isospin-even scattering length is very
small.?® The coefficients d, and d, are comparable
in magnitude so that this peculiar cancellation
comes from both the v? and k*k’ dependence.

C. The partial -wave expansion

Turning to the expansion in partial waves, we
assume nonrelativistic nucleons, drop small
terms of order m,/M, and keep only S and P
waves. The expansion is then

A®) (L KK) + pB® (u, k-k)
=4n{g® (u) +[28% )+ g W)k -k'}, (5.5)

where we set v=k°=k% =y so that Bk =p2-k-k’
and g;, is a partial-wave amplitude for J =L+ 3.
The normalization is such that for amplitudes of
definite isospin I=3 or 3

w_ €'°sind

g0=—F
o _ €'°sind (5.6)
&1: = &

q=u?-ms)?,

where the phase shifts are to be evaluated at
center-of-mass energy vs =M + 1. Thus, we see
that for S- and P-wave scattering off nonrelativis-
tic nucleons, the chiral prescription of going off-



1022 D. K. CAMPBELL, R. F. DASHEN, AND J. T. MANASSAH 12

shell with v and k+k’ fixed reduces to the usual
ansatz of treating S waves as functions of i only
and P waves as functions of u times k-k’. At

W =m,, the g’s reduce to scattering lengths and
(3.5) reduces to a constant plus a piece proportion-
al to k*k’. From the latter, one can determine®
the coefficient d, in (3.22).

D. Problems in the S waves

If we were to (mistakenly) conclude that the
smallness of symmetric scattering length implies
that the symmetric (+) amplitude has a small
effect on the S waves then the natural low-energy
expansion for an S wave would be

g cotd = constant , (5.7)

where the factor of q is conventional and the factor
of 1 appears because the odd amplitude A+ vB(”
is proportional to v~ . Experimentally,3° the

=% phase shift is well represented by Eq. (5.7),
with the constant agreeing with that given by (5.3).
For I=3, however, (5.7) completely disagrees
with experiment.’® It is qualitatively wrong for
pion kinetic energies as low as 50 MeV. In part,
this failure is due to the neglect of the even (+)
amplitude which is accidentally small at threshold
but comparable to the odd (-) amplitude away
from threshold. This cannot be the whole story,
however, since the (+) amplitude also contributes
to the I=3 channel. At 50 MeV above threshold
the (-) amplitude must have ceased to be linear in
v in just such a way as to compensate the energy
dependence of the (+) amplitude in the I=3 channel.

The low-energy behavior of the 7-N S waves

does not seem to be of the simple type which can
be adequately described by scattering lengths or
expansions of invariant amplitudes. In realistic
calculations of pion condensation, the S-wave
interactions, although smaller than the P waves,
often play an important role. To our knowledge
none of the existing calculations (including our
own) has gone beyond the approximation of Eq.
(5.7) which is demonstrably wrong. Considerable
work toward understanding 7-N S waves and their
role in condensation must be done before quanti-
tative results can be claimed.

E. The P waves

The P-wave amplitudes are dominated by the
A resonance. At threshold it produces a P-wave
attraction of roughly the same size as the Born
term and hence encourages condensation. In a
fully developed pion condensation with y = m, there
will be a large contribution to the energy from the
processes “condensed pion” + N— A. This will

lead to a large number of “virtual” A’s and one
must take account of the fact that they obey Fermi
statistics. The easiest way to do this is to intro-
duce the A as a separate elementary particle.
This is easily accomplished in our general formal-
ism and was illustrated in the preceding paper.

As a point of consistency, it has been shown
that at neutron-star densities, the nucleon and A
can be considered as two independent species of
fermions.?!

F. Summary

In previous sections we have stressed that a
proper treatment of the correlation energy is re-
quired in a quantitative calculation. The point of
this section has been that before a quantitative
calculation can be done we must also understand
the details of the low-energy 7-N interaction. It
is the S waves which are likely to cause trouble.
The latter can probably be well approximated by
introducing the A as a separate species. The con-
fusing behavior of the S waves is what keeps us
from asserting that (2.22) is a definitive formula
for the Hartree energy E¥.
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APPENDIX A: FEYNMAN INTEGRALS
IN A MEDIUM AT T=0

As shown in Sec. II, in the presence of a med-
ium, the conservation laws (isospin, baryon
numbers, etc.) could be directly incorporated in
the propagators through the substitution

Py~ Py—ip 554
(pu pz, p3)" (pn pz, ps)E([)v 52’ 53) .

In this appendix we will review some well-known
results of the literature®? pertaining to

(a) methods for integral evaluations in the pres-
ence of a medium,

(b) list of the most important integrals,

(c) method of separation of the many-body effects
from purely field-theoretical contributions.

(A1)

1. Example
Evaluate
1
fd3p dp, GioipF it =L} *°(0,m?).

(A2)
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The poles in p, are at the same for all values of p, since (p; - p;)is
. . a\1/2 p-independent. The pole p; will only contribute
by =in +i(E*+m?)\2, (A3) to the integral under the circumstances that
ps =ip —i(*+m?)V2 . p - (p? +m?)/? is a positive number. We will ex-
press this by the function & — ( + m?)'/?) in-
The pole p; contribution to the integral will be serted with the (d°%p) integration. Consequently
LF*0(0,m?) = L¥°(0, m?) + fdﬁb 6 = (p* + mz)”z)(— Eﬁ—'z)l—/z>

= 100, )= e [ LS mE)

(pZ + m2)1/2

i =)
)

= L¥9(0, m?) = 27°6(u—m) | (4 - m?)"% - m?1n -

(a4)
with

(A2+m2)”2+A] , (A5)

L¥9(0, m?) = 2#[A(A2+m2)1’2—m21n
and where A is the ultraviolet cutoff for the momentum p. Notice that the second term on the right of Eq.
(A4) could be deduced from the first through the substitution

w-m2=A2. (A6)

In effect this example has shown us how to separate the field-theoretical effects from the many-body effects
and, in addition, showed how the parameter (u% - m?)/? acts as a built-in ultraviolet cutoff to the many-
body contribution of the integral.

2. List of some useful integrals

d*p
(py—ipu P +2(p,—ip)k, + p* + 2p-k + m?

@) L“*°(k,m2)=f

’

(A7)

- 2 _ ;2 4 pR)V/2
=L“~°<k,m2>-znze(u—<m2—k2>”2)[u(u2-m2+k2)1/2+(kz—mznn “+('§nz_mk2)m) }

T

2 _ 2 1/2
=Ly, m2)+2n29(u—(m2—k2)”2){kv[“(#2 -m? + k)2 + (K ~m?)in JJL‘JP(?mz _mkz;/z:?-') }

+-§i6y4(u2—m2+k2)} 5 (A8)
. (4%
© @ m= [ iy
2 _ /
= Q¥ 0(k, m?) - 2726 — (m? - K2)¥?)In & +(t;n2 _ml:z;ukj)1 = (49)
pyap

@ e m)= [ gty

L+ (2 —m? + B2)M2

(m? - F2)172

= Q4 0(k, m?) + 272 0(u — (m? - k?)/?) [k,, 1n +30,, (2 -m*+ kz)”zJ ; (A10)
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= PPd'lP
(e) @4y ok, m?)= f(p2+2pk+m2)2

=Q;£;o__ 2m6(p —(m? _k2)1/2){_§§u [“(“_2 ~-m?2+ B2+ (B2 = m?)In [ +(21;;2——m;;l]:2)1/2 ]

B+ (p2 —m? + B2)1/2
(m? - K212

+kyky In

+1(Ry 8yq + kp0y N> —m? + K22 = 5,0, ,u (2 —m? + kZ)uz} )
(A11)

3. General considerations

As seen in the above examples, all the Feynman integrals in a medium do separate, and the purely
many-body contribution has a built-in cutoff and is consequently always regular. This implies that the
regularization of the free theory is sufficient in the presence of a medium, and the effects of the medium
will be in altering the renormalization of the theory by finite amounts.

The generalization of the previous results could be simply achieved in that any diagram will consist of
integrations over a product of denominators which are quadratic in p; then using Feynman’s method

1
a,a,* **ay

where a, are quadratic in p, the right-hand side
will be a quadratic term raised to the nth power,
and on which the same manipulations, separating
the contribution of p; and p;, could be achieved.

APPENDIX B: SPONTANEOUS BREAKDOWN
OF DISCRETE SYMMETRIES

In Sec. IV we discussed the implications of the
“spontaneous breakdown,” in the ground state with
pion condensate, of the continuous symmetry
associated with I, rotations. In this appendix we
comment briefly on the obvious result that a state
| G’) for which

(G'|n|G")y+0 (B1)

cannot be an eigenstate of parity or time reversal.

1

=nl J’dxldxz---dx,,é(l—xl—xz—-"—x,,)[a

LIS n
1% T A%, + +a, an

r

The original Lagrangian—defined in Eq. (2.2)—is
invariant under these transformations; consequent-
ly P, CP, and T are also “spontaneously broken”
by the presence of the pion condensate.

The strength of the P and T violations can
readily be estimated by referring to (3.6), from
which one can see that our explicit P and T vio-
lating interaction will arise in second-order per-
turbation theory from terms of the form

cosOsinb(k,V SksAf). (B2)

Since (k,)~O(m,), this term is second order in
the size of the chiral-symmetry breaking. For
small condensate amplitude (6= 0) the magnitude
of the breaking is further suppressed by the factor
cosé sinf = 3 sin(26).
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