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Retardation effects in the Holstein-Hubbard chain at half filling
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The ground-state phase diagram of the half filled one-dimensional Holstein-Hubbard model contains a
charge-density-wave (CDW) phase, driven by the electron-phonon (e-ph) coupling, and a spin-density-wave
(SDW) phase, driven by the on-site electron-electron (e-¢) repulsion. Recently, the existence of a third phase,
which is metallic and lies in a finite region of parameter space between these two gapped phases, has been
claimed. We study this claim using a renormalization-group method for interacting electrons that has been
extended to include also e-ph couplings. Our method [Tsai et al., Phys. Rev. B 72, 054531 (2005); Philos.
Mag. B 86, 2631 (2006)] treats e-e and e-ph interactions on an equal footing and takes retardation effects fully
into account. We find a direct transition between the SDW and CDW states. We study the effects of retardation,
which are particularly important near the transition, and find that umklapp processes at finite frequencies drive

the CDW instability close to the transition.
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The interplay between electron-electron (e-¢) and
electron-phonon (e-ph) interactions leads to important ef-
fects in low-dimensional materials such as molecular crys-
tals, charge transfer solids,> conducting polymers,® and
fullerenes.* In narrow-band electronic materials, perhaps the
simplest model capturing this interplay is the Holstein-
Hubbard model (HHM), where the e-e interactions are de-
scribed by an on-site repulsive Coulomb term, and the elec-
trons are coupled to dispersionless optical phonons in
localized vibrational modes.’

In the one-dimensional HHM (1DHHM) at half filling,
early quantum Monte Carlo (QMC) calculations® suggested
that there are only two phases: the Peierls charge-density-
wave (CDW) and the Mott spin-density-wave (SDW) states.”
The boundary between these two phases was predicted to lie
along the line in parameter space where an “effective” e-e
interaction vanishes: U 4=U —2g§p/ wy=0, where U is the
Hubbard on-site e-e repulsion, g., is the electron-phonon
coupling, and w, is the phonon frequency. More recently,
several authors have proposed that a third phase might exist
near Ug;=0: a metallic, Luttinger liquid, phase,>”'% or an
off-site pairing superconducting phase.'! Large scale QMC
studies'? have indicated that there is a metallic region with
dominant superconducting (SC) pairing correlations between
the CDW and SDW regions. Density-matrix renormalization
group (DMRG) studies'? suggest that SC does not exist but
instead that both the spin and charge gaps vanish only for
U.=0, suggesting that a metallic phase (with no dominant
SC correlations) may exist only exactly on the boundary be-
tween the CDW and SDW phases. This is also the conclusion
of two-step renormalization-group studies'> and Lanczos
diagonalization.'* To attempt to determine which of these
scenarios is correct, we study the problem here using a
recently  developed extended renormalization-group
approach.!.

At half filling, umklapp scattering creates a strong ten-
dency to open a charge gap. From the perspective of weak-
coupling approaches, it is highly nontrivial to have a finite
metallic, or SC, region. If such a phase is to exist, it must be
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that the dynamical nature of the phonons effectively sup-
presses umklapp scattering. Therefore retardation effects
must be taken into account in order to investigate this issue.
For this purpose, we use a multiscale functional
renormalization-group (MFRG) method.! Our MFRG is an
extension of the RG for interacting fermions'® that are also
coupled to bosonic modes and applies to both the weak
(A< 1) and strong (A>>1) electron-phonon coupling limit
[)\=2N(O)g§p/ wp, N(0) is the electron density of states at the
Fermi level]. For a spherical Fermi surface, the MFRG re-
produces Eliashberg’s theory at the SC instability,' and it has
been applied in the study of phonons in ladder systems.'”
The 1DHHM is given by the Hamiltonian

H=- IE (Ciy1.0Cio+He) + UE nn; |
i,o i

+ gepE (azT + ai)ni,(r+ w()z ajai’ (1)

i, i

where cw (¢; ) is an electron creation (annihilation) operator
at site ¢ with spin o, n;, is the electron number operator, a}L
(a;) is a creation (annihilation) operator for an optical pho-
non at site i, ¢ is the nearest-neighbor electron hopping inte-
gral. We use units such that t=1=#.

Using path-integral formulation and integrating the pho-

non fields, the effective retarded e-e¢ interaction is!

2g2 (O
g(l_c ’k »]E 7IS)=U_—C;7 (2)
TR Lop+ (0 - 0]

where k=(k,)."® We use a notation in which, after scatter-
ing, an incoming electron with momentum and frequency k;
(ky) goes out with k, (k3), so that k;+k,=k3+k4. In the an-
tiadiabatic limit, where wy— %, all the electronic frequency
dependences are suppressed, and the HHM maps onto the
standard Hubbard model with a renormalized U,y At half
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filling, its ground state is charge-gapped SDW for repulsive
interactions and spin-gapped degenerate CDW/SC for attrac-
tive interactions. The transition between SDW and degener-
ate CDW/SC occurs when the bare coupling changes sign

dg(lil ,kz’k?)) _
dA
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(Ues=0).

In the MFRG approach at the one-loop level, the RG flow
equations for the coupling functions, g(k;,k,,ks,ks) with ini-
tial conditions given by Eq. (2), are given by!

d d
== J dl_’E[GA(E)GA(]S)]g(]SI’]SZvIS)g(E’]S’]SS)_ f d]za[GA(B)GA(QI)]g(EJSZaC_Il)g(I_Cl’QIJ_Q)

d
- f dﬂd_A[GA(Ij)GA(C_IZ)][_ 2g(k1,p,q2)8(q2.k2.k3) + 8(p,k1,42)8(q2. k. k3) + 8(ky1, P, q2) 8 (kn, 42, K3) ], (3)

where k=k;+k,~p, q=p+ks—k;, @=p+ks~k,, [dp
=[dp=,1/(2mB), and G, is the self-energy corrected propa-
gator at energy cutoff A. Since the interaction vertices are
frequency dependent, there are also self-energy corrections.
At the one-loop level

d(k)

20 __ f A= TGAP 280 1)~ 8k 0. ()

We have solved the coupled integral-differential equations,
Egs. (3) and (4), numerically with two Fermi points (N,
=2) and by dividing the frequency axis into 15 segments
(N,=15). Figure 1 shows the discretization scheme for N,
=2 and N,=15.

We next calculate within our MFRG approach the RG
flow of susceptibilities in the static (zero frequency) and
long-wavelength limit. The SC susceptibility is x3 (0,0)
=[D(1 ’2)<CP1»lC—Pl»TCipz,TC;CZ,l); and the SDW and CDW sus-
ceptibilities can be written as

FIG. 1. Discretization of the momenta in the Brillouin zone and
frequencies in the frequencies axis. This figure shows the case N,
=2, N,,=15.

8 _ t t
XA(W7O) - J D( 1 ’2)<c;)],0‘1cp1+7T,0'lcp2+7T,0'2Cp2,0'2>5

where p; is the momentum at energy &,
fD(l,Z) EJ déJ(&) dfzf(fz)Eg oSSy
IR |l >A e

and J(§) is the Jacobian for the coordinate transformation
from k to §. For 6=SDW, s,=1, s;=-1, and for 6=CDW,
sy=1, s;=1. The dominant instability is determined by the
most divergent susceptibility as the cutoff A is lowered. The
flow for the SC susceptibility is given by

d SC 0’0 d
XAdj\ - j dl—jd_A[GA(B)GA(‘I_’)][Zic(lj)]z, (5)

dZ3(p) d
e L A A I )
(6)

where gsc(p_’,g)=g(p_’,—p_’,—;_7), and the flows for the SDW
and CDW susceptibilities are

dx3(,0) _
N

dZ3(p)
dA

f dz_aﬁ[GA(z_o)GA(y OZ )P (7)

=Jdl_7/diA[GA(E,)GA(I_7I +Q)1Z3(p")e°p" p),

(8)

where Q=(7,0). For 6=SDW, g%p’.p)=—g(p+Q.p’.p).
and for 6=CDW, g‘s(p_’,g)=2g(p_’,1_7+2,£)
-g(p+Q.p’.p).The function Z‘s(,z_)) is the effective vertex in
the definition of the susceptibility x°. Its initial RG value is
1. The MFRG equations for susceptibilities are solved with
initial condition Xi: A =0.

In g-ology'®-?! there are only four couplings, correspond-
ing to forward (g,,g4), backward (g;), and umklapp (g3)
scattering. The charge and the spin parts are governed by g3
and g,, respectively. Under the MFRG, each one of these
couplings carries frequency dependence g;(w;,w,, ;). In the
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FIG. 2. (Color online) Left: flows of SC, SDW, and CDW sus-
ceptibilities for U=0.5 and wy=1.0. Right: flows of umklapp g; and
backscattering g; at zero frequencies. Top: g,,=0.2 (Ue>0). Bot-
tom: g,,=0.8 (U <0).

weak e-ph coupling limit (A < 1), the two-step RG is a good
approximation, and the couplings are separated into two
types: high-frequency transfer, |w;—w4| >y, and low-
frequency transfer, |w,—w,|<w, However, our MFRG
analysis reveals that the couplings develop additional non-
trivial frequency dependence, particularly when the e-ph
coupling is comparable to the e-e coupling and U.;=0. As
we shall see, understanding this frequency structure is criti-
cal to resolving the current controversy about the behavior in
the region near the CDW-SDW transition.

Deep inside the CDW and SDW regions, we fix wy=1.0
and U=0.5, and show results of the RG flows for the suscep-
tibilities and couplings for different values of g.,. For small
e-ph coupling (g.,=0.2, and U;>0), the SDW susceptibil-
ity exhibits a strong divergence, while both CDW and SC
susceptibilities are suppressed (Fig. 2, top). This is expected,
since the on-site repulsion dominates over the retarded at-
tractive interaction mediated by the phonons. A charge gap
develops, with no spin gap, which can be inferred from the
flow of the couplings: umklapp (g3) diverges, whereas back-
scattering (g;) does not. For large e-ph coupling (g.,=0.8
and U.;<0), the CDW susceptibility diverges (Fig. 2, bot-
tom). Now there are both spin and charge gaps, and, corre-
spondingly, both umklapp (g;) and backscattering (g;) are
divergent.

We next consider the region close to the CDW-SDW tran-
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FIG. 3. (Color online) Left: flow of susceptibilities for U=0.5,
0y=1.0, g¢,=0.55 (U,<<0). Right: flows of the umklapp scattering
g3 and backscattering g, at zero frequency.
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FIG. 4. Plots of the umklapp scattering g3(w;,w,,w,,w;) for
U=0.5 and 0)=1.0. Left: g.,=0.2. Right: g.,=0.3.

sition where U.;=0. For U slightly below zero (g,
=0.48), the behavior of susceptibilities and couplings is
qualitatively the same as in the rest of the SDW phase (Fig.
2, top). The only difference is that the gap decreases and
eventually goes to zero at the transition. Figure 3 shows the
flows for g¢,=0.55 (Ue slightly above zero). The SC sus-
ceptibility becomes enhanced, but the CDW susceptibility
still dominates. Interestingly, g,(0,0,0) diverges but
g5(0,0,0) does not. In 1D problems without retardation, the
usual interpretation is that the CDW instability occurs when
g—-% and gy——.192122 In the present case, since
g5(0,0,0)—0, we need to look at the frequency dependence
of the couplings in order to understand what is driving the
CDW instability.

In the MFRG approach, we obtain the flows of all the
gi{w|,w,,w;) couplings and self-energies, and can analyze
how this frequency dependence evolves with the flow. Con-
sider first the cases deep in the SDW and CDW phases. Fig-
ure 4 shows contour plots of g;(w;,w,, w,, ;) which corre-
sponds to an umklapp process with zero-frequency transfer,
|, —w,| =0. We plot the value of the coupling at an RG
scale ¢ right before the critical scale €, when the instability
occurs. For the SDW phase (Fig. 4, left), the existence of a
charge gap is signaled by divergence in the umklapp channel,
and the most divergent g; couplings are the ones close to
zero frequency. Deep inside the CDW phase, g5(0,0,0,0)
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FIG. 5. Plot of the umklapp scattering g3(w;,w,,w,,w,) for U
=0.5, wy=1.0, and g3=0.55. Note that g3(0,0,0,0) is flowing to-
wards zero.
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also diverges, as seen before (Fig. 2). However, the most
divergent couplings are for large values of w, and w, (Fig.
4).

The situation for g.,=0.55, shown in Fig. 5, is more in-
triguing. Umklapp scattering is renormalized to large values
in most parts of the frequency space. However, for frequen-
cies near zero umklapp scattering flows to very small values.
From the RG flow of the susceptibilities (Figs. 2 and 3), it is
clear that there is CDW instability for U.;>0 and a direct
transition from CDW to SDW. From the frequency depen-
dence of gz we conclude that close to the transition to the
SDW, the CDW instability is being driven by umklapp pro-
cesses at high frequencies. These are processes at small fre-
quency transfer, |w,—w,| ~0< w, but that, nevertheless, in-
volve electrons with high frequencies (w, and ,). In a two-
step RG analysis, the couplings gi(w;,w,,w,,w,), with
different w; and w, are all indistinguishable since |w; —wy]
=0 for all of them. Clearly, the two-step RG fails in this
region.

It has been shown recently that the Luttinger charge ex-
ponent can be larger than one in the half filled one-
dimensional Holstein-Hubbard model.'> For the Luttinger
liquid, the scalings of ground-state correlation functions are
determined solely by the charge (K,) and spin (K,) expo-
nents. For example, in the spin-gapped regime, where K|,
=0, CDW and SC correlation functions scale as OPW(x)
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oy ®p=xKeow  and  OSC(x)xxPKe=xKsc,  with
a=B=1.""2! The dominant correlation is of CDW (SC) type
for K,<1 (K,>1). This relation is not guaranteed to hold in
the presence of phonons and retardation effects.?> Moreover,
using the Luttinger liquid theory to interpret the data from
quantum Monte Carlo calculations for finite-size systems has
to be performed with caution, in particular when the gap is
vanishing exponentially with respect to the electron-phonon
coupling.®

In conclusion, we have studied the ground state of
1DHHM at half filling using the MFRG method. This tech-
nique enables us to treat retardation effects from the phonons
in a systematic way. We find SDW and CDW phases, and a
direct transition between them. Analysis of the frequency
dependence of the g3 shows a shift in spectral weight indi-
cating that the CDW instability near the transition is driven
by dynamical umklapp processes. New phonon features are
observed in Bechgaard salts at low temperatures”*~2% but
their role is yet to be understood. The retardation effects and
dynamical umklapp studied here may be relevant to the un-
derstanding of part of the rich phase diagram of the organics.
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